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Abstract

Recent character-based end-to-end text-to-speech (TTS) sys-
tems have shown promising performance in natural speech gen-
eration, especially for English. However, for Chinese TTS, the
character-based model is easy to generate speech with wrong
pronunciation due to the label sparsity issue. To address this
issue, we introduce an additional learning task of character-to-
pinyin mapping to boost the pronunciation learning of charac-
ters, and leverage a pre-trained dictionary network to correct the
pronunciation mistake through joint training. Specifically, our
model predicts pinyin labels as an auxiliary task to assist learn-
ing better hidden representations of Chinese characters, where
pinyin is a standard phonetic representation for Chinese charac-
ters. The dictionary network plays a role as a tutor to further
help hidden representation learning. Experiments demonstrate
that employing the pinyin auxiliary task and an external dictio-
nary network clearly enhances the naturalness and intelligibility
of the synthetic speech directly from the Chinese character se-
quences.

Index Terms: Chinese speech synthesis, multi-task learning,
dictionary tutoring

1. Introduction

Text-to-speech (TTS) [1] systems convert normal language text
into human speech, aiming to synthesize speech with high in-
telligibility and naturalness. Compared with statistical para-
metric speech synthesis (SPSS) [2] [3] [4] which has a text
frontend extracting various linguistic features, sequence-to-
sequence (seq2seq) [5] neural TTS [6] [7] [8] [9] has become
a new trend due to its simpler module and procedure and less
need for extensive domain expertise. Besides, end-to-end neu-
ral TTS can generate more natural and human-like speech than
traditional TTS [10].

Seq2seq attention-based models have achieved promising
results on English text-to-speech tasks and the use of charac-
ters brings model simplicity and enables end-to-end optimiza-
tion. Char2Wav [11] first explores end-to-end attention-based
model trained on characters for TTS tasks. Later, Wang et al.
propose Tacotron [7], an end-to-end generative text-to-speech
model that synthesizes speech directly from characters. On the
basis of Tacotron, Tacotron2 [10] combines a Tacotron-style
model and a modified WaveNet [12], thus it is able to gener-
ate sound much closer to natural human speech from character
sequences. Since character-based TTS models do not require
a grapheme-to-phoneme conversion model [13], modeling with
character can alleviate the need of manual labeling cost and is
becoming a trend in end-to-end TTS model.
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Although character-based models perform well on English
TTS, it is still a big challenge for Chinese TTS due to the se-
vere label sparsity issue [14]. Unlike English, Mandarin Chi-
nese has tens of thousands of characters. Limited to the amount
of training data, words with few occurrences in training corpus
cannot be fully trained and easily have a strange prosody and
even wrong pronunciation.

In this paper, we propose a multi-task learning [15] and dic-
tionary tutoring method to address the issue of label sparsity.
Specifically, We introduce an additional task of character-to-
pinyin mapping to assist TTS learning. Pinyin is a standard pho-
netic representation for each character, which is a smaller mod-
eling unit compared with character, therefore, learning speech
features jointly with character-to-pinyin mapping can integrate
more delicate information. Since the pronunciation problem
cannot be completely solved by the multi-task method, we ad-
ditionally introduce a dictionary network. The dictionary net-
work also learns a character-to-pinyin mapping, but pre-trained
on much larger dataset. When the predicted pinyin confidence
of multi-task learning is not high enough, the pinyin embedding
is substituted by the dictionary embedding. The whole process
is like a language beginner looking up the dictionary when en-
countering a word that he does not know how to pronounce dur-
ing reading. Our main contributions can be summarized as fol-
lows:

* We first use three different modeling units, including
character, pinyin and phoneme, to synthesize Chinese
speech based on Tacotron2 in order to analyze effects of
modeling units on Chinese TTS task, as well as to create
baselines.

* We propose a multi-task learning method to address the
issue of label sparsity, which enables generating more
natural and intelligible speech.

* We demonstrate that dictionary tutoring mechanism has
the ability to correct pronunciation mistakes of uncom-
mon and polyphonic characters to some degree.

¢ Our model can synthesize speech directly from Chinese
characters.

2. Related work

To our knowledge, sequence-to-sequence attention-based mod-
els perform very well on English TTS tasks, nevertheless, re-
lated works are quite few on Mandarin Chinese TTS tasks.
Wang et al.[16] is the earliest work touching end-to-end TTS
using attention mechanism in Chinese TTS. It is trained on un-
toned phoneme input and the experimental results seem to be
somewhat limited. In [17], a forward attention method based on
Tacotron is proposed for Chinese TTS, which learns the mono-
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Figure 1: The architecture of baseline TTS system.

tonic alignment from phone sequences to acoustic sequences
and improves naturalness of synthetic speech.

Those training data both require phoneme labels which are
difficult to get and laborious to mark. Additionally, those meth-
ods need an additional front-end grapheme-to-phoneme conver-
sion module which increases speech synthesis pipeline com-
plexity. Different from those, our proposed model directly uses
Chinese characters as input and thus simplifies the pipeline.
Different from [16], our model is an end-to-end optimization
model and does not need to predict vocoder parameters.

3. Proposed approach
3.1. Baseline neural TTS system

In this section, we describe our baseline neural text-to-speech
system. Figure 1 illustrates the network structure of our
slightly modified baseline based on Tacotron2 [10], which is a
sequence-to-sequence architecture that consists of encoder and
decoder with attention mechanism. The encoder maps an input
text sequence & = (21, ...,z ) to a series of hidden represen-
tations which are consumed by the decoder to predict a spec-
trogram sequence y = (yi,...,yr). Finally, the Griffin-Lim
algorithm [18] is employed to synthesize the waveform from
the predicted spectrogram.

On the encoder side, the encoder takes a token sequence as
input and passes it through a block of 3 convolutional layers fol-
lowed by a bi-directional LSTM layer. The hidden states of the
recurrent network are used as the encoder representations. On
the decoder side, the encoder output representations are con-
sumed by LSTM decoder with an attention network. After con-
volutional post-net predicts log mel spectrograms, we add an-
other post processing network which is used to predict linear
scale spectrograms. This post processing network is simply a
CBHG block in Tacotron [7] followed by a linear projection
layer.

The loss function in baseline TTS system is the sum of
folowing two parts. One is the mel loss and the other is the lin-
ear loss. The mel 10ss L,e; is the summed mean squared error
(MSE) between the ground truth and the prediction of log mel
spectrogram. The linear 10ss Li;neaqr 1s the first norm between
the ground truth and the prediction of linear spectrogram. Spe-
cially, we increase the proportion of low frequency components
of the linear spectrogram to learn more speech information. L2
regularization is also applied to the loss function.
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Figure 2: The architecture of multi-task learning in TTS system.
The auxiliary task of character-to-pinyin mapping (on the right)
is introduced to baseline TTS.
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where N is the number of (text, audio) pairs, x is the input
text sequence, ¥ is the predicted speech features and ¥’ is the
ground truth speech features. The total loss Lyqse of the base-
line system is calculated as:

mgin Lbase = Lmel + Llinear (3)

where 6 represents model parameters.

3.2. Multi-task learning in TTS system

Multi-task learning (MTL) has been used successfully across
all applications of machine learning, from computer vision [19]
to natural language processing [20] to automatic speech recog-
nition [21]. MTL improves generalization by leveraging the
domain-specific information contained in the training signals of
related tasks [15]. For our character-based TTS task which suf-
fers from label sparsity issue, we introduce an auxiliary task to
learn a character-to-pinyin mapping. We argue that pinyin is a
smaller modeling unit compared with character and the auxil-
iary task is quite relative to our main task, thus it can help our
model focus more differentiable features.

The proposed multi-task learning system shown in Figure 2
consists of a main task and an auxiliary task. The main task is
to predict spectrogram features from sequences of input charac-
ter using an acoustic feature prediction network, as described in
section3.1. The auxiliary task is to learn pronunciation embed-
ding from character-to-pinyin mapping. In the auxiliary branch,
the output of the encoder is also delivered to a single fully con-
nected layer which projects the hidden representations into the
pinyin sequence. After a softmax layer, each unit outputs a
likelihood probability which represents the confidence level of
pinyin prediction. The loss of the auxiliary task is cross en-
tropy (CE) between the pinyin label and the outputs of softmax
layer. The total loss for the multi-task TTS model is defined as
a weighted sum of the losses propagated from both branches:

Ingn Lmultiftask = >\Lbase + (1 - )\)LCE (4)

where Lpqse is defined as in Equation (3) and A is the weight
hyperparameter.
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Figure 3: Illustration of dictionary tutoring. The left side shows the auxiliary branch in multi-task learning. The right side illustrates
the pre-trained dictionary network which maps character sequence to pinyin sequence. Since the confidence level 0.7 is lower than the
threshold, the "blue” hidden presentation is replaced by the "purple” hidden presentation.

3.3. Dictionary tutoring in TTS system

With limited amounts of training data, characters with few oc-
currences in training corpus may have poor coverage. Although
we have added an auxiliary task, the encoder may still have the
chance of learning bad hidden representations for uncommon
character or polyphonic character in Chinese. Meanwhile, the
predictions of auxiliary task may be inaccurate, reflected on low
confidence level of corresponding softmax outputs. This will
lead to wrong pronunciation of synthesized speech.

In order to correct wrong pronunciation, we propose to ex-
ploit rich textual knowledge contained in a pronouncing dic-
tionary which typically contains large word and phrase data
in the <character, pinyin> pairs. The dictionary network is
pre-trained on a large Chinese dictionary, whose structure is
the same as the auxiliary branch in the multi-task learning as
described in section3.2. After the dictionary network is pre-
trained and the multi-task model is trained, we use joint training
method to fuse the dictionary information. We call this process
dictionary tutoring: as shown in Figure 3, when the predicted
pinyin confidence level in the auxiliary branch is lower than
threshold we set, the encoder output embedding is replaced by
dictionary encoder output embedding. It is worth noting that
during dictionary network pre-training, the encoder representa-
tion is only supervised by the pinyin label; while during multi-
task TTS learning, it is additionally supervised by the speech
acoustic feature label, therefore, there exists significant vector
space mismatch between the TTS encoder output and the dictio-
nary encoder output. In order to reduce this mismatch, we add
a conversion module which is a single fully connected layer. In
practice, we fine-tune the added conversion layer during joint
training while keeping other parameters frozen.

4. Experiments
4.1. Experimental setup

An open high-quality Mandarin Chinese dataset [22] recorded
by a female professional speaker is used in our experiments.
This dataset consists of about 12 hours of speech data. The text
scripts are in the general domain, covering all kinds of news,
novels, science and technology, entertainment, dialogue and
other fields. The speech waveform is downsampled to 24kHz
from 16-bit mono-channel PCM audio at 48kHz. The database
contains 10000 utterances, divided into a training set and a de-
velopment set, which has 9500 and 500 utterances respectively.

For all experiments, the target acoustic features are log
magnitude spectrogram and linear-scale spectrogram extracted

with Hann windowing, 50 ms frame length, 12.5ms frame shift
and then Griffin-Lim algorithm [18] is used to synthesize wave-
form from the predicted spectrogram. We train our model with
a batch size of 32 by the Adam optimizer [23] with 51 = 0.9,
Ba = 0.999 and € = 107°. The learning rate exponentially
decays from 1073 starting after 50,000 steps. Reduction fac-
tor is set to 3 for all experiments, i.e., the decoder predicts 3
spectrogram frames at each decoding step.

We first build a baseline neural TTS system using charac-
ter as input named character-based model. We also experiment
with pinyin and phonemes as input to demonstrate how chal-
lenging it is to synthesize speech directly from character. The
basic architecture and parameters of the three systems are the
same while the only difference is that we take different input
tokens.

For multi-task learning, the auxiliary network is added to
the character-based TTS baseline. The hidden size in the last
fully connected layer of the auxiliary task is 1540, the same as
the pinyin vocabulary size. The network structure and param-
eters of the main task are consistent with the baseline system.
The weight hyperparameter A is 0.5.

For dictionary tutoring, the dictionary network is pre-
trained on the CMU pronouncing dictionary [24] contain-
ing about 110,000 words or phrases with the text form of
<character, pinyin> pairs. On the basis of the multi-task
model, we only fine-tune the conversion layer while keeping
other parameters frozen. The threshold of confidence level is
set to 0.9 and a fixed learning rate of 10™* is used during fine-
tuning.

4.2. Naturalness test

We perform AB preference tests in terms of naturalness to as-
sess the performances of different systems '. 10 native listeners
with no hearing difficulties participated in the evaluation using
headphones. Each listener evaluated 20 pairs of utterances syn-
thesized from the two comparative systems. After listening to
each pair of synthesized utterances, the listeners were asked to
choose their preferred one; they could choose “neutral” if they
had no preference.

4.2.1. Results on different modeling units

We first compare the performance of character, pinyin and
phone based TTS systems. The results are shown in Figure 4.
As we can see from the first two lines, both pinyin and phoneme

! Audio samples available on https:/sysuzyx.github.io/Chinese TTS/
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Figure 4: AB preference results among the three systems mod-
eled with different modeling units, including characters, pinyin
and phonemes.
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Figure 5: AB preference results among character-based TTS
system, multi-task learning TTS system and dictionary tutoring
system.

based model significantly outperform character-based model:
in both tests, raters strongly preferred them over the characters
based baseline by more than 98%. Feedback from raters indi-
cates that speech synthesized by character-based system has a
strange tone and prosody and is difficult to understand. This is
mainly because the size of characters vocabulary is far larger
than the size of pinyin and phoneme vocabulary, and thus the
tail characters have a very poor coverage. Besides, the raters
considered pinyin-based system against phoneme-based system
similarly preferable. Since pinyin is a more intuitive and effec-
tive representation for Chinese character, we introduce pinyin
instead of phoneme as auxiliary information to the multi-task
system as mentioned in section3.2. Overall, The results of AB
preference tests demonstrate that it is challenging for building a
character-based Chinese text-to-speech model to generate natu-
ral speech like human.

4.2.2. Results on multi-task learning and dictionary tutoring

We first compare the performance of our multi-task learning
model with character-based TTS system. The result is shown
in the first line of Figure 5. It is clear to see that the multi-
task learning model we proposed significantly exceeds the base-
line character-based system. The results of AB preference tests
demonstrate that introducing pinyin labels for multi-task learn-
ing can guide the model learning precise pronunciation and sig-
nificantly improve the naturalness of synthesized speech.

Then, we conduct a similar experiment to compare the per-
formance of dictionary tutoring system with multi-task learning
system. The result shown in the last line of Figure 5 demon-
strates that the additional dictionary tutoring method has no loss
to the naturalness of the synthesized speech. Meanwhile, it can
correct wrong pronunciation which will be demonstrated in sec-
tion4.4.

We also select mel spectrograms generated by the
character-based TTS model and the multi-task TTS model re-
spectively with the same text. As shown in Figure 6, the red
rectangles in Figure 6(b) contain more delicate spectrogram in-
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(b) Multi-task model

Figure 6: Mel spectrogram comparison between Character-
based model and Multi-task model. Red rectangles are used
to mark the differences between two mel spectrograms. Our
multi-task model does better in reconstructing details.

formation compared with that in Figure 6(a). This also confirms
that our multi-task system can synthesize clearer speech than
character-based model.

4.3. Case study

In order to verify whether dictionary tutoring has the ability
to correct pronunciation mistakes, we conduct case studies by
comparing dictionary tutoring system with multi-task learning
system. We find dictionary tutoring can correct the tone of poly-
phonic characters and the pronunciation ambiguity of uncom-
mon characters. For example, ” f#iffi” is rightly pronounced as
cha qi (in pinyin form) in dictionary tutoring while is wrongly
pronounced as cha qu in MTL synstem. ”ZZ” is rightly
pronounced as mao dié in dictionary tutoring while intelligi-
bly pronounced in MTL system (comparison examples can be
found on demo page). We can get the conclusion that the added
dictionary tutoring method gives the system a certain ability to
correct pronouncing mistakes and improves the system robust-
ness.

5. Conclusions

In this paper, we propose a novel and simple method to boost
character-based end-to-end Chinese TTS system. Multi-task
learning method assists the model learning better by sup-
plementing pinyin domain information. Dictionary tutoring
method leverages external rich dictionary information to cor-
rect the pronunciation of polyphonic characters and uncommon
characters in Chinese. Experimental results show that introduc-
ing the pinyin auxiliary task and an external dictionary network
clearly enhances the naturalness and intelligibility of the syn-
thetic speech directly from the Chinese character sequences.
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