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ABSTRACT 
 

Modern advancements in deep learning provide a powerful 

framework for disease classification based on neuroimaging 

data. However, interpreting the classification decision of 

convolutional neural network remains a challenging task. It 

is crucial to track the attention of neural network and provide 

valuable information about which brain areas are particularly 

related to the diagnosis of disease. In this paper, we propose 

a novel attention-based 3D ResNet architecture to diagnose 

��������	
�� 
������� ����� ��
� explore potential biological 

markers. Experiments are conducted on 532 subjects (227 of 

patients with AD and 305 of normal controls). By introducing 

the attention mechanism, the proposed approach further 

improves the classification performance and identifies 

important brain regions for AD classification simultaneously. 

The experiments also show that significant brain regions for 

AD diagnosis captured by our attention-based network are 

accompanied by significant changes in gray matter. 
 

Index Terms� Attention mechanism, convolutional 

���	��� �����	��� ��������	
�� 
�������� �������	-aided 

diagnosis 

 

1. INTRODUCTION 
 

��������	
�� 
������� ����� ��� ���� ����� ������� ������ ���

dementia and leads to irreversible brain damage. The disease 

is accompanied by memory deficit, communication 

difficulties, disorientation and behavior changes with disease 

progression and becomes one of leading causes of death [1]. 

Till now, it is still a big challenge to establish robust markers 

for diagnosing and monitoring disease progression in the 

early stages of AD. In the past decades, machine learning 

techniques have been widely used in neuroimaging studies to 

accelerate automatic diagnosis and develop potential image 
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markers. Neuroimaging data usually contain millions of 

voxel-wise features. Classification based on traditional 

machine learning methods, such as support vector machine, 

linear discriminant analysis or random forest, requires a 

complex procedure for handcrafted feature extraction and 

dimension reduction either using data-driven approaches, 

such as principal component analysis and independent 

component analysis, or relying on prior knowledge like brain 

atlas [2]. Deep learning algorithms provide great potential to 

overcome this problem, which automatically learn features 

from high-dimensional neuroimaging data and achieve more 

effective individualized diagnosis. There are several studies 

using deep learning methods for AD, mild cognitive 

impairment (MCI) and normal controls (NCs) classification 

[3-6]. Although previous studies based on deep learning 

model achieve great classification performance for AD 

diagnosis, it lacks interpretability about what makes deep 

learning model arrive at the conclusions and which brain 

regions are particularly associated with the diagnosis of 

disease. Meanwhile, it is crucial to provide information of 

regional importance to medical experts for clinical diagnosis 

and exploring the pathogenesis of disease. 

Recently, several studies seek to explore the 

interpretability of the network in medical image analysis. For 

example, Korolev et al. generated network attention by 

measuring the drop of the output probability using images 

obstructed using a 7×7×7 box [7]. Yang et al. made extensive 

and detailed analysis of three different approaches for 

explaining 3D convolutional neural network (CNN) for AD 

classification [8], which are sensitivity analysis by 3D ultra-

metric contour map, 3D class activation mapping (CAM) [9], 

and 3D gradient-weighted class activation mapping (Grad-

CAM) [10]. However, classification performances based on 

the 3D-CAM and 3D-Grad-CAM methods drop substantially. 

To better explain the behavior of network and generate more 

discriminative feature representations, attention mechanism 
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gradually becomes popular and attention-based networks are 

widely employed in natural language processing [11], image 

recognition [12, 13]and image synthesis [14].  

 
Fig. 1. Schema of attention mechanism. 

Inspired by the attention mechanism, we proposed a 3D 

attention-based residual neural network (ResNet) for AD 

classification and potential biomarker exploration based on 

Magnetic resonance imaging (MRI) images. Without 

complex feature extraction and feature selection processes, 

our straightforward end-to-end attention-based network 

achieved remarkable classification performance. Based on 

attention mechanism (Fig.1), we further explored the 

importance of various brain regions for pathogenesis analysis 

of AD to give medical experts a better understanding of how 

neural network models make decisions and assist to discover 

potential biomarkers.  

The main contributions of this paper can be summarized 

as follows: 

(1) We proposed a simple end-to-end 3D attention-

based deep learning network and achieved remarkable 

classification performance without handcrafted feature 

generation and model stacking. 

(2) We introduced attention mechanism to identify 

important brain regions that are particularly associated with 

the diagnosis of disease and assist diagnosticians to explore 

potential biomarkers.  

(3) The network combined with attention mechanism 

achieves better classification performance and almost does 

not increase the computation cost. Furthermore, the attention 

module is independent and able to incorporate with other 

deep network structures. 

2. METHOD 

2.1. Attention-based 3D ResNet architecture 

We proposed a simple and effective attention-based 3D 

residual network for AD classification and important regions 

identification. The full architecture of attention-based 3D 

ResNet is depicted in Fig. 2. The ResNet [15] architecture 

improves image classification performance by increasing the 

depth of network and alleviates the problem of relatively 

small training dataset. Specially, we used the ResNet-18, 

which consists of a convolutional layer, eight basic ResNet 

blocks and a fully connected layer. Each basic block consists 

of two convolutional layers and each convolutional layer is 

followed by batch normalization and a nonlinearity activation 

function ReLU [16]. In the proposed method, we employed 

average-pooling function which is more suitable than max-

pooling for disease classification, because average-pooling 

operation can reflect the information of gray matter volume 

of brain regions. In the output layer, we use the softmax 

classifier based on cross-entropy loss. The attention module 

is embedded into the ResNet architecture and carried out 

simply by a convolution layer with a set of filters of 3 × 3 × 

3 kernel size (Fig. 1). 

The attention module can capture significance of various 

voxels for classification during end-to-end training, which is 

instructive to explore potential imaging markers. During the 

forward process, the attention module serves as a feature 

selector. Each voxel of H�W�D-dimensional feature maps 

���� is weighted by the H�W�D-dimensional attention mask 

��  (Fig. 1). The trainable attention mask �� , which is 

independent of the channel of features and only related to 

spatial position, indicates the significance of each voxel i. 

The weighted features ���� are defined as follows: 

� ���� � �� 	 �������������������������������������

where, the spatial position (x, y, z) of the voxel is defined as 

i ( 
 � �
�� � ������ , � � �
� � � �� , � � �
� � ��� , � �

�
� � � ��) and � � �
� � � �� is the index of the channel. The 

attention module can also work as a gradient update filter 

during the back propagation. Therefore, attention layer makes 

network more robust and improves the classification 

performance.  

 
Fig. 2. Left: The architecture of attention-based 3D ResNet; Right: 

Basic block of residual network. F is the number of channels. 

 

After end-to-end training, the potential biomarkers that 

are important for classification are enhanced by attention 
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mask ��  automatically. Based on the weakly-supervised 

classification labels (without voxel-wise significant labels), 

the attention-based 3D residual network not only achieves 

remarkable classification performance but also provides the 

significance of potential biomarkers that might assist the 

diagnosis of disease. It is worth noting that this end-to-end 

network has no need of prior knowledge to design 

handcrafted features. It leads to two benefits of this network: 

it may assist diagnosticians to discover potential biomarkers, 

and it can be easily transferred to classification of other brain 

diseases. 
 

2.2. Data and preprocessing 
 

For the experiments, we used T1 structural MRI dataset 

�������
� �	��� ���� ��������	
�� 
������� ���	���������

Initiative (ADNI, http://adni.loni.usc.edu/) to examine the 

performance of the proposed method. To prevent possible 

information leaks, we only used one MRI image for each 

subject with the mini-mental state examination (MMSE). The 

dataset includes 532 subjects: 227 patients with AD (105 

females, age: 74.77±7.60, MMSE: 22.48±3.12) and 305 NC 

(149 females, age: 74.58±5.65, MMSE: 28.93±1.38).  

To investigate valuable information about regional 

changes in gray matter for the training model, structural MRI 

images were preprocessed with the standard steps in the 

Cat12 toolbox (http://dbm.neuro.uni-jena.de/cat/). The 

images were bias-corrected, segmented into gray matter 

(GM), white matter (WM), and registered to the Montreal 

Neurological Institute (MNI) space using sequential linear 

(affine) and non-linear transformations (warping). The gray 

matter images were resliced to 2 mm cubic size resulting in a 

volume size of 91 × 109 × 91. 
 

2.3. Experiment setup 
 

To get better estimation of classification performance, we 

conducted stratified 10-fold cross-validation, where subjects 

were randomly partitioned into 10 subsets with stratification 

����
���������������
�������!�"��	�����ed the experiments 10 

times for AD/NC classification, by using 9 out of 10 subsets 

for training and the remaining one for testing in each cross-

validation round. The accuracy, sensitivity, specificity and 

area under the curve (AUC) of receiver operating 

characteristic are used to evaluate the performance of the 

proposed model. In view of the limitation of GPU memory, 

we trained the classification models with He
� initialization 

[17] using the optimizer Adam with initial learning rate of 10-

5 and batch size of 8. 
 

3. RESULTS AND DISCUSSION 
 

3.1. Comparison of different pooling functions 
 

We compared the effects of different pooling functions on 

classification performance. As shown in Table 1, when the 

averaging-pooling function is used, there is a substantial 

increase in the performance of classification. One possible 

reason is that max-pooling leads to the loss of volume 

information of gray matter. The changes of volume of gray 

matter in AD has been confirmed by previous quantitative 

volumetric MRI studies [18, 19], which is very important for 

disease classification. Therefore, we suggested that the 

averaging-pooling function in 3D deep convolutional 

networks for disease classification based on neuroimaging 

data. 

 
Table 1. Classification performance (mean ± standard deviation) 

with various pooling functions. 

 Accuracy AUC Sensitivity Specificity 

Max-

pooling 

0.844 

(0.036) 

0.868 

(0.050) 

0.802 

(0.075) 

0.875 

(0.021) 

Average

-pooling 

0.921 

(0.033) 

0.941 

(0.035) 

0.890 

(0.053) 

0.944 

(0.051) 

 

3.2. Comparison of methods without /with attention 
 

To further evaluate the effectiveness of the embedded 

attention model, we evaluated the performance for the 

traditional basic 3D ResNet. Unlike previous interpretability 

analysis methods that lead to substantial drop in classification 

performance, the embedded attention module did not 

attenuate the classification performance of the network, and 

even caused a slight increase in classification performance 

(Table 2). The experiments demonstrated that the network 

combined with attention mechanism further improved the 

discriminative ability of network, which benefited from the 

important role in feature selection and gradient update filter 

of the attention module. 

Table 2. Classification performance (mean ± standard deviation) of 

3D ResNet architecture without and with attention mechanism. 

Method Accuracy AUC Sensitivity Specificity 

3D-

ResNet 

0.906 

(0.031) 

0.933 

(0.036) 

0.894 

(0.064) 

0.915 

(0.041) 

Proposed 0.921 

(0.033) 

0.941 

(0.035) 

0.890 

(0.053) 

0.944 

(0.051) 

 

������	������
����	��
�������
����������	�
���	�������
�� 
 

Different with previous medical image analysis methods [7, 

8], the proposed method can generate the attention map by a 

forward propagation in classification directly. The attention 

map indicates the significance of various brain regions for 

AD classification. The significance of regions is re-evaluated 

by time-consuming image occlusion strategy in [7, 8]. In the 

3D-CAM and 3D-Grad-CAM methods [8], they also require 

additional calculations and lead to substantial drop in 

classification performance. By introducing the attention 

mechanism module, we can obtain 3D attention map for each 

testing sample from the trained models. The size of 3D 

attention map is 23 × 28 × 23. We up-sample the 3D attention 

maps to the size of the original images for further 

comparison. The mean 3D attention map of all normal 
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controls and AD patients from ten models trained on various 

fold was achieved. This 3D attention map, which indicates 

the significance of various brain regions related to changes in 

gray matter for AD classification, is normalized to a range of 

0#1 for visualization. 

The results showed that attention-based network 

highlights the brain regions mainly located in the temporal 

lobe, hippocampus, parahippocampal gyrus, cingulate gyrus, 

thalamus, precuneus, insula, amygdala, fusiform gyrus and 

medial frontal cortex (Fig. 3, left). The medial temporal 

lobes, including the entorhinal cortex, the hippocampus, the 

parahippocampus and the amygdala, are the earliest identified 

regions of histopathological changes with the hallmarks of 

neurofibrillary tangles and amyloid depositions in AD [20]. 

These regions have been proved to play an important role in 

encoding and retrieval of episodic and spatial memory, which 

are predominate deficit domains of clinical manifestation of 

AD [21]. In addition, regions identified by the proposed 

model include several important nodes of the default mode 

network, such as posterior cingulate cortex, precuneus, lateral 

temporal cortex and medial prefrontal cortex. Evidence from 

the fMRI studies have demonstrated that AD is associated 

with the disruptions of the default mode network compared 

to NC [22]. And these regions are also important regions of 

episodic memory network. It should be noted that the earliest 

cognitive deficits are noted in episodic memory, then all 

manner of cognition, motor function and personality are 

eventually affected in AD patients. Hence, with an increasing 

understanding of novel target regions, the early detection of 

AD is of growing importance for finding solutions to slow 

down the disease course. 

 

Fig. 3. Left: The mean 3D attention map. The brighter color 

indicates that the region is more significant for classification. 

Regions with normalized attention weights smaller than 0.4 are not 

displayed. Right: The significant group difference of gray matter 

between AD and NC group based on VBM analysis. The brighter 

color indicates that the region is more significant with changes of 

gray matter. 

In addition, we performed voxel-based morphometric 

(VBM) analysis for comparison with the important regions 

identified by the proposed method. The group comparisons 

are assessed by controlling the family wise error at a 

threshold of P < 0.05 for multiple comparisons and the T 

statistics are also normalized to a range of 0 # 1 for 

visualization. As shown in Fig. 3, the VBM analysis reveals 

the significant gray matter changes in the hippocampus, the 

parahippocampal gyrus, the medial temporal lobe and the 

amygdala, which is largely overlapped with those regions 

identified in the proposed model. In addition, our method also 

finds several regions particularly related to the diagnosis of 

disease that are not very significant in the VBM analysis, 

such as the medial frontal lobe and the cingulate gyrus, which 

is consistent with previous meta-analysis of gray matter 

abnormality in AD [18, 19]. It is worth noting that although 

the medial frontal lobe and the cingulate gyrus are not very 

significant in the VBM analysis, it may indicates that other 

changes in these regions are occurring, such as texture 

changes [23]. The experimental results proved the validity of 

our method and these significant regions may have great 

potential to be novel imaging biomarkers for the computer-

assisted diagnosis or characterization of AD. 
 

3.5. Comparisons with related studies 
 

In the classification of AD and NC, Table 3 presents recent 

related studies that conduct classification tasks using deep 

learning methods based on MRI image data. The table shows 

the mean accuracies with cross-validation except [3]. It 

should be noted that we only considered the recent studies 

that use a single MRI scan for each subject to eliminate 

possible ����	������� $�����%!� '����� * shows that the 

performance of the proposed method is comparable to, if not 

better than, those previous studies [3, 24]. It indicated that the 

proposed attention-based 3D residual network is effective for 

AD classification. Beyond classification, we were able to 

provide valuable information about the importance of brain 

areas relevant to the disease.  

Table 3. Performance comparison of the proposed method and 

reported studies on AD classification. 

Methods Sample sizes Accuracy 

Liu et al. [25] 65 AD, 77 NC 0.878 

Aderghal et al. [3] 188 AD, 228 NC 0.914 

Korolev et al. [7] 50 AD, 61 NC 0.800 

Suk et al. [6] 186 AD, 226 NC 0.903 

Li et al. [24] 288 AD, 272 NC 0.911 

Liu et al. [26] 93 AD, 100 NC 0.85 

The proposed 227 AD, 305 NC 0.921 

 

4. CONCLUSION 
 

In this paper, we proposed a simple and effective attention-

based 3D residual network for AD diagnosis. Without 

complicated feature extraction and feature selection, our 

straightforward end-to-end network achieved remarkable 

classification performance. The major advantage of the 

present work is that the incorporated attention mechanism not 

only improved the classification performance but also 

captured the significant brain regions for AD classification.  

It should also be noted that our attention-based network can 

be easily transferred to classification of other brain diseases 

where MR imaging is available. 
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