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Abstract—The value-based reinforcement learning methods are
known to overestimate action values such as deep Q-learning,
which could lead to suboptimal policies. This problem also
persists in an actor-critic algorithm. In this paper, we propose
a novel mechanism to minimize its effects on both the critic
and the actor. Our mechanism builds on Double Q-learning,
by mixing update action value based on the minimum and
maximum between a pair of critics to limit the overestimation.
We then propose a specific adaptation to the Twin Delayed
Deep Deterministic policy gradient algorithm (TD3) and show
that the resulting algorithm not only reduces the observed
overestimations, as hypothesized, but that this also leads to much
better performance on several tasks.

I. INTRODUCTION

Q-learning [1], [2] is one of the most popular reinforcement
learning algorithms, but it is known to learn unrealistically
high action value because it includes a maximization step over
estimated action values, which tends to prefer overestimated to
underestimated values [3]. The issue of value overestimation
as a result of function approximation errors is well-studied in
problems with discrete action spaces. And similar issues with
actor-critic methods in continuous control tasks also attract
more and more researchers’ attention. The literature [4] shows
that overestimation bias and accumulation of error in temporal
difference methods are present in actor-critic settings, and
also proposes a method to mitigate its impacts. Although
the method can offer performance benefits, it also decreases
training efficiency. Our proposed method not only addresses
these issues, but also matches or outperforms the current state
of the art.

Overestimation bias is a property of Q-learning in which the
maximization of a noisy value estimate induces a consistent
overestimation [4], [5]. This noise is unavoidable when given
the inaccuracy of the estimator in function appropriation set-
tings. So overestimations can occur because of the inaccurate
action values. And this imprecision is further exacerbated by
the nature of temporal difference learning [2], [6], in which
an estimate of the value function is updated by bootstrapping.
That means using an inaccurate estimate value to update will
result in an accumulation of error, which can cause arbitrarily
bad states to be estimated as higher value than their true
value, leading to suboptimal policy. To address this concern,
[3] proposes Double DQN algorithm which both yields more

accurate value estimates and leads to much higher scores on
several games.

At the same time, this overestimation property is also
present for deterministic policy gradient in the continuous
control setting [4]. In the discrete action setting, Double DQN
is the ubiquitous solution to overestimation, but it is ineffective
in an actor-critic setting [4]. Because Double DQN algorithm
uses a independently trained critic to estimate the value of the
current action with a separate target value function, and allows
actions to be estimated without maximization bias. However,
owing to the slowly varying policy in actor-critic settings,
the current value and the target value estimations are too
similar to avoid maximization bias. To address this issue, [4]
proposes a clipped Double Q-learning variant which leverages
the notion that a value estimate suffering from overestimation
bias can be used as an approximate upper-bound to the true
value estimate. This effectively minimizes the maximization
bias. Because it takes the minimum value between a pair of
critics and favors underestimations. As unlike overestimations,
the underestimations will not be explicitly propagated through
the policy update. In this paper, we extend this solution by
proposing mixing update action value (Q-value), which is
based on the minimum and maximum between a pair of
critics with a mixing parameter. This methodology offers
performance benefits for several games since it could balance
the overestimation and underestimation.

Our adaptations are applied to the state of the art actor-
critic method for continuous control, Twin Delayed Deep
Deterministic policy gradient algorithm (TD3) [4], to form the
TD3 with mixing update Q-value algorithm. We evaluate our
algorithm on eight continuous control domains from OpenAI
gym [7], where we match or outperform the state of the art.

In the following sections, we will briefly introduce some
basic concepts about reinforcement learning in section II, and
then propose our methods in section III, after that we will
evaluate our algorithm in section IV. Finally, we will discuss
and conclude in section V and VI respectively.

II. BACKGROUND

Reinforcement learning considers the paradigm of an agent
interacting with an environment with the aim of maximizing
the expected sum of discounted future rewards. At each
timestep t, the agent takes an action at in the state st, and



receives a scalar reward rt and finds itself in a new state st+1.
The return from a state is defined as the sum of discounted
future rewards Rt =

∑T
i=t γ

i−tri, where γ ∈ [0, 1] is a
discount factor that trades off the importance of immediate
and later rewards. Given a policy π, the true value of an action
at in a state st is

Qπ(st, at) = Esi∼pπ,ai∼π[Rt|st, at], (1)

which is known as the critic or the action value function. Note
that pπ is the state-transition probabilities distribution for a
policy π.

The goal in reinforcement learning is to learn the optimal
policy πθ, with parameters θ, which maximizes the expected
return from the start distribution J(θ) = Esi∼pπ,ai∼π[R0].
For continuous control problem, the parametrized policies πθ
could be updated by taking the gradient of the expected return
∇θJ(θ). In policy gradient methods, the policy, known as the
actor in an actor-critic method, can be updated through the
deterministic policy gradient algorithm [8]:

∇θJ(θ) = Es∼pπ [∇aQπ(s, a)|a=π(s)∇θπθ(s)]. (2)

For a discrete and small state space, the value function
Qπ(s, a) can be learned using the tabular methods [2], such as
Monte Carlo and temporal-difference methods, an update rule
based on the Bellman equation [2]. The Bellman equation is
a fundamental relationship between the value of a state-action
pair (st, at) and the value of the subsequent state-action pair
(st+1, at+1):

Qπ(st, at) = rt + γEst+1,at+1
[Qπ(st+1, at+1)]. (3)

For a large state space, the value Qπ(s, a) can be represented
not as a table but as a differentiable function approximator
Qw(s, a), with parameters w. In the DQN algorithm [9], [10],
Qw(s, a) is the function computed by a multi-layer artificial
neural network, with w the vector of connection weights in
all the layers, and the network is updated by using Q-learning
with a secondary frozen target network Qw′(s, a). The target
network with parameters w′, is the same as the online network
except that its parameters are either periodically copied from
the online network and kept fixed on all other steps, or by
some proportion τ at each time step w′ ← τw + (1 − τ)w′.
The target used by DQN is then

yt = rt + γmax
at+1

Qw′(st+1, at+1), (4)

where the actions at+1 are selected from the policy π(st+1).
This update could be applied in an off-policy approach, sam-
pling random mini-batches of transitions from an experience
replay buffer [4], [11].

However, the DQN algorithm involves max operator in the
construction of its target policy, which makes it more likely to
select overestimated values, resulting in overoptimistic value
estimates. One way to view the problem is that it is due to
using the same samples both to determine the maximizing
action and to estimate its vlaue. A simple solution is to
decouple the selection from the evaluation. Suppose we had

two action-value functions, call them Q1(a) and Q2(a), each
an estimate of the true value q(a), for all actions a. We could
then use one estimate, say Q1(a), to determine the maximizing
action a∗ = argmaxaQ1(a), and the other, Q2(a), to provide
the estimate of its value, Q2(a

∗) = Q2(argmaxaQ1(a)).
We can also repeat the process with the role of the two
estimates reversed to yield a second estimate Q1(a

∗) =
Q1(argmaxaQ2(a)). This is the idea behind Double DQN.
And then the target of Double DQN can then be written as

yt = rt + γQw′(st+1, argmax
at+1

Qw(st+1, at+1)). (5)

Notice that we select the greedy action according to the current
values, as defined by w, but we use the second set of weights
w′ to fairly evaluate the value of this action.

III. METHODS

The literature [4] theoretically analyzes overestimation bias
in actor-critic methods and shows that this theoretical over-
estimation occur in practice for DDPG [12]. While some ap-
proaches to reducing overestimation bias have been proposed,
they either are ineffective in an actor-critic setting, such as
Double Q-learning, or can reduce overestimation in actor-critic
settings but limited, such as clipped Double Q-learning. This
section extends the clipped Double Q-learning by introducing
a update mechanism for critics, which can improve the critic
in actor-critic methods.

One major challenge of deep reinforcement learning is
exploration. Like DDPG algorithm, we add the Ornstein-
Uhlenbeck [13] noise, but clipped to the target policy. And
then we find that it can offer performance benefits to the
algorithm on several games. Because it may help the agent
to better explore the environment.

A. Mixing Update Q-value for Critic

In Double Q-learning [2], [14], the greedy update is disen-
tangled from the value function by maintaining two separate
value estimates Qw1

and Qw2
, each of which is used to

update the other. The idea of Double Q-learning is to reduce
overestimations by decomposing the max operation in the
target into action selection and action evaluation. Based on
this idea, the authors of Double DQN propose using the target
network as one of the value estimates, and obtain a policy by
greedy maximization of the current value network rather than
the target network. An analogous idea is also applied to the
policy, using the current policy rather than the target policy
to learn the target. In fact, however, due to the slow-changing
policy in actor-critic approaches, the current network and taget
network are too similar to make an independent estimation
and offer little improvement. In addition, the critics are not
entirely independent, because of the use of the oppsite critic
in the learning targets, as well as the same replay buffer. To
address these problems, the literature [4] uses a pair of critics
(Qw1 , Qw2) and actors (πθ1 , πθ2), where πθ1 is optimized
with respect to Qw1

and πθ2 is optimized with respect to
Qw2

respectively, to simply upper-bound the less biased value
estimate Qw1

by the biased estimate Qw2
. This result in taking



the minimum between the two estimate, to give the target
update of Clipped Double Q-learning:

y1t = rt + γ min
i=1,2

Qw′
i
(st+1, πθ1(st+1)), (6)

y2t = rt + γ min
i=1,2

Qw′
i
(st+1, πθ2(st+1)). (7)

Although the value target cannot introduce any additional
overestimation over using the standard Q-learning target, this
update rule may induce an underestimation bias. Since it
always takes the minimum between the two estimated values.
In order to achieve the same consequent of eliminating the
overestimation and limit the effect of underestimation, we
extend the solution and propose to mix the minimum and the
maximum between the two estimates for updating target, rather
than using exclusively the minimum. Mixing is accomplished
using a positive parameter α with α < 1. The overall mixed
update target is expressed as follows:

Q(st+1, πθ1(st+1)) = αmax
i=1,2

Qw′
i
(st+1, πθ1(st+1))+

(1− α) min
i=1,2

Qw′
i
(st+1, πθ1(st+1)), (8)

y1t = rt + γQ(st+1, πθ1(st+1)), (9)

another target y2t is similar to y1t . With the mixing parameter
α, Q(st+1, πθ1(st+1)) in (8) or (9) is not only always greater
than the minimum and less than the maximum between the
two value estimates, but also close to the minimum when α
is close to zero. Especially when α = 0, it degenerates into
clipped Double Q-learning. Therefore, this value target will
lead to a preference for Q-learning target with low-variance
value estimates. In implementation, the costs can be decreased
by using a single actor, and then we have the same target
yt = y1t = y2t for optimizing the parameters of Qw1 and Qw2 .
We summarize an overview of this method in Algorithm 1.

B. Clipped Ornstein-Uhlenbeck Noise for Actor
A major challenge of learning in continuous action space

is exploration. One advantage of off-policies algorithms is
that they can better explore the action space for greater
rewards, another advantage is that we can treat the problem
of exploration independently from the reinforcement learning
algorithm.

To help the actor explore the action space, similar to TD3
algorithm, we use a purely exploratory policy for the first
one thousand or ten thousands time steps for the environment,
after that we add Gaussian noise to each action whenever the
actor interacts with the environment. When updating the critic
network, we construct an exploration policy by adding clipped
noise drawn from Ornstein-Uhlenbeck process to the target
policy. This makes our modified target update:

yt = rt + γ min
i=1,2

Qw′
i
(st+1, πθ′(st+1) + ε),

ε ∼ clip(Nou,−c, c) (10)

where Nou is Ornstein-Uhlenbeck process and the added noise
is clipped to the target policy close to the original policy.
Intuitively, it ensures that similar actions should have similar
value.

Algorithm 1 TD3 with mixing update Q-value
Initialize critic networks Qw1

, Qw2
, and actor network πθ

with parameters w1, w2, θ
Initialize target networks w′1 ← w1, w

′
2 ← w2, θ

′ ← θ
Initialize replay buffer D ← ∅
for t = 1 to T do

Select action with exploration noise at ← πθ(st) + ε,
ε ∼ N (0, σ) and observe reward rt and new state st+1

Store transition tuple (st, at, rt, st+1) in D
Sample a random mini-batch of N transitions
(sj , aj , rj , sj+1) from D
Set ã← πθ′(sj+1) + ε, ε ∼ clip(N (0, σ̃),−c, c)
Set Q(sj+1, ã) ← αmaxi=1,2Qw′

i
(sj+1, ã) + (1 −

α)mini=1,2Qw′
i
(sj+1, ã)

Set yj ← rj + γQ(sj+1, ã)
Update critic wi by minimizing the loss:

L(wi) =
1

N

∑
j

(yj −Qwi(sj , aj))2

if t mod d then
Update θ by the deterministic policy gradient:

∇θJ(θ) =
1

N

∑
∇aQw1

(st, at)|a=πθ(st)∇θπθ(st)

Update target networks:

w′i ← τwi + (1− τ)w′i
θ′ ← τθ + (1− τ)θ′

end if
end for

Fig. 1. Example MuJoCo environments. Hopper-v2(Left), InvertedPendulum-
v2(Center), Reacher-v2(Right).

IV. EXPERIMENTS

We improve the TD3 by applying the modification described
in Section III-A and Section III-B respectively, to form two
variant algorithms of TD3. In the next subsection, we will
measure their performance for a selection of domains.

A. Parameters and Evaluation

The following parameters are used throughout the experi-
ments. Similar to the TD3, both actor and critic employ 4-
layers networks with 400, 300 nodes in the first and second
hidden layer respectively, and use rectified linear units (ReLU)
as the activation function between each layer, and a final
tanh unit following the output of the actor. Both the actor
and critic networks are also trained using the Adam Solver
[15]. The discount factor γ is set to 0.99 and the critic
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Fig. 2. Performance curves for the OpenAI gym continuous control task over 1 million tiem steps using variants of TD3 algorithm: original TD3 algorithm
(navy blue), with Mixing Update Q-value (green), with Clipped Ornstein-Uhlenbeck Noise (orange). Mixing Update Q-value can offer performance benefits.
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Fig. 3. Learning curves for the OpenAI gym continuous control task over 1 million tiem steps: original TD3 algorithm (navy blue), with Mixing Update
Q-value and Clipped Ornstein-Uhlenbeck Noise (red). The resulting algorithm can match and even outperform the TD3 on some tasks.

TABLE I
AVERAGE RETURN OVER THE LAST 10 EPISODES OVER 1 MILLION TIME STEPS. MAXIMUM VLAUE FOR EACH TASK IS BOLDED.

Method HalfCheetah-v2 Hopper-v2 InvertedDoublePendulum-v2 Reacher-v2 Walker2d-v2 Humanoid-v2 Swimmer-v2
TD3 8769.25 3586.25 9350.72 -4.63 2637.60 61.33 46.87
TD3+MUQa 9638.40 3664.30 9319.23 -4.52 5250.84 408.90 49.66
TD3+COUNb 7636.99 3224.24 361.79 -5.01 4597.19 318.64 19.45
TD3+MQCNc 10051.24 1904.60 301.46 -5.69 4573.52 69.25 45.03
aThe TD3 algorithm with mixing update Q-value (MUQ).
bThe TD3 algorithm with clipped Ornstein-Uhlenbeck noise (COUN).
cThe TD3 algorithm with mixing update Q-value and clipped Ornstein-Uhlenbeck noise (MQCN).



networks are trained with a mini-batch of a 100 transitions.
The target networks, including actor and critic, are delayed
updating every d iterations with d = 2. Both target networks
are updated with τ = 0.005, and the value of mixing parameter
α is same as τ . With the mixing update Q-value, the target
policy smoothing is implemented by adding ε ∼ N (0, 0.2)
to the actions chosen by the target actor network, clipped to
(−0.5, 0.5). Otherwise, we replace the Gaussian noise with
Ornstein-Uhlenbeck noise Nou(ϑ = 0.15, µ = 0, σ = 0.2).

To evaluate our algorithm, we measure its performance
on the suite of MuJoCo continuous control environment,
interfaced through OpenAI Gym (Fig. 1) with no modifications
to the environment or reward. In order to better explore and
remove the dependency of parameters of the policy, we use a
purely exploratory policy for the first ten thousands time steps
on a environment (HalfCheetah-v2) and first one thousand
time steps for the rest environments. The purely exploration
policy is implemented by add Gaussian noise N (0, 0.1) to
each action. Each task is run for 1 million time steps with
evaluations every 5,000 time steps, where each evaluation
reports the average return over 10 episodes with no exploration
noise. Our results are reported with zero random seed of the
Gym simulator and the network initialization.

We compare our two variants of TD3 against the original
TD3 algorithm, the state of the art policy gradient algorithm.
The comparison results and performance curves are in Fig. 2.
It shows that the TD3 algorithm with mixing update Q-value
matches or outperforms TD3 in both final performance and
learning efficiency across most of tasks.

B. Fusion Study

We perform study to measure the performance of TD3
algorithm with both mixing update Q-value (Section III-A)
and clipped Ornstein-Uhlenbeck noise (III-B). For each time
step of this algorithm, the pair of critics are updated toward
the mixing Q value selected by the target policy. We update
the target policy πθ′ slowly θ′ ← τθ + (1 − τ)θ′. And every
d iterations, the policy πθ is updated with respect to Qw1

following the deterministic policy gradient algorithm. The
overall mixed update target is expressed as follows:

Q(st+1, πθ′(st+1) + ε) = αmax
i=1,2

Qw′
i
(st+1, πθ′(st+1) + ε)+

(1− α) min
i=1,2

Qw′
i
(st+1, πθ′(st+1) + ε),

(11)
y = rt + γQ(st+1, πθ′(st+1) + ε),

ε ∼ clip(Nou,−c, c). (12)

The learning curves in Fig. 3 in which we compare the
performance of adding each improvement to TD3 without any
modifications to the architecture and hyper-parameters. We
also present our results in TABLE I in which we compare
the performance of applying each different modifications to
TD3 with the original TD3.

The importance of each improvement varies task to task.
The combination of TD3 and mixing update Q-value can

match or outperform the original TD3 algorithm across all
tasks in not only final performance, but also learning ef-
ficiency. While the resulting TD3 with clipped Ornstein-
Uhlenbeck noise outperforms TD3 algorithm by a wide margin
on some tasks (e.g., Walker2d-v2 and Humanoid-v2), it per-
forms at a much lower level in most environments. The TD3
algorithm with both of two improvements also outperforms
the original TD3 on several tasks (e.g., HalfCheetah-v2 and
Walker2d-v2). However, in the other cases, it cannot offer per-
formance benefits and even it makes the performance of orig-
inal algorithm worse. In summary, as the inclusion of mixing
update Q-value into TD3 method matches or outperforms TD3,
the state of the art algorithm, this suggests that mixing update
Q-value is an effective measure to subdue the overestimations
and limit the negative effect of underestimation.

V. DISCUSSION

A. Why it could achieve better performance?

• As disscussed above, the clipped Double Q-learning is an
effective way to eliminate the overestimation, but it also
induces an underestimation bias. Although the underesti-
mation is not propagated during learning, it may bring
some negative impacts for performance. We introduce
a mixing factor α that balances the overestimation and
underestimation, it can reduce the overestimation while
minimizing negative effects of underestimation.

B. Why do we choose the TD3 as the target algorithm for the
modification, not DDPG or PPO?

• Obviously, the update rule for double Q-learning via a
convex combination of the max and min values of two
different action-value functions depends on a pair of
critics. But neither PPO nor DDPG algorithm has two
critics. In addition, the TD3 algorithm always takes the
minimum between two estimates to update the target.

C. Does this method can be used for discrete action space?

• For discrete action settings, Double DQN is a better
solution to reduce overestimation. It uses a single critic to
estimate the value of action with a separate target critic.
Compared with the algorithm that using two critics, the
computational costs can be reduced. It would be valuable
to see if the benefits of mixing update Q-value extend
beyond the domain of continuous action space to other
discrete action domains.

VI. CONCLUSION

Overestimation has been identified as a key problem in
reinforcement learning methods. In this paper, we propose
Mixing Update Q-value, a novel variant of Double Q-learning
which can limit the effect of possible overestimation. Our
results demonstrate that mitigating overestimation can improve
the performance of reinforcement learning algorithm. This
improvement is applied to the Twin Delayed Deep Determin-
istic policy gradient algorithm (TD3), which improves both
the training efficiency and performance of TD3 in a number



of challenging tasks in the continuous control settings. Our
modification is simple to implement and improved algorithm
matches or exceeds the performance of the state of the art
algorithm.
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