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Automatic Liver Segmentation Using a Statistical
Shape Model With Optimal Surface Detection

Xing Zhang, Jie Tian*, Fellow, IEEE, Kexin Deng, Yongfang Wu, and Xiuli Li

Abstract—In this letter, we present an approach for automatic
liver segmentation from computed tomography (CT) scans that
is based on a statistical shape model (SSM) integrated with an
optimal-surface-detection strategy. The proposed method is a hy-
brid method that combines three steps. First, we use localization of
the average liver shape model in a test CT volume via 3-D general-
ized Hough transform. Second, we use subspace initialization of the
SSM through intensity and gradient profile. Third, we deform the
shape model to adapt to liver contour through an optimal-surface-
detection approach based on graph theory. The proposed method is
evaluated on MICCAI 2007 liver-segmentation challenge datasets.
The experiment results demonstrate availability of the proposed
method.

Index Terms—Generalized Hough transform (GHT), liver seg-
mentation, minimum s—¢ cut, principal component analysis (PCA),
statistical shape model (SSM).

I. INTRODUCTION

N THE area of computer-aided diagnosis (CAD), accurate
I and robust segmentation of liver tissue from medical im-
ages is a prerequisite for hepatic diseases diagnosis and surgery
planning. Computed tomography (CT) volume is often used for
liver segmentation and subsequent liver vasculature analysis.
Due to the highly varying shape of liver and weak edge be-
tween some adjacent organs (e.g., heart, stomach, and muscles),
liver segmentation becomes a challenging task that has attracted
research attention recently. Specifically, MICCAI 2007 Work-
shop on 3-D liver segmentation (http://www.sliver07.org/) pro-
vides a platform for testing and comparing different approaches
for the topic [1]. In the challenge, the statistical shape model
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(SSM) based method [2] has the best performance among all
approaches.

The SSM-based segmentation framework was first proposed
by Cootes et al. [3]. Techniques involved in the SSM include
shape correspondence, shape representation, and search algo-
rithms. In the shape-model construction process, establishing
landmark points correspondence among all shapes of training
sets is generally the most challenging step. Spherical harmonics
(SPHARM) [4] mapping for each training shape is an effective
registration method for shape correspondence, and the group-
wise optimization strategy can produce better results than the
pairwise method. Subsequently, a compact shape representa-
tion via classical principal component analysis (PCA) method
can be applied for model construction. As the SSM-based ap-
proaches are sensitive to initialization (pose and shape parame-
ters of the initial model), an initial position of the model should
be estimated. In contrast with manual or the time-consuming
evolutionary algorithm [5] proposed earlier, we present a 3-D
generalized Hough transform (GHT) method to detect approxi-
mate location of the liver shape model. After the SSM adaption,
the shape model is deformed to adapt to the liver contour through
an optimal surface detection based on graph theory.

II. HYBRID METHOD FOR LIVER SEGMENTATION
A. Shape-Model Construction

The liver shape model is built from several ground truth seg-
mentation results. After determining points correspondence for
SSM and alignment of all training triangulated meshes based on
similarity transform, the PCA is applied to represent variation
modes of the training sets. Each valid liver shape vector can
be approximated by the average shape vector plus a subspace
spanned by the first ¢ (¢ < n) eigenmodes

C
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where @ = >, ®;/n is the average shape vector, p,, is the
principal mode of variation obtained through PCA, b, is the
corresponding weight for each principal mode, and T is a simi-
larity transform computed from the given shape ® to the average
shape ®. An instance of an SSM should have a limitation of
by € [—=3vAm , 33/ Ay ] for not producing large deviation from
the training sets, where A,, is the corresponding eigenvalue for
each eigenvector p,, .
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Fig. 1. Parameters involved in the 3-D GHT. (a) Revolution angle o and
azimuthal angle 3 of the surface vertex normal is indexed as the entries of
R-table. (b) Ilustration of a 2-D R-table constructed by storing vector 7.

B. Liver Localization by 3-D GHT

Liver localization is a prerequisite for accurate liver segmen-
tation. Hough transform is an effective and robust method to
detect any arbitrary shape in an image [6]. During GHT learn-
ing process, the triangulated mesh of the average shape model
is employed as a template shape. As shown in Fig. 1, the liver
centroid c is used as the reference point. For each vertex p on the
surface, revolution angle o and azimuthal angle (3 of the vertex
normal 72, are discretized as the entries of the 2-D reference
table (R-table). The R-table constructed by storing vector 7, for
each vertex p is indexed by « and /3, as shown in Fig. 1(b). When
detecting liver shape in a test volume, the gradient angle o and
[ of an edge point is employed to retrieve corresponding entries
of the R-table. An accumulator array for parameter space saves
the votes of edge points to determine the most probable center
of liver.

In order to reduce dimensionalities of the parameter space,
we only restrict the average shape model transform under trans-
lation and isotropic scaling that neglects rotation. The transfor-
mation requires a 4-D parameter space storage. The experiments
show that the assumption can effectively reduce computational
cost while giving acceptable localization result. For an edge
point 7; in a test image, the corresponding 7; can be determined
by gradient direction of the edge point. Then, the possible loca-
tion of reference point in the parameter space is calculated from
Ty + sT4, where s denotes the scaling factor.

Before liver localization, the CT volume
preprocessing.

1) Image downsampling: Three-dimensional GHT is per-
formed on low-resolution layer of the CT volume to cap-
ture global information while improving efficiency. The
original CT volume is downsampled to 3 x 3 x 3 mm?
using linear interpolation. Since the scale of the liver is
more larger than the spacial sampling interval, the shape
of liver can be preserved well after downsampling process.

2) Image smoothing: In order to eliminate staircase edges that
resulted from downsampling, a mean filter is employed to
smoothen the downsampled CT volume.

3) Edge detection: The edges of the volume is detected
through Canny edge detector while pruning edges that
definitely do not belong to the liver boundary. The liver
has a CT value range of [liow, Ihign], edges with corre-
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Fig. 2. Flowchart of the subspace initialization step.

sponding CT value out of the range will be pruned for an
accurate and fast GHT localization.

C. Subspace Initialization of the SSM

Previous to the subspace initialization step, a 3-D nonlinear
diffusion filter is applied to a test volume for reducing noise
while preserving liver contour. The nonlinear diffusion equation
is given as follows:

QU2 — dinfy(|Tuf)Va
@)
u(.’t, Y, z, O) = 'U,()(l', Y, Z)

where the diffusivity function g(s) = 1 — exp(—3.315(1/s)%),
if s > 0 and g(s) = 1 otherwise.

An instance of the SSM demands computing a similarity
transformation 7" and shape parameters b,, in (1). Designing
an appropriate search strategy is very crucial. The flowchart
is shown as Fig. 2. Suppose the CT value range of liver is
I, = [Low, Tnigh], and gyax denotes the maximum gradient
magnitude of the liver boundary. For each vertex v; on the
mesh, candidate liver boundary point is searched along the ver-
tex normal 7;, N equidistant points are sampled along each
vertex normal direction: oy = 7] + (k— (N —1)/2) e d e T}
(k=0,...,N —1), where d is the sampling distance. For an
initial vertex vy (k = (N — 1)/2) on the mesh, if I(v;.) € I},
then count the number ¢ of consecutive ¢ < k with I(v;) € I,
the vertex v;, is considered inside the liver when ¢ > ¢ipresh»
otherwise vy is outside the liver. Based on these assumptions,
two different strategies are used for searching candidate points,
which are as follows.

1) vy is inside the liver: search candidate points from
i=(N—1)/2 with i € [, N — 1], count number ¢
of consecutive points I(v;) € I, and |VI(v;)| < gmax,
setk=(N-1)/2+c.
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Fig.3. Graph construction. (a) Triangulated surface mesh with vertex normals.
(b) Graph is constructed with intracolumn arcs and intercolumn arcs. The blue
edges denotes the intracolumn arcs, while green edges denotes the intercolumn
arcs. Smoothness constraint in this graph is A = 1.

2) vy is outside the liver: search candidate points from ¢ = 0
with ¢ € [0, %], count number ¢ of consecutive points
I(v;) € I1, and |[VI(v)| < gmax, set k = c.

D. Optimal-Surface-Detection Approach Based
on Graph Theory

The segmentation result of the subspace initialization is just
a linear combination of variation modes described in (1), which
abundantly exploits prior typical liver shape, but it lacks flexi-
bility to adapt to a liver in an arbitrary test volume. Based on the
previous segmentation result, we employ an optimal-surface-
detection algorithm proposed by Li et al. [7] in the final refined
segmentation process. The algorithm can globally optimize a
cost function that incorporates sum of nodes cost and surface
smoothness constraint by transforming it to a minimum s—¢ cut
problem.

The graph is constructed in a narrowband around the seg-
mented surface. Suppose a vertex T; on the mesh and its
normal 7/, N equidistant points are sampled along each ver-
tex normal direction for composing a column: pj = 77 +
(k—(N—-1)/2)eden; (k=0,...,N —1). As shown in
Fig. 3(b), there are two types of arcs in the graph, intracol-
umn arcs and intercolumn arcs. For each column in the graph,
the intracolumn arcs is E* = {{pg,pr_1)|k =1,...,N — 1},
the blue edges shown in Fig. 3(b) denote the intracolumn arcs.

The intercolumn arcs express the smoothness constraint. Con-
sider two neighboring columns P,, and P, in the graph, the in-
tercolumn is E" = {(pkm,pﬁlax(oﬁkiA)HVPm,Pn is adjacent},
where the smoothness constraint A represents the maximum-
allowed difference between two neighboring points on a surface.
The green edges shown in Fig. 3(b) denote the intercolumn arcs.

Both the intracolumn and intercolumn arcs are regarded as
n links in a graph and assign infinity. In the weighted directed
graph, each node has a weight w(vy,). Nodes with w(v;,) >0
are connected to the sink terminal by a directed edge of weight
w(vy ), while nodes with w(vy) < 0 are connected to the source
terminal by a directed edge of weight —w(vy, ). The weight w}"*
of kth point in the mth column is defined as (3). The cost function
c used in (3) is negative gradient magnitude c(vy ) = —|VI(vy)]
if vg lies inside or on the boundary of the liver and c(vy) =
1 otherwise. Whether a sample point is inside or outside the
liver can be determined using the same rule as in the subspace
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TABLE I
PARAMETERS SELECTION

Step Parameters
Ao =%, A3= %,
1. 3D GHT scaling factor s € [0.9,1.0,1.1],
[Ziow- Tnign | = [50.200]
2. Nonl diffusion 1=800,Ar=0.15,t=15

sampling distance d=1 mm,
sampling points N = 41,
8max = 200,

Cthresh = 10, £ =2,
all 40 variation modes are used
sampling distance d =1 mm,
sampling points N = 31,
smoothness constraint A = 2

3. Subspace initialization

4. Optimal surface detection

initialization step. The negative gradient magnitude —| VI (vy )]
is computed in image domain, and then, the node cost is derived
by linear interpolation according to the coordinate of the node.
o, k=0
Wt = 3)
e’ — ¢y, otherwise.

III. EXPERIMENTS AND RESULTS

The proposed method is tested on the training and testing
datasets of MICCAI 2007 liver-segmentation challenge. There
are 20 CT volumes of abdomen with contrast agent in the train-
ing datasets, and ten in the testing datasets. All datasets have an
in-plane resolution of 512 x 512 pixels and interslice spacing
from 0.5 to 5.0 mm. Other 40 CT volumes with normal liver
anatomy obtained clinically are used for shape-model construc-
tion with 2562 equally distributed vertices and 5120 triangles
on each model. Points correspondence for SSM was established
via an open-source software developed by Heimann et al. [8].
We implemented our method based on the medical imaging
toolkit (MITK http://www.mitk.net/) developed by our group
on a 32-bit desktop PC (2.33 GHz Core 2 and 2 GB RAM).

A. Segmentation Workflow and Parameters Selection

The segmentation workflow consists of following steps:

1) average shape-model localization through 3D GHT;

2) nonlinear diffusion filtering;

3) model subspace initialization;

4) refined segmentation based on optimal surface detection.
The parameters for each step are listed in Table L.

B. Results

The average run time for each step of ten testing datasets
in liver localization is given in Table II. Due to performing in
the subsampled volume, the edge detection and 3-D GHT pro-
cess step just takes about 2 s, respectively. The average whole
processing time of localization is about 4.47 s in comparison
to 6 min by the evolution method [5]. Since it proceeds itera-
tively with six parameter space, the previously proposed evo-
lution method is time consuming. Fig. 4 shows the result of
each preprocessing step in liver localization. Downsampling is
used to capture the global shape of the liver while reducing
computational time. GHT needs to perform on a binary edge
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TABLE II
AVERAGE RUN TIME OF EACH STEP IN LIVER LOCALIZATION
Process step | Downsample [ Smooth | Edge detect [ 3D GHT
Run time 0.13 0.14 2.07 2.13
(seconds)

Fig. 4. Preprocessing steps of the 3-D GHT. (a) Original image. (b) Down-
sampled image. (c) Smoothed image. (d) Canny edge detection.

Fig. 5. State of the surface mesh in a coronal slice from back after each
segmentation step. The top row shows a relatively easy case (testing data 5)
while the bottom row shows a relatively difficult case (testing data 4). (a) and (d)
After localization by 3-D GHT. (b) and (e) After model subspace initialization.
(c) and (f) Final result after optimal surface detection.

image. However, the initial downsampling step will bring on
staircase edges that cause discrete orientations on edge points.
A smoothing filter is necessary for eliminating the staircase
edges effect.

State of the surface mesh after each segmentation step is
illustrated in Fig. 5. Fig. 5(top) shows a liver that is similar
to the average shape, while Fig. 5(bottom) shows a liver with
long lobus hepatis dexter that has a large deviation from the
average shape. As shown in Fig. 5, after an initial location is
given by 3-D GHT, an instance of SSM is adapted to the liver.
Finally, the accurate contour of liver is detected through the
optimal graph-search strategy. The SSM initialization process
takes about 2.86 min, while the optimal surface detection takes
about 8 s.

The resulting surface meshes are converted to volume with
the same dimension and spacing as the corresponding CT vol-
ume datasets. Fig. 6(a) shows a surface distance map from the
segmentation result to the reference result of a training dataset.
Segmentation results are compared to the reference results ac-
cording to the following five metrics: volumetric overlap er-
ror (OE), signed relative volume difference (SVD), symmet-

2625

e
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Fig. 6. (a) Surface distance map from the segmentation result to the reference
result of a training dataset. (b) Segmentation error in the sharp of left lateral
lobe. The contour of the reference result is in green, while the contour of the
segmentation result is in red.

TABLE III
RESULTS OF COMPARISON METRICS WITH PREVIOUS WORKS

OE SVD DAvg DrMs DMax
Method (%] (%] [mm] [mm]  [mm]
Kainmueller[2] 6.96 -3.57 1.10 2.25 20.95

Heimann[5] 5.1 n/a 1.6 3.3 n/a
Lamecker([9] 7.0 n/a 23 3.1 n/a
Our approach 525  0.73 0.93 223 24.80

ric average surface distance (Dj,), symmetric rms surface
distance (D;s), and maximum surface distance (Dy.x). The
five average-segmentation-results metrics of 20 training datasets
achieved by the proposed method are summarized in Table III
in comparison with previous works from literature. OE and
D, are the most comprehensive metrics of segmentation error
among the previous five. Our approach results in low segmenta-
tion error in respect to metric OE (5.25%) and Dy, (0.93 mm).
However, it achieves a relatively high Dy, (24.80 mm). In
some cases, the triangulated mesh after subspace initialization
is locally sparse in some long and narrow regions (e.g., left
lateral lobe and right posterior lobe) of liver; therefore, it will
cause large Dyr.x, as shown in Fig. 6(b).

IV. CONCLUSION AND FUTURE WORKS

The letter presents a hybrid method based on an SSM to
perform automatic liver segmentation from CT scans. The ex-
periments demonstrate effectiveness of the proposed method.
Segmentation errors may occur at some long and narrow regions
of liver. In order to reduce deviation, more landmark points on
each model will be employed in shape-model construction.

Though 3-D GHT provides acceptable liver localization of the
average shape model just under translation and isotropic scaling,
the major drawback of GHT is that the scale and rotation of the
object are handled in a brute-force manner that requires a 6-D
parameter space and high computational cost. An orientation
and scale-invariant GHT method may solve the problem. In
the subspace initialization step, the candidate points searching
process proceeds iteratively and takes most of the time, but
it is suitable to be parallelized for acceleration. In the final
optimal-surface-detection step, graph nodes are sampled in all
columns with the same sampling distance. In future works, each
vertex-column sampling distance depends on sparsity of the
local triangulated mesh for improving accuracy.



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 57, NO. 10, OCTOBER 2010

REFERENCES

[1] T.Heimann, B. van Ginneken, M. Styner, Y. Arzhaeva, V. Aurich, C. Bauer,

A. Beck, C. Becker, R. Beichel, G. Bekes, F. Bello, G. Binnig, H. Bischof,
A. Bornik, M. M. Cashman, Y. Chi, A. Cordova, M. Dawant, M. Fidrich,
D. Furst, D. Furukawa, L. Grenacher, J. Hornegger, D. Kainmuller,
1. Kitney, H. Kobatake, H. Lamecker, T. Lange, J. Lee, B. Lennon,
R. Li, S. Li, H. Meinzer, G. Nemeth, S. Raicu, A. Rau, M. van Rikxoort,
M. Rousson, L. Rusko, A. Saddi, G. Schmidt, D. Seghers, A. Shimizu,
P. Slagmolen, E. Sorantin, G. Soza, R. Susomboon, M. Waite, A. Wimmer,
and I. Wolf, “Comparison and evaluation of methods for liver segmentation
from CT Datasets,” IEEE Trans. Med. Imag., vol. 28, no. 8, pp. 1251-1265,
Aug. 2009.

D. Kainmueller, T. Lange, and H. Lamecker, “Shape constrained auto-
matic segmentation of the liver based on a heuristic intensity model,”
in Proc. MICCAI Workshop 3-D Segmentation Clin.: Grand Challenge,
2007, pp.109-116.

T.-F. Cootes, C.-J. Taylor, D.-H. Cooper, and J. Graham, “Active shape
models—Their training and application,” Comput. Vis. Image Underst.,
vol. 61, no. 1, pp. 38-59, Jan. 1995.

—

—

—

[4] A.Kelemen, G. Szekely, and G. Gerig, “Elastic model-based segmentation

of 3-d neuroradiological data sets,” IEEE Trans. Med. Imag., vol. 18,
no. 10, pp. 828-839, Oct. 1999.

T. Heimann, S. Munzing, H.-P. Meinzer, and I. Wolf, “A shape-guided de-
formable model with evolutionary algorithm initialization for 3D soft tis-
sue segmentation,” in Proc. IPMI (Lecture Notes Comput. Sci.), vol. 4584.
New York: Springer-Verlag, 2007, pp. 1-12.

K. Khoshelham, “Extending generalized hough transform to detect 3d
objects in laser range data,” in Proc. ISPRS Workshop Laser Scanning,
Espoo, Finland, 2007, pp.206-210.

K. Li, X. Wu, D.-Z. Chen, and M. Sonka, “Optimal surface segmentation
in volumetric images—A graph-theoretic approach,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 28, no. 1, pp. 119-134, Jan. 2006.

T. Heimann, I. Oguz, I. Wolf, M. Styner, and H.-P. Meinzer, “Implementing
the automatic generation of 3d statistical shape models with ITK,” in Proc.
MICCAI Open Sci. Workshop, Copenhagen, Denmark, 2006, pp. 1-22.
H. Lamecker, T. Lange, and M. Seebaee, “Segmentation of the liver using
a 3d statistical shape model,” Zuse Institute, Berlin, ZIB Tech. Rep.,
pp. 1-25, 2004.



