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Abstract

Makeup is widely used to improve facial attractiveness and is
well accepted by the public. However, different makeup styles
will result in significant facial appearance changes. It remains
a challenging problem to match makeup and non-makeup
face images. This paper proposes a learning from generation
approach for makeup-invariant face verification by introduc-
ing a bi-level adversarial network (BLAN). To alleviate the
negative effects from makeup, we first generate non-makeup
images from makeup ones, and then use the synthesized non-
makeup images for further verification. Two adversarial net-
works in BLAN are integrated in an end-to-end deep net-
work, with the one on pixel level for reconstructing appeal-
ing facial images and the other on feature level for preserv-
ing identity information. These two networks jointly reduce
the sensing gap between makeup and non-makeup images.
Moreover, we make the generator well constrained by incor-
porating multiple perceptual losses. Experimental results on
three benchmark makeup face datasets demonstrate that our
method achieves state-of-the-art verification accuracy across
makeup status and can produce photo-realistic non-makeup
face images.

Introduction
Face verification focuses on the problem of making ma-
chines automatically determine whether a pair of face im-
ages refer to the same identity. As a fundamental research
task, its development benefits various real-world applica-
tions, ranging from security surveillance to credit inves-
tigation. Over the past decades, massive face verification
methods have achieved significant progress (Sun, Wang,
and Tang 2013; Taigman et al. 2014; Sun et al. 2014;
Jing et al. 2016; Zhang et al. 2016; He et al. 2017; Huang et
al. 2017), especially the ones profiting by the recently raised
deep networks. Nevertheless, there are still challenges re-
maining as bottlenecks in the real-world applications, such
as pose (Huang et al. 2017), NIR-VIS (He et al. 2017) and
makeup changes, which are often summarized as hetero-
geneous tasks. Due to the wide applications of facial cos-
metics, the verification task of face images before and after
makeup has drawn much attention in the computer vision
society.
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Figure 1: Samples of facial images with (the first and the
third columns) and without (the second and the fourth
columns) the application of cosmetics. The significant dis-
crepancy of the same identity can be observed.

The history of cosmetics can be traced back to at least
ancient Egypt (Burlando et al. 2010). Nowadays wearing
makeup is well accepted in the daily life, and is even re-
garded as a basic courtesy on many important occasions.
With appropriate cosmetic products, one can easily smooth
skin, alter lip colour, change the shape of eyebrows, and ac-
centuate eye regions. All these operations are often used
to hide facial flaws and improve perceived attractiveness.
But in the meanwhile, they also bring about remarkable fa-
cial appearance changes as exhibited in Figure 1, resulting
in both global and local appearance discrepancies between
the images with and without makeup. Most of the existing
face verification methods rely much on the various cues and
information captured by the effective appearance features.
These methods inherently lack robustness over the applica-
tion of makeup that is non-permanent as well as miscella-
neous. Recent study in (Dantcheva, Chen, and Ross 2012)
has claimed that the application of facial cosmetics de-
creases the performance of both commercial and academic
face verification approaches significantly.

In contrast to the mentioned schemes, we consider from a
new perspective and propose to settle the makeup-invariant
face verification problem via a learning from genera-
tion framework. This framework simultaneously considers
makeup removal and face verification, and is implemented
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by an end-to-end bi-level adversarial network (BLAN). It
has the capacity of removing the cosmetics on a face im-
age with makeup, namely synthesizing an appealing non-
makeup image with identity information preserved, effec-
tively reducing the adverse impact of facial makeup. It pro-
motes the verification performance of faces before and af-
ter makeup by imposing adversarial schemes on both pixel
level and feature level. Considering the variety and tempo-
rality characters of makeup, we first push the images to a
uniform cosmetic status, the non-makeup status, by a Gener-
ative Adversarial Network (GAN) (Goodfellow et al. 2014).
And then, deep features are extracted from the synthesized
non-makeup faces for further verification task. As is illus-
trated in Figure 2, the two steps above are not detached but
integrated, for the adversarial loss on pixel level profits to
generate perceptually better faces and the adversarial loss
on feature level is employed to enhance the identity preser-
vation. Moreover, we also make the reconstruction well con-
strained via incorporating multiple priors such as symme-
try and edges. Experiments are conducted on three makeup
datasets and favorable results demonstrate the efficiency of
our framework.

The major contributions of our work are as follows.

• We propose a learning from generation framework for
makeup-invariant face verification. To the best of our
knowledge, our framework is the first to account for the
possibility of accomplishing the makeup-invariant verifi-
cation task with synthesized faces.

• The bi-level adversarial network architecture is newly set
up for our proposed framework. There are two adversarial
schemes on different levels, with the one on pixel level
contributing to reconstruct appealing face images and the
other on feature level serving for identity maintenance.

• To faithfully retain the characteristic facial structure of
a certain individual, we affiliate multiple reconstruction
losses in the network. Both convincingly quantitative and
perceptual outcomes are achieved.

Related Works

Face Verification

As always, the face verification problem has attracted ex-
tensive attention and witnessed great progress. Recent im-
pressive works are mostly based on deep networks. Sun et
al. (Sun, Wang, and Tang 2013) proposed a hybrid convolu-
tional network - Restricted Boltzmann Machine (ConvNet-
RBM) model, which directly learns relational visual fea-
tures from raw pixels of face pairs, for verification task in
wild conditions. The Deepface architecture was expounded
in (Taigman et al. 2014) to effectively leverage a very
large labeled dataset of faces for obtaining a representation
with generalization. It also involved an alignment system
based on explicit 3D modeling. The Deep IDentification-
verification features (DeepID2) were learned in (Sun et al.
2014) which uses both identification and verification infor-
mation as supervision. With the further development of the
face verification task, there are approaches customized for
some certain conditions. For instance, Zhang et al. (Zhang

et al. 2016) aimed at facilitating the verification performance
between the clean face images and the corrupted ID photos.
Huang et al. (Huang et al. 2017) attempted to accomplish
the recognition task of face images under a large pose. In
this paper, we focus on the negative effects of the applica-
tion of cosmetics over the verification systems, which is one
of the most practical issue to be resolved in the real-world
applications.

Makeup Studies

Makeup related studies, such as makeup recommendation
(Alashkar et al. 2017), have become more popular than ever.
However, relatively less articles pay attention on the chal-
lenge of makeup impact on face verification. Among these
existing works, most of them contrive to design a feature
scheme artificially to impel the pair images of the same
identity to have the maximum correlation. To increase the
similarity between face images of the same person, a meta
subspace learning method was proposed in (Hu et al. 2013).
Guo et al. (Guo, Wen, and Yan 2014) explored the corre-
lation mapping between makeup and non-makeup faces on
features extracted from local patches. Chen et al. (Chen,
Dantcheva, and Ross 2016) introduced a patch-based ensem-
ble learning method that uses subspaces generated by sam-
pling patches from before and after makeup face images. A
hierarchical feature learning framework was demonstrated
in (Zheng and Kambhamettu 2017) that seeks for transfor-
mations of multi-level features. In addition, Convolutional
Neural Network (CNN) based schemes have been recently
developed. For example, (Sun et al. 2017) proposed to pre-
train network on the free videos and fine-tune it on small
makeup and non-makeup datasets.

Generative Adversarial Network

Contemporarily, GAN (Goodfellow et al. 2014) is deemed as
one of the most successful deep generative models and is ap-
plied in various vision related tasks (e.g., saliency detection
(Hu et al. 2017)). It corresponds to a min-max two-player
game which ensures its ability of commendably estimating
the target distribution and generating images that does not
exist in the training set. Thereafter, multifariously modified
GANs are explored, especially the ones in conditional set-
tings. Pathak et al. (Pathak et al. 2016) proposed Context
Encoders to cope with the image inpainting and Ledig et al.
(Ledig et al. 2016) applied GAN to super-resolution. The
work in (Isola et al. 2016) investigated conditional adver-
sarial networks as a solution to image-to-image translation
problems. A Two-Pathway Generative Adversarial Network
(TP-GAN) was established for photorealistic frontal view
synthesis.

Bi-level Adversarial Network
To refrain from the influence induced by facial makeup, we
propose to synthesize a non-makeup image IB from a face
image with makeup IA first, via a generative network. And
then, a deep feature is extracted from the synthesized IB to
further accomplish the verification task. We depict the over-
all structure of the proposed network in Figure 2, with the
details described below.
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Figure 2: Diagram of the proposed Bi-level Adversarial Network. IA is an input image with makeup while IB stands for the
corresponding non-makeup image. The generator G learns to fool the two discriminators, where Dp is on the pixel level and
Df on the feature level.

Notation and Overview

The original GAN in (Goodfellow et al. 2014) takes ran-
dom noise as input and maps it to output images in domains
such as MNIST. Different from it, we take images as in-
put and set up our network as a conditional GAN. The gen-
erator denoted as G aims at learning a mapping from ele-
ments in domain A (with makeup) to elements in domain
B (without makeup): Rh×w×c

A → R
h×w×c
B , where the su-

perscripts stand for the image size. If not constrained, the
learned mapping can be arbitrary. Whereas, our network is
tailored for further face verification application. And the two
key intuitions are that the non-makeup facial image should
be well synthesized and that the input and output of G should
be identity invariant. We thus impose the constraint on G
through introducing two adversarial discriminators on pixel
level and feature level respectively.

During the training phase, image pairs {IA, IB} with
identity information y are required. Some existing condi-
tional GANs based methods (Pathak et al. 2016; Isola et
al. 2016; Huang et al. 2017) have found that the genera-
tor is enhanced by adding a more traditional loss (e.g., L1
and L2 distances) to the GAN objective. The reason lies in
that the generator is required to produce images close to the
ground truth, not just to fool the discriminators in a condi-
tional GAN. We thus enrich our training losses with some
reconstruction items. Suppose that the training set consists
of N training pairs, the generator G receives four kinds of
losses for parameter updating: two reconstruction loss de-
noted by Lcons−p and Lcons−f , and two adversarial losses
denoted by LDp

and LDf
in the Figure 2. And the generator

parameters are obtained by the solving the following opti-
mization:

G∗ =
1

N
argmin

G

N∑

n=1

Lcons−p+λ1LDp +λ2Lcons−f +λ3LDf

(1)
where the contributions of the losses are weighted by λ1, λ2

and λ3. And the details of each loss will be discussed in the
following section. As for both the discriminators, we apply
the standard GAN discriminator loss formulated in Equation

2 and 3, since their duty of telling the fake from the real
remains unchanged.

D∗p = argmax
D

EIB∼p(IB)logD(IB)+

EIA∼p(IA)log(1−D(G(IA))) (2)

D∗f = argmax
D

EIB∼p(IB)logD(F (IB))+

EIA∼p(IA)log(1−D(F (G(IA)))) (3)

Here, the operation of F (·) represents the feature extrac-
tion. When training the network, we follow the behavior
in (Goodfellow et al. 2014) and alternately optimize the
min-max problem described above. By this means, the gen-
erator is constantly driven to produce high-quality images
that agree with the target distribution or the ground truth.
Specifically, the synthesized non-makeup facial images from
makeup ones will become more and more reliable and finally
benefit the verification task.

Generator Architecture

The generator in our proposed BLAN aims to learn a
desirable mapping between facial images with and with-
out makeup of the same person. An encoder-decoder net-
work (Hinton and Salakhutdinov 2006) can carry the duty
out well and has been widely utilized in existing condi-
tional GANs (Pathak et al. 2016; Wang and Gupta 2016;
Huang et al. 2017; Kim et al. 2017). However, we notice
an inherent property here in our task that the input and out-
put of the generator are roughly aligned and share much of
the information, both locally and globally. In this situation, a
simple encoder-decoder network appears to be insufficient.
The reason is that all the information in the input image has
to go through the intermediate bottleneck whose size is usu-
ally much smaller than the input. This fact determines much
of the low level priors captured by the first few layers would
be abandoned before the bottleneck, thus makes the encoder-
decoder network lack the ability to effectively take advan-
tage of the low level information.
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To address a similar problem in biomedical image seg-
mentation, Ronneberger et al. (Ronneberger, Fischer, and
Brox 2015) proposed an architecture named “U-net” to di-
rectly deliver context information to the corresponding lay-
ers with higher resolution, yielding the network shape of
“U”. Thereafter, Isola et al. (Isola et al. 2016) applied a
semblable network to its generator for solving the image-to-
image translation problem. Inspired by these works, we also
adopt a network with skip connections to let the informa-
tion acquired by the encoder benefit the output of decoder as
much as possible. In specific, we follow the settings in (Isola
et al. 2016) and concatenate the duplicate of layer i straight
to layer n− i, with n denoting the total layer amount of the
generator.

Generator Losses

In the sections above, we have elaborated the overall struc-
ture and the generator architecture we employ. This part will
focus on the four kinds of losses that the generator receive,
which has been briefly described in Equation 1. Besides the
double adversarial losses, we also integrate various percep-
tual losses in Lcons−p to guarantee the quality of generated
images. Particularly, the reconstruction loss Lcons−p is com-
posed of three subordinates — a pixel-wise loss, a symmetry
loss and a first-order loss. In the following, we will discuss
them in details one by one.

It has been mentioned that incorporating traditional losses
helps to improve the outcome quality. There are generally
two options for pixel wise loss — L1 distance or L2 distance.
Since L1 distance is generally deemed to arouse less blur
than L2 distance, we formulate the pixel-wise loss function
as

Lpxl = E(IA,IB)∼p(IA,IB)‖G(IA)− IB‖1. (4)

Given the paired data {IA, IB}, the pixel-wise loss continu-
ously push the synthesized non-makeup facial image G(IA)
to be as close to the ground truth IB as possible. In our ex-
periments, we also find that the pixel-wise loss helps to ac-
celerate parameters convergence in some degree.

Although the pixel-wise loss in form of L1 distance would
bring about blurry results, the adversarial scheme in GANs
can alleviate it to some extent. However, this is based on
the premise that there is adequate training data to learn a
qualified discriminator, while the scale of existing makeup
datasets are rather limited. To further cope with the blurring
problem, we propose to train our network with the help of a
first-order loss, which takes the form of

Ledg =
1

h× w

h∑
i=1

w∑
j=1

{

∥∥|G(IA)i,j −G(IA)i,j+1| − |IBi,j − IBi,j+1|
∥∥
1
+

∥∥|G(IA)i,j −G(IA)i+1,j | − |IBi,j − IBi+1,j |
∥∥
1

}
(5)

where G(IA)i,j stands for the (i,j) pixel of the synthesized
image G(IA). The first-order loss can also be referred as
the edge loss, for it aims at fully explore the gradient priors
provided in IB . It actually needs to calculate the edges in

images and then drives the edge image of the synthesized
face to be close to the edge image of the ground truth.

As one of the most prominent characteristics of human
faces, the symmetric structure is well exploited in many pre-
vious face related studies. Here in our network, we take it
into consideration as well and imposes a symmetric con-
straint to guarantee the essential legitimacy of the synthe-
sized face structure. The corresponding symmetry loss is
calculated by

Lsym =
1

h× w/2

h∑
i=1

w∑
j=1

‖G(IA)i,j −G(IA)i,w−j+1‖1
(6)

The responsibility of the discriminator on the pixel level
is to distinguish real non-make facial images from the fake
one and it serves as a supervision to produce relatively more
pleasing synthesized results. Its corresponding adversarial
loss on the generator is

LDp = E(IA)∼p(IA)[− logDp(G(IA))] (7)

In addition to removing makeups, we also expect the syn-
thesized images to facilitate the verification performance
across makeup status. Since the verification task is accom-
plished on image features (e.g. Light CNN (Wu et al. 2015)
feature in our experiments), the key issue is converted to pro-
duce images with high quality features, which is crucial for
identity preserving. To this end, we propose to further cas-
cade an adversarial network centering on the feature level
at the end of the original conditional GAN model. The dis-
criminator Df is in charge of differentiating between fea-
tures from real non-makeup images and fake ones, driving
to synthesizing images with features close to the target. We
formulate the adversarial loss on the feature level as

LDf
= E(IA)∼p(IA)[− logDf (F (G(IA)))]. (8)

Similar to the scheme on the pixel level, we incorporate a
reconstruction loss with the adversarial loss which takes the
following form:

Lcons−f = E(IA,IB)∼p(IA,IB)‖F (G(IA))− F (IB)‖1.
(9)

Discriminator Architecture

Inspired by the concepts in Conditional Random Field (Laf-
ferty, McCallum, and Pereira 2001), we address an assump-
tion on deciding whether the input of the discriminator Dp

is real or fake: in a certain image, pixels that are apart from
each other are relatively independent. Based on the assump-
tion, we first divide an image into k × k patches without
overlapping. And then the discriminator runs on each patch
to obtain a score indicating whether this part of the im-
age is real or not. Thus for each input image, the outcome
of Dp is a probability map containing k × k elements. In
our experiments, we empirically set k = 2. By this means,
Dp is able to pay more attention to local regions instead of
the whole image. Additionally, the operation simplifies the
required structure of Dp and significantly reduces the pa-
rameter amount in the network, which is friendly to small
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Figure 3: Sample image pairs of three datasets.

datasets. As for the discriminator on the feature level (i.e.
Df ), we concisely set it up with two linear layers, consider-
ing the conflict between the complexity of the BLAN struc-
ture and the fact of limited available training data.

Experiments and Analysis

We evaluate our proposed BLAN on three makeup datasets.
Both visualized results of synthesized non-makeup images
and quantitative verification performance are present in this
section. Furthermore, we explore the effects of all losses
and report them in the ablation studies. The overall results
demonstrate that our framework is able to achieve state-of-
the-art verification accuracy across makeup status, with ap-
pealing identity-preserved non-makeup images synthesized
from the ones with makeup.

Datasets

Dataset 1: This dataset is collected in (Guo, Wen, and Yan
2014) and contains 1002 face images of 501 female indi-
viduals. For each individual, there are two facial images —
one with makeup and the other without. The females span
mainly over Asian and Caucasian descents. Dataset 2: As-
sembled in (Sun et al. 2017), there are 203 pairs of images
with and without makeup, each pair corresponding to a fe-
male individual. Dataset 3 (FAM) (Hu et al. 2013): Differ-
ent from the other two datasets, FAM involves 222 males
and 297 females, with 1038 images belonging to 519 sub-
jects in total. It is worthy noticing that all these images are
not acquired under a controlled condition for they are col-
lected from the Internet. Thus there also exist pose changes,
expression variations, occlusion and other noises in these
datasets except for makeup alteration. Some sample images
from the three datasets are showed in Figure 3.

Following the settings in (Guo, Wen, and Yan 2014;
Sun et al. 2017; Hu et al. 2013), we adopt five-fold cross
validation in our experiments. In each round, we use about
4/5 paired data for training and the rest 1/5 for testing, no
overlap between training set and testing set. All the positive
pairs are involved in the testing phase and equal pairs of neg-
ative samples are randomly selected. Hence, taking Dataset
1 as an example, there are about 200 pairs of faces for test-
ing each time. We report the rank-1 average accuracy over
the five folds as quantitative evaluation.

Table 1: Rank-1 accuracy (%) on three makeup datasets.

Dataset Method Accuracy

Dataset 1

(Guo, Wen, and Yan 2014) 80.5
(Sun et al. 2017) 82.4

VGG 89.4
Light CNN 92.4

BLAN 94.8

Dataset 2

(Sun et al. 2017) 68.0
VGG 86.0

Light CNN 91.5
BLAN 92.3

FAM

(Nguyen and Bai 2010) 59.6
(Hu et al. 2013) 62.4

VGG 81.6
Light CNN 86.3

BLAN 88.1

Implementation Details

In our experiments, all the input images are resized to
128 × 128 × 3 and the generator output synthetic images
of the same size. BLAN is composed of a generator G,
two discriminator Dp and Df , and a feature extractor Light
CNN. The Light CNN used for feature extracting is pre-
trained on MS-Celeb-1M (Guo et al. 2016) without fine-
tuning on makeup datasets. G is an encoder-decoder net-
work with U-Net structure and consists of 8×2 Convolution-
BatchNorm-ReLU layers. It contains about 41, 833k param-
eters and about 5.6G FLOPS. Dp is a network with 4 con-
volution layers followed by a Sigmoid function. It contains
about 667k parameters and 1.1G FLOPS. Df is made of
2 fc layers and contains about 26k parameters. We accom-
plish our network on PyTorch (Paszke, Gross, and Chintala
2017). It takes about 3 hours to train BLAN on Dataset 1,
with a learning rate of 10−4. Data augmentation of mirror-
ing images is also adopted in the training phase. Consider-
ing the limited number of images in Dataset 2, we first train
BLAN on Dataset 1 and then fine-tune it on Dataset 2 in
our experiments. As for the loss weights, we empirically set
λ1 = 3×10−3, λ2 = 0.02 and λ3 = 3×10−3. In particular,
we also set a weight of 0.1 to the edge loss and 0.3 to the
symmetry loss inside Lcons−p.
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Figure 4: Synthetic non-makeup images by BLAN on three makeup datasets. From top to down, there are makeup images,
synthetic images and ground truth, respectively.

Table 2: True Positive Rate (%) on three makeup datasets.

Dataset TPR@FPR=0.1% TPR@FPR=1%
Dataset 1 65.9 99.8
Dataset 2 38.9 82.7

FAM 52.6 97.0

Comparisons with Existing Methods

The ultimate goal of our proposed BLAN is to facilitate face
verification performance across makeup status by generat-
ing non-makeup facial images. We demonstrate the effec-
tiveness of BLAN by conducting verification task on the
mentioned three makeup datasets. The results on VGG (Si-
monyan and Zisserman 2015) and Light CNN (Wu et al.
2015) serve as baselines. Particularly, we adopt VGG-16 and
Light CNN without any fine-tuning on the makeup datasets.
In these experiments, we extract deep features from images
with and without makeup via the corresponding networks
and directly use them for matching evaluation. While in the
BLAN experiment, a non-makeup image is first produced by
the generator for each makeup image. Then the generated
non-makeup image is sent to Light CNN for deep feature
extraction. It should be noted that our method is actually ac-
complishing verification task on synthetic images, which is
of significant progress.

We compare the rank-1 verification accuracy with some
existing methods in Table 1 and report the true positive rate
in Table 2. The similarity metric used in all experiments
is cosine distance. Except for the mentioned baselines, the
methods listed are all tailored for makeup-invariant face ver-
ification. Among them, the works in (Guo, Wen, and Yan
2014), (Nguyen and Bai 2010) and (Hu et al. 2013) explore
the correlation between images of a certain identity with and
without makeup in traditional ways, while the approach in
(Sun et al. 2017) is based on deep networks. From Table
1, we can observe that our proposed BLAN brings promi-
nent improvement to rank-1 accuracy comparing with ex-
isting makeup-invariant schemes, both traditional and deep
ones. In specific, a boost of at least 10% is achieved on

each dataset. It demonstrates that our architecture is able
to achieve state-of-the-art performance on the datasets. Ad-
ditionally, it is worth noticing that both VGG and Light
CNN are trained on much larger datasets than the makeup
datasets. Their produced deep features are thus rather pow-
erful, resulting in much higher accuracies than the tradi-
tional schemes. Compared the feature extraction processes
in BLAN and in Light CNN, the only difference lies in the
input. Even though, our network still outperforms the two
baselines. These phenomena consistently validate that our
learning from generation framework has the ability of pro-
mote verification performance by alleviating impact from
makeup.

Synthetic Non-Makeup Images

For the existing makeup-invariant face verification methods
we discussed, none of them has the capacity of generating
non-makeup images from that with makeup. In contrast to
them, we propose to extract deep features directly from syn-
thetic non-makeup images for face verification. To evaluate
our BLAN perceptually, we exhibit some synthetic samples
in Figure 4. Observing the second rows in these figures, we
can find that both holistic face structure and most local at-
tributes of the original faces are kept. The reason is that in
addition to the discriminator on pixel level, we propose to
impose another discriminator on feature level to maintain
the identity prior as well as facial structure.

Different makeup datasets have different characteristics.
Dataset 1 and Dataset 2 only contain female subjects and the
paired images have higher resolution compared with FAM.
Thus, BLAN achieves perceptually better synthetic images
and results in higher verification accuracy on these datasets.
In contrast, more than 40% of the subjects are male in FAM.
We show both male and female results of BLAN in Figure
4. The makeup removing results of males are not so satis-
fied as that of females. For male individuals, the gap be-
tween makeup images and non-makeup ones are relatively
narrower than the females and the training data of males is
much less than the females, which are determined by the fact
that males trend to wear less makeup in reality.

However, we also notice that there exists blurs in our syn-
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Figure 5: Sample results with pose, expression and occlusion
changes.

Table 3: Rank-1 accuracy (%) on Dataset 1 with ablation.

Method Accuracy
w/o Ledg 92.9
w/o Lsym 91.8
w/o LDf

89.6
w/o Lcons−f 76.5

BLAN 94.8

thetic non-makeup images compared with ground truth. And
the clarity of facial component outlines, e.g. eyes contour,
is not so compelling as expected. The reasons lie in multi-
ple folds. 1) In reconstruction loss on pixel level, we adopt
L1 distance. It has been reported in (Isola et al. 2016) and
(Huang et al. 2017) that L1 distance loss in generator will
bring about image blurs for it leads to overly smooth re-
sults. Even though there are adversarial networks, the overly
smooth problem can not be swept away. 2) We merely uti-
lize the data from the three makeup datasets to train BLAN,
without any help from other data. Compared with other face
related datasets, the data sizes of these makeup datasets are
rather limited. It consequently decreases the training qual-
ity of the network. 3) As has been introduced in Section
Datasets, all the paired images are collected from the In-
ternet. In other words, the images are not acquired under
a controlled condition. Even the facial key points are not
strictly aligned as standard facial datasets. We present some
images pairs with pose, expression and occlusion changes
and their synthetic non-makeup results in Figure 5. These
changes will severely hinder the network training and thus
impact the generated image quality.

Ablations

To fully explore the contribution of each loss, we conduct
experiments on different architecture variants of BLAN. The
quantitative verification results are reported in Table 3 for
comprehensive comparison. We remove one of the losses in
generator training each time and examine the correspond-
ing accuracy change. As expected, BLAN with all the losses
achieves the best accuracy. It is evident that Lcons−f and
LDf

bring the greatest declines, indicating the effectiveness

Figure 6: Synthetic results of BLAN and its variants.

and importance of adversarial network on feature level. As
for Ledg and Lsym, they also help to promote the perfor-
mance, though not as much remarkable as the fore discussed
two losses. We also present visualization samples of each
variant in Figure 6. The generated images without the edge
loss and the symmetry loss tend to suffer from more unnat-
ural artifacts. And the absence of adversarial loss on feature
level causes serve blur to the synthesized results. Finally,
Lcons−f contributes most to the identity preservation, as can
be distinctly observed by comparing the last three rows in
Figure 6.

Conclusion

In this paper, we have proposed a new learning from genera-
tion framework to address the makeup problem in face veri-
fication. A synthesized non-makeup image is generated with
its identity prior well preserved from a makeup image. And
then, the produced non-makeup images are used for face ver-
ification, which effectively bypasses the negative impact in-
curred by cosmetics. Specifically, we have proposed a novel
architecture, named bi-level adversarial network (BLAN),
where there is one discriminator on pixel level to distinguish
real non-makeup images from fake ones and another dis-
criminator on feature level to determine whether a feature
vector is from a target image. To further improve the qual-
ity of our synthesized images, reconstruction losses have
been also employed for training the generator. Extensive ex-
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periments on three makeup datasets show that our network
not only generates pleasing non-makeup images but also
achieves state-of-the-art verification accuracy under makeup
conditions.
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