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Abstract
By reason of being able to obtain natural lan-
guage responses, natural answers are more favored
in real-world Question Answering (QA) systems.
Generative models learn to automatically generate
natural answers from large-scale question answer
pairs (QA-pairs). However, they are suffering from
the uncontrollable and uneven quality of QA-pairs
crawled from the Internet. To address this problem,
we propose a curriculum learning based framework
for natural answer generation (CL-NAG), which is
able to take full advantage of the valuable learn-
ing data from a noisy and uneven-quality corpo-
ra. Specifically, we employ two practical measures
to automatically measure the quality (complexity)
of QA-pairs. Based on the measurements, CL-
NAG firstly utilizes simple and low-quality QA-
pairs to learn a basic model, and then gradually
learns to produce better answers with richer con-
tents and more complete syntaxes based on more
complex and higher-quality QA-pairs. In this way,
all valuable information in the noisy and uneven-
quality corpora could be fully exploited. Experi-
ments demonstrate that CL-NAG outperforms the
state-of-the-art, which increases 6.8% and 8.7% in
the accuracy for simple and complex questions, re-
spectively.

1 Introduction
Natural Answer Generation (NAG, or natural question an-
swering), which is able to generate natural answers in the
form of natural language sentences, has received much at-
tention in recent years [Yin et al., 2016; He et al., 2017].
Compared with the typical question answering (QA) systems
which merely obtain exact answers in the form of entities or
phrases [Unger et al., 2014; Hao et al., 2017], NAG could
provide more natural responses, which is able to interact with
ordinary users more friendly.
Recently, with the development of deep learning, more

and more approaches utilize end-to-end models for text gen-
eration [Yin et al., 2016; Gu et al., 2016]. Most of them
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Figure 1: An example of different-quality answers (QA-pairs) on the
real-world data.

adopt the sequence-to-sequence (Seq2Seq) learning frame-
work [Sutskever et al., 2014], which takes word sequences as
input, and generates output sequences word by word. In or-
der to generate natural answers, copy mechanism [Gu et al.,
2016] and knowledge retrieval [Eric and Manning, 2017] are
usually incorporated in Seq2Seq models. As a data-driven
approach, the quality of generated natural answers in NAG
heavily depends on the training data (QA-pairs). In fact, in
order to train a robust and universal model, most work obtains
large-scale QA-pairs by crawling human-generated question-
s and answers from Community Question Answering (CQA)
websites such as Yahoo! Answers1 and Baidu Zhidao2.
However, due to the subjectivity, randomness, and one-

sidedness of questions and answers written by the ordinary
Internet users, the quality of learning QA-pairs is uncontrol-
lable and uneven. Figure 1 demonstrates different-quality
answers sharing the question “What is the real name of Lu
Xun3?”. In fact, 84.2% QA-pairs have duplicated question-
s within a real-world CQA dataset2. Although all answers
in Figure 1 contain the correct entity (marked as underline),
only A4 (His birth name was Zhou Zhangshou, but he later

1https://answers.yahoo.com/
2https://zhidao.baidu.com/
3All examples are translated from Chinese in this paper. Here,

Lu Xun is a leading figure of modern Chinese literature.
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changed his name to Zhou Shuren.) is totally correct as well
as having rich contents (marked as bold). Particularly, it ex-
plains that Lu Xun’s real name was changed to “Zhou Shuren”
from “Zhou Zhangshou”. In contrast, the first answer (A1) is
partly noisy, which contains a correct entity as well as some
noise; A2 is the solitary entity (not a natural sentence); A3 is
correct and fluent. However, it is one-sided because of omit-
ting the other correct answer entity “Zhou Zhangshou”.
It is hard to learn a good model for NAG from such a noisy

and uneven-quality corpora. On the one hand, it is an in-
tractable task to select QA-pairs with high-quality answers.
In fact, the quality of answers is hard to evaluate and cal-
culate. Novikova et al. [2017] have demonstrated that the
state-of-the-art automatic metrics are poorly related to human
evaluation in natural language generation tasks. Moreover,
human evaluation is impractical for scalable machine learn-
ing models. On the other hand, the size of learning data will
be reduced sharply if we only take high-quality QA-pairs in-
to consideration. In fact, even partly noisy, solitary and one-
sided answers still contain some useful information for gen-
erating natural answers. For instance, though A1 in Figure
1 contains partial noise, the entity “Zhou Shuren” in A1 al-
so contributes to learning the interaction with the knowledge
base (KB), which should not be directly and completely re-
moved from the learning corpora.
Therefore, in order to take full use of the learning data,

as well as to robustly deal with the noisy and uneven-quality
QA-pairs, inspired by Sachan and Xing [2016], we propose
a natural answer generation framework based on curriculum
learning [Bengio et al., 2009] (CL-NAG). In this framework,
answer selectors are used to automatically measure the differ-
ent complexities and qualities of QA-pairs. Specifically, we
employ two answer selectors including a term frequency (T-
F) based selector and a grammar (GM) based selector. On the
lexical level, TF selector is able to measure whether answers
are rich in contents or not (e.g. A2 and A4 in Figure 1 which
contain the low-frequency term “Zhou Zhangshou” are re-
garded as more complex and higher-quality answers). On the
sentential level, GM selector can estimate answers with good
grammar (e.g. fluent answers with complete syntax are sup-
posed to be more complex and higher-quality ones (A3, A4)
in Figure 1). Thereafter, curriculum learning is employed for
training NAG model, which is able to firstly learn a basic QA
model with simple and low-quality QA-pairs (such as distill-
ing correct entities from the low-quality and short answers to
interact with the KB), and then gradually learn to produce bet-
ter answers with complex and high-quality QA-pairs (gener-
ating natural responses). Experiments on an open real-world
CQA dataset demonstrate the effectiveness of CL-NAG on
automatic and manual evaluations. Compared to the state-of-
the-art, CL-NAG increases 6.8% and 8.7% in the accuracy
for simple and complex questions, respectively. Furthermore,
our model is able to deliver answers with richer contents and
more complete syntax.
In brief, our main contributions are as follows.
• We propose a curriculum learning based Natural An-

swer Generation framework (CL-NAG), which is able
to make full use of all valuable information on a noisy
and uneven-quality corpora.

• We employ two practical measures to automatically
measure the complexity and quality of QA-pairs. Based
on these measures, we adopt curriculum learning for
NAG. It is able to firstly learn a basic QA model with
simple and low-quality QA-pairs, and then gradually
learn to produce better answers with richer contents and
more complete syntaxes.

• Experiments on an open CQA dataset demonstrate that
CL-NAG outperforms the state-of-the-art on automatic
and manual evaluations. Especially, it increases 6.8%
and 8.7% in the accuracy for simple and complex ques-
tions, respectively.

2 Background
2.1 Task Description
Natural Answer Generation can be regarded as a fusion task
of knowledge base question answering (KBQA) and chatbot
/ (one-turn) dialog. The NAG system takes a sequence of
words as the input question sentence, and then produces an-
other sequence of words as the answer sentence. Meanwhile,
the system needs to interact with KB for obtaining correct
answer entities, which retrieves a set of candidate facts and
generates correct answers using corresponding facts [Yin et
al., 2016]. In other words, answering words consist of both
common words (from vocabulary) and KB-words (from re-
trieved facts).
COREQA [He et al., 2017] is a typical NAG model, which

incorporates the copy and retrieval mechanisms in sequence
to sequence learning [Cho et al., 2014]. In this model, a
knowledge retrieval model is firstly utilized to retrieve related
facts from the KB. Then the encoder transforms all the inputs
(such as words, entities as well as their structural information)
into numerical representations. Finally, the decoder generates
natural answers with the encoded questions and knowledge.

2.2 Curriculum Learning
Curriculum learning [Bengio et al., 2009] is a learning strat-
egy in machine learning, which starts from easy instances
and then gradually handles harder ones. Curriculum learn-
ing has been used to question answering by Sachan and Xing
[2016]. They utilize training loss to represent the complexi-
ty of instances and propose several heuristic strategies, which
achieve high performance. In contrast, in our natural answer
generation task, one question may correspond to multiple
correct answers. So the complexity of instances (QA-pairs)
could be hardly reflected from the training loss because of the
difficult evaluation of the generated natural answers [Noviko-
va et al., 2017]. Furthermore, the noisy and uneven-quality
train data increases the difficulty of curriculum learning.

3 Methodology
Traditional methods, based on the Seq2Seq learning frame-
work, are difficult to generate natural answers from a noisy
and uneven-quality corpora. Curriculum learning is able to
learn a basic model (e.g. how to interact with KB) from
low-quality and short (simple) QA-pairs. Then it gradually
generates correct and natural answers from training instances
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Figure 2: The overall diagram of natural answer generation framework based on curriculum learning.

whose answers are richer in contents and more complete in
syntax. Nevertheless, the most challenging issue is how to
measure the complexity of QA-pairs. Moreover, the com-
plexity needs to be related to the quality of QA-pairs.
To address this problem, we propose curriculum learning

based framework for NAG as shown in Figure 2. In this
framework, answer selectors (see Section 3.1) are firstly used
to measure the complexity and quality of QA-pairs. In more
details, a term frequency (TF) selector (lexical level) and a
grammar (GM) selector (sentential level) are used to selec-
t QA-pairs with richer contents and more complete syntax-
es. The instances selected by answer selectors are regard-
ed as target instances, while other instances are common
instances. Thereafter, instance scheduler (see Section 3.2)
based on curriculum learning is designed by two monotonous
functions, which contribute to defining the learning progress
from common instances to target instances. Finally, natural
answers are generated by the NAG model (see Section 3.3).
The details are shown as follows.

3.1 Answer Selector
Answer selectors are designed to select complex (high-
quality) QA-pairs, which is under the assumption that the
complexity (quality) of QA-pairs is determined by the com-
plexity (quality) of their answers. Although it is very chal-
lenging to calculate the complexity (quality) of language to-
tally, it is feasible to measure it on some aspects. We compute
it from the view of term frequency and grammar.

Term Frequency Selector
Term frequency (e.g. TF-IDF [Salton and McGill, 1986]) is
a significant feature to estimate the importance of terms. T-
F selector is able to select QA-pairs whose answers contain
the low-frequency term, where the term frequency is obtained
from statistics on the training data. On the one hand, low-
frequency terms are richer in content compared to common
words, so answers selected by TF selector are more meaning-
ful than most common sentences. On the other hand, consid-
ering that very low-frequency terms bring noises with high
probability, a minimum threshold for the low term frequency
(e.g. 10) could be used to filter such noise. Consequently, TF
selector is able to select sentences with richer contents and
correct answers. As in the example illustrated in Figure 1,
though both “Zhou Shuren” and “Zhou Zhangshou” are Lu X-
un’s real name, most people only know “Zhou Shuren”. TF
selector is able to choose A2 and A4 which contain the low-

frequency term “Zhou Zhangshou”. It is able to provide more
meaningful contents.

Grammar Selector
Grammar is an important feature for evaluating the quality
of natural language sentences. We utilize the Stanford Parser
score as the metric of our grammar selector [Levy and Man-
ning, 2003; Novikova et al., 2017]. The Stanford Parser is
not designed for measuring grammaticality. Fortunately, sen-
tences with good grammar usually obtain higher scores than
bad ones (e.g. with grammatical errors). However, the short
answer or solitary entity obtains a high score in the parser,
which limits the expressive power and naturalness of answer-
s. To address this problem, a proportion (e.g. 0.5) of short and
long answers is set to choose fewer short answers, which is
beneficial to obtain meaningful expression of answers. Even-
tually, GM selector chooses A3 and A4 in Figure 1, which are
more complex and higher-quality with good grammar.

3.2 Instance Scheduler
After obtaining the target instances and common instances,
the next step is to determine the distribution of training in-
stances (called instance scheduler) based on curriculum learn-
ing. Answers from common instances are usually in a short
length and with a simple structure. Some of them contain
noise. Initially, curriculum learning is able to learn a basic
QA model with common instances (e.g. distilling correct en-
tities from the low-quality and short answers to interact with
the KB), and then gradually learn to produce better answer-
s with richer contents and more complete syntaxes based on
target instances (generating natural responses).
Similar to Sachan and Xing [2016], we formalize the idea

as follows. Let w ∈ [0, 1]
|Q| represent the probability of sam-

pling in each QA-pair, where |Q| is the size of QA-pairs, and
w is related to the complexity of QA-pairs and progress (such
as the number of current training epoch). Common instances
and target instances are marked as Qc and Qt, respective-
ly. At first, the model tends to select common instances, so
wQc ≫ wQt . Subsequently, wQc decreases and wQt increas-
es monotonically. Eventually, wQc ≪ wQt , which means
that the model is favor of target instances. The probabilities
on the target and common instances are as follows.

wQt =

(
epocht

|epoch|

)2

(1)
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wQc = 1− wQt (2)

where, epocht and |epoch| are the number of current epoch
and entire epochs in training, respectively. Moreover, the
probability of sampling is normalized by the accumulated
probabilities on all samples.

3.3 Natural Answer Generation Model
We employ COREQA [He et al., 2017] as the NAG model,
which incorporates the copy and retrieval mechanisms in Se-
q2Seq learning. The details are as follows.

Retrieving Knowledges
NAG focuses on the knowledge requiring questions, and the
number of topic entity (related to knowledge retrieval) is un-
certain. The gold topic entities are utilized for simplifying
the model. Based on the topic entity, the corresponding fact
is retrieved from the KB, which is under the assumption that
subject and objectmatch the question and answer for the SPO
fact <subject, relation, object>, respectively.

Encoder
Encoder transforms all inputs into numerical representations,
which includes question encoder and knowledge encoder.
Bi-LSTM [Hochreiter and Schmidhuber, 1997] is uti-

lized to encode the questions. Given a question (words se-
quence) X = [x1, ..., xLX ], the concatenated representa-
tion for each word of hidden states in both directions (ht =

[
−→
h t,
←−
h LX−t+1]) is considered as the short-term memory of

question (MQ = {ht}). And the last word in the forward can
represent the whole question.
For the knowledge encoder, each part of the triple

<subject, relation, object> has its own embedding, indicated
as s, r and o, respectively. Each fact is represented by the con-
catenation of s, r and o. The list of facts {f} = {f1, ..., fLF

} is
the short memory of retrieved knowledge, marked as MKB ,
where LF is the maximun number of facts for answering each
question.

Decoder
The decoder generates answers based on the short-memory
of question and knowledge (MQ and MKB), which contains
three modes: 1) predict-mode, the answer word is generated
from the vocabulary list; 2) copy-mode, the output word is
copied from the source question; 3) retrieve-mode, answer-
ing word is obtained from the objects of the retrieved knowl-
edge facts.
Attention mechanism [Bahdanau et al., 2015] is also uti-

lized in generating output words. At each step, it selective-
ly reads the context vector cqt and fact vector ckbt from the
short-term memory of question and fact (MQ and MKB),
and the accumulated attentions on MQ and MKB are kept
to record the history information in decoding.

4 Experiments
Experimental data is an open real-world CQA dataset, which
is from COREQA [He et al., 2017]. In this dataset, raw QA-
pairs are automatically “grounded” with KB by an integer lin-
ear programming (ILP) based method. However, only 44%

Methods Accuracy WBM
BLEU ROUGE

COREQA [2017] 52.7 20.5 23.9
TF-SOLE 49.0 21.0 ↑ 24.9 ↑
TF-FP 48.9 22.9 ↑ 25.5 ↑
TF-CL 47.8 23.2 ↑ 26.7 ↑

GM-SOLE 55.5 ↑ 23.6 ↑ 26.2 ↑
GM-FP 58.4 ↑ 26.8 ↑ 35.3 ↑
GM-CL 59.5 ↑ 21.8 ↑ 40.6 ↑

Table 1: Performances for automatic evaluation (%) on real-world
simple-QA.

QA-pairs are high-quality. It shows that curriculum learn-
ing is necessary. The dataset is divided into simple-QA and
complex-QA according to the number of matched knowledge
facts, in which simple-QA only matches one “grounded” fact,
and the complex-QA contains multiple “grounded” facts.
For purpose of comparison, we design experimental set-

tings as follows.

• COREQA [He et al., 2017]: As the basic model for
the following methods, COREQA performs better than
CopyNet [Gu et al., 2016] and genQA [Yin et al., 2016],
and it achieves the state-of-the-art in this dataset.

• SOLE: Target instances are the only learning data.

• FP: Common and target instances are combined by a
fixed proportion (we set it to 0.5).

• CL: Common and target instances are dynamically se-
lected by curriculum learning.

Target instances on SOLE, FP and CL need to be selected
by answer selectors (TF or GM selector), so the final methods
are marked as TF/GM-SOLE/FP/CL (e.g. TF-CL means that
TF selector is used to curriculum leaning). Specifically, the
target instances of TF selector and GM selector are occupied
13.1% and 18.9%, respectively.

4.1 Automatic Evaluation (AE)
Similar to GenQA [Yin et al., 2016], the accuracy is used to
evaluate the correctness. Moreover, we utilize some word-
based metrics (WBMs) to analyze the co-occurrences of n-
gram between the references and generated answers, include
BLEU and ROUGE [Sharma et al., 2017]4.
In order to study the different effects of curriculum learning

for the simple and complex question, we evaluate our model
on the simple-QA and complex-QA, respectively.

AE on the simple-QA
Performance of automatic evaluation on the simple-QA is
shown in Table 1. We can clearly obtain the following ob-
servations.

4WBMs are implemented in https://github.com/Maluuba/nlg-
eval. In this paper, WBMs are based on Chinese characters, and
the BLEU metric is BLEU2. To improve the quality of evaluating
on WBMs, we label 100 high-quality QA-pairs for simple-QA and
complex-QA.
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Methods Accuracy WBM
BLEU ROUGE

COREQA [2017] 47.4 12.5 25.9
TF-SOLE 15.1 1.8 5.9
TF-FP 3.3 1.3 3.5
TF-CL 56.1 ↑ 24.8 ↑ 39.4 ↑

GM-SOLE 32.5 2.4 19.5
GM-FP 5.8 0.3 2.4
GM-CL 51.6 ↑ 24.3 ↑ 30.9

Table 2: Performances for automatic evaluation (%) on real-world
complex-QA.

• TF-∗ (∗ includes SOLE, FP, and CL) and GM-∗ achieve
higher performance than COREQA on the most AEs. It
indicates that TF and GM selectors contribute to gener-
ating better answers.

• The performance advantages of TF-CL and GM-CL are
obvious. Especially, GM-CL increases 6.8% compared
to the baseline in the accuracy5. The results demonstrate
that curriculum learning is able to make full use of the
noisy and uneven-quality data.

• TF-SOLE (GM-SOLE) is slightly better than COREQA.
Due to the small-size training data obtained by TF (GM)
selector only, the improvement is not obvious, and the
performance is even declined.

• Both TF-FP and GM-FP work well, which is remarkably
better than the SOLEmethod. It proves that the common
instances contribute to producing better answers, too.

AE on the complex-QA
Performance of automatic evaluation on the complex-QA is
shown in Table 2. It supports the following statements.
• Both TF-CL and GM-CL outperform the baseline on al-

l metrics. Especially, the accuracy in TF-CL increases
8.7% compared to COREQA. Because the gold answer-
s of complex-QA are longer than the ones in simple-
QA, long and diversified answers selected by TF selec-
tor are more likely to cover the knowledge entities on the
complex-QA.

• The SOLE method is worse than the baseline. It indi-
cates that complex questions require more data to learn.

• TF-FP and GM-FP perform the worst. Although the TF
and GM selectors are effective, the inappropriate fixed
proportion of common and target instances is able to
bring in a great deal of noise. Therefore, the dynam-
ic sampling on different instances based on curriculum
learning is necessary.

Other AE (Unreferenced Metric)
Except for the accuracy and WBMs, the length [Mou et al.,
2016] and noun amount of answers are used to be the “intrin-
sic” (no reference) evaluation. The length of answers is an ob-
jective and surfaced metric reflects the substance of answers.

5The accuracy of COREQA in this paper is different from the re-
sults of COREQA [He et al., 2017], while it is on the same tendency.
It may be caused by the difference in experimental parameters and
environments.

Methods Simple-QA Complex-QA
Length #Noun Length #Noun

COREQA [2017] 2.92 1.24 2.89 1.23
TF-CL 3.70 ↑ 1.32 ↑ 5.14 ↑ 3.09 ↑
GM-CL 1.81 0.79 4.50 ↑ 1.84 ↑

Table 3: Unreferenced metrics on the simple-QA and complex-QA.

Models Correctness Fluency Coherence
COREQA [2017] 11.5 18.5 11.3

TF-CL 49.5 ↑* 38.5 ↑ 37.0 ↑*
GM-CL 20.5 ↑ 41.8 ↑* 21.0 ↑

Table 4: Manual evaluations on the complex-QA7.

The number of nouns in the answer is another objective met-
ric, which shows the meaningful context of answers. And we
employ the jieba6 toolkit for part-of-speech tagging. Table
3 illustrates that CL-NAG is able to generate better answers
with a longer length and more nouns.

4.2 Manual Evaluation (ME)
Apart from automatic evaluation, we additionally utilize man-
ual evaluation (ME). ME takes three aspects into considera-
tion to evaluate the quality of generated answers (referred to
[He et al., 2017]).
(1) Correctness: measuring the correctness of answers.

Richer and more diversified contents are considered to be
more correct.
(2) Fluency: measuring generated answers are natural or

good in grammars. Too short answers are considered as lack-
ing fluency.
(3) Coherence: measuring whether answers are coherent to

the source question or not.
Two annotators rate (win, failure or tie) the three aspect-

s for COREQA, TF-CL, and GM-CL on complex-QA. We
sample 100 questions and C2

3 pair-wise comparisons for each
question, and compute the percentage of winning times on the
three models.
The manual evaluation is shown in Table 4. The Cohen

Kappa statistics8 between two annotators are 0.681, 0.443 and
0.484 in the correctness, fluency, and coherence, respective-
ly, which is consistent with the intuition that fluency and co-
herence are more subjective than the correctness. Results in
Table 4 support the following statements. Firstly, CL models
(TF-CL and GM-CL) are better than COREQA on all eval-
uative aspects. It indicates that CL-NAG is able to deliver
correct, fluent and coherent answers. Secondly, TF-CL is su-
perior to any other models in the correctness and coherence
except the fluency. In the contrary, GM-CL produces fluent
answers with good grammar (syntax).

6https://github.com/fxsjy/jieba
7Mean scores ± 95% confidence intervals are verified for each

highest performance, and * means that the score is significantly bet-
ter than other models at 95% confidence.

8https://github.com/jorgearanda/kappa-stats
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ID Question COREQA [He et al., 2017] CL-NAG

1
�8°�\�/� 4�i �8°�\�/4�i

What is the author of Journey to the West Wu Cheng’en Wu Chengen is the author of Journey to the West

2
	ý�I�\�/� W/- CCC+++�������W/-

Who’s the author of Romance of the Three Kingdoms Luo Guanzhong Luo Guanzhong in the Late Yuan and Early Ming

3
�yÒ/êýº� e0) e0)ÔÔÔ·ýMMM

Which country does Hitler comes from? Austria Austrian descent, German nationality

4
msn/ÀH@� ®o�J)åw�qq ®olø¨ú�sö�¯åw

What is MSN? Chating tool of Microsoft, QQ Instant messaging tool launched by Microsoft

5
TP/£ý¶�� %Ëö��ýº %Ëö��ýº

Which country is Confucius? Lu’s people in the Spring and Autumn Period Lu’s people in the Spring and Autumn Period

6

¢|¦���c\�� ùê¹ ùê¹

What is the author of Dream of Red Mansions Cao Xueqin Cao Xueqin

7

Åê���;�/�J àTH ¬���¬��

What is the Starring of Take Me no answer Wu Yujun and Wu Yujun

8
ñ³�q��Æ? 2424ñ³ �åS/ñ³

How many episodes of ignorant? 24,24, ignorant I know is ignorant

Figure 3: Examples of the generated natural answers by COREQA and curriculum learning.

4.3 Case Study
Figure 3 lists some examples of generated natural answer-
s by the basic model COREQA and the CL-based method.
It is clear to see that our model generates more knowledge-
able (marked as underline), richer contents (marked as bold)
and more complete-syntax answers compared to COREQA.
However, our model is still flawed. For example, 1) the sys-
tem produces repetitive words with the purpose of generating
complete answers (ID 7); 2) answers only contain the solitary
entity (ID 6 and ID7); 3) Answers do not match the proper
facts. The system delivers fluent answers without any knowl-
edge (ID 8).

5 Related Work
Our generative model is based on Seq2Seq learning [Cho et
al., 2014], which is able to generate sequences such as nat-
ural language sentences. Recently, many works extend the
Seq2Seq framework. GenQA [Yin et al., 2016] is the first
model to combine KB retrieval and produce fluent answer-
s with Seq2Seq learning. However, it deals with the sim-
ple questions which contain only one fact. Furthermore, it
can not copy words from source questions and it is liable to
cause the out-of-vocabulary (OOV) problem. CopyNet [Gu
et al., 2016] utilizes the copy mechanism in sequence learn-
ing, which is failed to interact with KB and generate answers
lacking facts. In order to reduce generic responses, Li et al.
[2016] construct a set of dull responses and give a punish-
ment to them. Eric and Manning [2017] incorporate KB by a
key-value retrieval network on the task-oriented dialog with a
small-size KB. Moreover, COREQA [He et al., 2017] incor-
porates the copy mechanism and KB retrieval in the Seq2Seq
framework for knowledge-requiring CQA questions, where
different words in answers are generated by predicting from
vocabularies, copying from the source questions and retriev-
ing from the KB. All of these approaches are the foundations
of our work.
Furthermore, our work is inspired by curriculum learning

too. The strategy of curriculum learning is starting from easi-
er instances and gradually handling harder ones, which stem-
s from cognitive psychology [Skinner, 1958]. Curriculum
learning has been applied in some NLP tasks, such as lan-

guage model [Bengio et al., 2009] and question answering
[Sachan and Xing, 2016]. Sachan and Xing [2016] propose
some heuristically strategies over SPL [Kumar et al., 2010]
for question answering. In order to avoid the exposure bias
problem, Mixer [Ranzato et al., 2015] also utilizes curriculum
learning for training text generation model. For a sequence
with the length of T , the first L tokens are cross-entropy loss
while the last T − L adopts reinforcement learning, and L is
gradually reduced to zero from T .
Moreover, our work is related to KBQA. Berant et al.

[2013] and Yih et al. [2016] utilize the semantic pars-
ing based method for KBQA. [Yao and Van Durme, 2014;
Bordes et al., 2014a] adopt the information retrieval based
method. Neural network-based method is used by [Bordes et
al., 2014b; 2015; Hao et al., 2017]. KBQA devotes to obtain-
ing correct answers in the form of entities while NAG task
aims at generating correct answer entity as well as a natural
expression.

6 Conclusion and Future Work
In this paper, we propose a curriculum learning based nat-
ural answer generation framework (CL-NAG). Under this
framework, all valuable information in the noisy and uneven-
quality corpora could be fully exploited. In particular, we
employ two practical methods to automatically measure the
complexity and quality of QA-pairs on the lexical level and
sentential level, respectively. Based on these measures, CL-
NAG is able to firstly learn a basic QAmodel with simple and
low-quality QA-pairs (distilling correct entities from the low-
quality and short answers to interact with the KB), and then
gradually learn to produce better answers with complex and
high-quality QA-pairs (generating natural responses). Exper-
iments on a large-scale open dataset demonstrate the effec-
tiveness of our model. Compared with the state-of-the-art,
CL-NAG increases 6.8% and 8.7% in the accuracy for simple
and complex questions, respectively. Moreover, it is able to
deliver answers with richer contents and better syntax. In the
future, we are planning to expand current work as follows. 1)
Exploring more practical metrics to evaluate NAG and adopt-
ing these metrics to select high-quality QA-pairs; 2) Incorpo-
rating more kinds of data based on curriculum learning.
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