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 Abstract - We consider a motion planning problem with 
workspace goal region in obstacle environments and the task is to 
move the end-effector into a specific goal region without posture 
constraints. In order to improve the quality of the planning 
trajectory, we present a goal region constraint algorithm based 
on Gaussian process motion planning. We construct a distance 
field for the irregular goal region in advance. The closest distance 
and direction from any location of the workspace to the specific 
goal region can be easily computed. Combined with the original 
method, we define a goal-region-constrained likelihood which 
specifies the probability that the position of end-effector is within 
the specific goal region and move the end-effector to a better 
position by numerical optimization. Finally, multiple simulation 
experiments are carried out and the results show that the 
proposed algorithm can quickly plan an obstacle avoidance 
trajectory in joint space and the quality of the trajectory is 
improved effectively compared to randomly specifying a goal 
configuration.  
 
 Index Terms –Workspace goal region, Distance field, Goal-
region-constrained likelihood, Trajectory optimization, Obstacle 
avoidance.  
 

I.  INTRODUCTION 

Many practical manipulation tasks afford a large amount 
of freedom in the choice of the goal locations. For example, 
when we throw an object into the recycling bin as is shown in 
Fig. 1. We can choose a random posture, as well as a wide 
range of goal locations above the recycling bin to release the 
object. Then the different feasible goal locations make up a 
workspace goal region. For an irregularly shaped box, the 
corresponding goal region is also irregular. The task is to 
move the end-effector into the goal region, meanwhile 
avoiding obstacles is essential. 

Obstacle avoidance motion planning is one of the key 
technologies for robotic self-programming. The purpose is to 
find a smooth trajectory through the robot’s configuration 
space and the trajectory is collision-free and obeys the robot’s 
physical limitations. The traditional grid search methods such 
as the A* algorithm [1] or D* algorithm [2] are not suitable for 
high degree-of-freedom (DOF) manipulators, because their 
computational complexity will increase exponentially with the 
increase of the configuration space dimension. Currently, 
sampling-based algorithms and trajectory optimization 

approaches are two main types of motion planning planners for 
high DOF robots. 

 
Fig. 1: Snapshots of throwing an object in different poses and positions with 

the WAM arm in a simulated environment. 

Sampling-based approaches have become popular due to 
the probability completeness and they can easily plan a valid 
path for high degree-of-freedom (DOF) systems. The most 
basic sampling-based algorithms are the probabilistic roadmap 
(PRM) [3] and rapidly exploring random trees (RRT) [4]. 
Many improved algorithms [5] [6] have also been proposed. In 
general, the sampling-based algorithm is very efficient and 
probabilistically complete. However, compared to the 
trajectory optimization approaches, these algorithms need a 
longer time to generate an optimized trajectory. In order to 
plan a feasible and optimal trajectory, some trajectory 
optimization methods have been proposed. For example, the 
CHOMP planner [7] optimizes an initial trajectory using 
covariant gradient descent. For problems with non-
differentiable constraints, STOMP planner [8] samples a series 
of noisy trajectories to explore the space around an initial 
trajectory. All of the above methods optimize a discrete initial 
trajectory and a fine discretization is needed to reason about 
obstacles in complex environment. Then the computational 
cost will increase significantly. To overcome this problem, 
Gaussian Process Motion Planner (GPMP) [9] samples a few 
states on the initial trajectory and uses Gaussian process (GP) 
interpolation to query the trajectory at any time of interest. On 
this basis, the GPMP2 [10] algorithm formulates the planning 
problem via a probabilistic graphical model and then converts 
the planning problem to a nonlinear least squares optimization 
problem.   

For the motion planning problems with goal region, most 
of the previous work was based on sampling methods. In [11] 
[12], researchers sample multiple end-effector poses in the 
goal region and obtain the corresponding joint configurations 
by inverse kinematics (IK). Then these joint configurations are 
set as goals for a randomized planner. This approach has been 
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confirmed to be neither probabilistically complete nor 
efficient. If the chosen goal configurations are unreachable, the 
planner will fail. To overcome this problem, RRT-JT 
algorithm [13] uses a gradient-descent heuristic based on the 
Jacobian-transpose to bias the tree toward a random 
workspace goal point. The random selection of workspace 
goal points ensures the probability completeness of the 
algorithm. In order to further improve the planning speed, 
IKBiRRT algorithm [14] uses a forward-searching tree rooted 
at the start configuration and a backward-searching tree which 
is seeded by sampling the workspace goal region with a given 
probability. By constructing a bidirectional search tree, the 
convergence speed of the algorithm is effectively improved.  

The above methods are all based on the sampling 
algorithms. The final target configuration and the planned 
trajectory are feasible but not optimized. In order to quickly 
plan an optimized trajectory, we choose the GPMP2 [10] 
planner and improve it to solve the planning problems with 
goal region. For an irregular goal region in the three-
dimensional workspace without posture constraints, we 
construct a distance field in the workspace. Then the closest 
distance and direction from any location of the workspace to 
the specified goal region can be easily obtained. Based on the 
distance information, we define a goal-region-constrained 
likelihood which specifies the probability that the position of 
end-effector is within the specific goal region. Then we view 
the likelihood as a posteriori and the problem is converted to a 
maximum a posteriori (MAP) problem. Finally, by numerical 
optimization, we plan an obstacle avoidance trajectory which 
moves the end-effector to an optimized goal configuration and 
the quality of the planned trajectory is improved effectively. 

The rest of the paper is organized as follows. We define 
the problems we need to solve and explain how to use 
Gaussian processes to describe continuous-time trajectories in 
section II. Then the detailed algorithm description is presented 
in section III, including the construction of goal region 
distance fields and the derivation of trajectory optimization. 
Section IV presents the experimental results and illustrates the 
effectiveness and superiority of our algorithm. Finally several 
directions to improve the current work have been mentioned in 
the concluding section. 

II. PRELIMINARY MATERIAL 

A. Problem Definition 
For a qn -dimensional kinematic redundant manipulator, 

the position pt of the end-effector is related to the configuration 
coordinate q and can be compute by the kinematic map: 
 p p ( )t f q=   (1) 

Consider a specific goal region G , which is a set of end-
effector positions in the three-dimensional workspace without 
posture information, the goal-constrained motion planning 
problem is to plan a trajectory ( )q s  in configuration space, 

[0,1]s∈ , such that: 
1. p p(1) ( (1))t f q= ∈G ; 

2. the robot does not collide with obstacles or itself 
throughout the planned trajectory. 

B. Gaussian Processes as Continuous-time Trajectory 
Representation 

 For a continuous-time trajectory, the state at time t is  
 { }1 1

( ) { ( )}
Ddr R

r d
t tξ ξ = =
=  (2) 

where D is the dimension of the configuration space, and R 
represents the number of variables in each configuration 
dimension.  
 A vector-valued Gaussian process (GP) is a collection of 
random variables and each variable has a Gaussian 
distribution. Then a trajectory is considered as a sample from a 
vector-valued Gaussian process, ( ) ~ ( ( ), ( ))t GP t K t,tξ μ ′ , with 

mean ( )tμ �and covariance ( )K t,t′ ��generated by a linear time 
varying stochastic differential equation (LTV-SDE)[15] 

 ( ) A( ) ( ) u( ) F( ) w( )
w( ) ~ (0, ( ))c

t t t t t t
t GP Q t - t

ξ ξ
δ

= + +
′

�
 (3) 

where A( )t  and F( )t are system matrices, u( )t is a known 
system control input, w( )t is the white noise process which is a 
Gaussian process with zero mean. cQ  is the power spectral 
density matrix and ( )δ ⋅ is the Dirac delta function. 

The solution to the LTV-SDE is  

 
0

0 0( ) ( ) ( ) ( )(u( ) ( ) w( )) ,
t

t
t t,t t t,s s F s s dsξ ξ= Φ + Φ +�   (4) 

where ( )t,sΦ is the state transition matrix that propagates the 
state from s to t. Then the mean and covariance of the GP can 
be generated as following: 

 
0

0 0( ) E[ ( )] ( ) ( ) u( )
t

t
t t t,t t,s s dsμ ξ μ= = Φ + Φ�   (5) 

0

T

min( )T T T
0 0 0

( ) E[( ( ) ( ))( ( ) ( )) ]

( ) ( ) ( ) F( )Q F( ) ( )
t , t

ct

K t,t t t t t

t,t K t ,t t,s s s t ,s ds

ξ μ ξ μ
′

′ ′ ′= − −

′ ′= Φ Φ + Φ Φ�
  

  (6) 
where 0μ , 0K  are initial mean and covariance of the first state. 
 The GP prior distribution is defined in terms of the mean 
μ  and covariance K : 

 21( ) exp{ }
2 K

P ξ ξ μ∝ − −   (7) 

 The major benefit arising from the Markovian property of 
the LTV-SDE in (3) is the fact that the inverse kernel matrix 

1K −  is exactly sparse block tri-diagonal 
 1 -T 1 1K A Q A− − −=   (8) 
where 

 

1 0

2 11

1

1 0 0 0
( , ) 1 0 0
0 ( , )
0 0 0 0

1 0
0 0 ( , ) 1N N

t t
t t

A

t t

−

−


 �
� 
−Φ� 

� 
−Φ

= � 

� 

� 

� 


−Φ� 
� �

�
�
� � �
�

� � �
�

  (9) 
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and 1 1 1 1
0 1 N( , , )Q diag K Q Q− − − −= �  with iQ  is given by 

 
1

T T( , ) F( )Q F(s) ( ,s) .i

i

t

i i c it
Q t s s t ds

−

= Φ Φ�  (10) 

 The trajectory is going from 0t  to Nt and the detailed 
derivation process is shown in [15]. The state ( )ξ τ  at any time 

1( , )i it tτ +∈  on the continuous trajectory can be approximated 
by Laplace’s method: 
 1( ) ( ) ( ) ( )K Kξ τ μ τ τ ξ μ−= + −   (11) 
where 0( ) [ ( , ) ( , )]NK K t K tτ τ τ= � . Because the inverse kernel 
matrix 1K −  is sparse block tri-diagonal, the state ( )ξ τ can be 
computed by a linear combination of the two adjacent state 
function values as following: 
 1 1( ) ( ) ( )( ) ( )( )i i i iξ τ μ τ τ ξ μ τ ξ μ+ += + Λ − +Ψ −   (12) 
 T 1

1 1( ) ( , ) Q ( , ) Q ( , )i i i i it t t tττ τ τ −
+ +Λ = Φ − Φ Φ   (13) 

 T 1
1( ) Q ( , )i it Qττ τ −

+Ψ = Φ   (14) 
where iQ  is given in (10) . 
 The Sparseness of the inverse kernel matrix effectively 
reduces the computational complexity of GP interpolation. 
Then the state ( )tξ  at any time on a continuous-time 
trajectory can be described by a Gaussian process. 

III. ALGORITHM DESCRIPTION 

A. Distance Field and Gradient Information 
     

   

         
Fig. 2: The yellow region in the left image is the specific goal region and the 
closest distance from any intersections on the grid to the goal region is shown 

in the right figure. 

 The yellow region in the left image of Fig. 2 is the specific 
goal region and we rasterize the two-dimensional workspace 
first. Then using the fast distance field calculation method 
which is presented in [16] and has been publicly available, we 
compute the shortest Euclidean distance from each intersection 
on the grid to the goal region as shown in the right image. The 
distance field stores the distance information of all 
intersections. 
 Overly dense rasterization will exponentially increase the 
computational complexity and consumes a lot of storage space, 
so for limited rasterization, the goal position of the end-
effector will inevitably fall into the grid rather than the 
intersections (e.g. the point T in Fig. 3). The shortest distance 
projection of a cell raster to the surface of the specific goal 
region is shown in Fig. 3. Considering that a cell raster is very 
small compared to the entire workspace and the projected 
portion is also very small compared to the entire goal region, 

we approximate the projected portion as linear. Then for any 
point in the grid, the closest distance can be estimated by 
bilinear interpolation or tri-linear interpolation method, 
corresponding to two-dimensional workspace and three-
dimensional workspace respectively.  

T

( )pd t

( )pD t

  

12M

1y

2y
y

1x x 2x

T

22M

11M 21M

 
Fig. 3: the left image shows the shortest distance projection of a cell raster to 
the specific goal region and the detailed description for bilinear interpolation 

is shown in the right image. 

In the right image of Fig. 3, points 11M , 12M , 21M  and 

22M  are the four intersections on the grid.  The closest 
distance ijd  of intersections is known and has been stored in 
the distance field. For a point T with coordinate ( , )pt x y=  in 
the grid, combined with the bilinear interpolation algorithm, 
the closest distance can be estimated: 

 2 2 11 1 2 21

2 1 12 1 1 22

( ) ( )( ) ( )( )
( )( ) ( )( )

pd t x x y y d x x y y d
x x y y d x x y y d

≈ − − ∗ + − − ∗
+ − − ∗ + − − ∗

  (15) 

where ( , )i jx y  is the coordinate of the intersection ijM . In 
practice, the grids are unit-spaced and 2 1 2 1 1x x y y− = − = .  
 Then the gradient information of the distance for x and y 
can be obtained: 

 

T

2 21 11 1 22 12

2 12 11 1 22 21

( ) ( )
( )

( )( ) ( )( )
( )( ) ( )( )

p p
p

d t d t
D t

x y
y y d d y y d d
x x d d x x d d

∂ ∂
 �
≈ � 
∂ ∂� �

− − + − −
 �
= � 
− − + − −� �

 (16) 

 For three-dimensional space, we use the tri-linear 
interpolation method to estimate the distance and the solution 
process is similar. For any position ( , , )pt x y z= in three-
dimensional workspace, the closest distance is: 

 

( )
( )
( )
( )

1, 1, 1 1 , 1, 1

1 1, , 1 1 , , 1

1 1, 1, 1 , 1,

1 1 1, , 1 , ,

( ) ( )( ) ( ) ( )

( )( ) ( ) ( )

( )( ) ( ) ( )

( )( ) ( ) ( )

p j k i i j k i i j k

j k i i j k i i j k

j k i i j k i i j k

j k i i j k i i j k

d t y y z z x x d x x d

y y z z x x d x x d

y y z z x x d x x d

y y z z x x d x x d

− − − − − −

− − − − −

− − − − −

− − − −

≈ − − − + −

+ − − − + −

+ − − − + −

+ − − − + −

(17) 

where , ,i j kd is the shortest Euclidean distance from the 
intersection point ( , , )i j kx y z  to the goal region and 

 
[ ] [ ]1 1 1

1 1 1

, , , , ,
.

1
i i j j k k

i i j j k k

x x x y y y z z z

x x y y z z
+ + +

+ + +

� 
 �∈ ∈ ∈� � ��
− = − = − =��

 (18) 

 The gradient information is a 3 1∗ vector by simply 
differentiating: 
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T( ) ( ) ( )

( ) .p p p
p

d t d t d t
D t

x y z
∂ ∂ ∂
 �

≈ � 
∂ ∂ ∂� �
 (19) 

B. Goal-region-constrained Likelihood 
Probabilistic inference provides an intuitive and efficient 

way to reason about the mapping between configurations and 
goal region. We define the likelihood that the position of the 
end-effector is within the specific goal region for a given goal 
configuration Nξ  and it is represented as: 
 ( | ) ( | )goal N NL g P gξ ξ=   (20) 
 We define the likelihood as a distribution in the 
exponential family 

 21( | ) exp{ ( ) }
2 goalgoal N NL g gξ ξ

Σ
∝ −  (21) 

where ( )Ng ξ is a goal-region-constrained cost function and 

goal goalσΣ =  is an arbitrary variance for this constraint, 
indicating how ‘tight’ the goal region constraint is. 

In our implementation, we compute the cost function by 
( ( )) ( ( )) if ( ( ))

( )
0 if ( ( ))

p p N p
N

p

d t N d f d t N
g

d t N
ε ξ ε ε

ξ
ε

+ = + ≥ −��= � < −��
(22) 

where ε  is a safety distance to ensure that the end-effector is 
within the goal region. ( )pt N is the goal position of end-
effector and ( )p Nf ξ  is the forward kinematics that maps any 
goal configuration Nξ to the workspace. ( ( ))pd t N is the 
shortest distance from ( )pt N  to the specific goal region which 
has been computed in (15) and (17). It is a signed distance and 
the value will be negative when the end-effector is inside the 
goal region. 

C. Trajectory Optimization 
 For a given Gaussian process prior ( )P ξ  , our purpose is 
to find an obstacle avoidance trajectory maximizing the 
likelihood in (21). The obstacle avoidance likelihood has been 
defined in [12] with exponential form: 

 21( | 0) ( 0 | ) exp{ h( ) }
2 obsob s i i i i iL c P cξ ξ ξ

Σ
= = = ∝ −

i
(23) 

where ( )ih θ is a vector-valued obstacle cost function and 
iobsΣ  

is a diagonal matrix and defined as, I
iobs obsσΣ = . 

 Then the planning problem can be converted to a MAP 
problem 

 

{ }
( ){ }

*

2 2 2

argmax ( ) ( | ) ( | )

argmin log ( ) ( | ) ( | )

1 1 1argmin ( ) ( )
2 2 2goal obs

N i i
i

N i i
i

NK

P P g P c

P P g P c

g h

ξ

ξ

ξ

ξ ξ ξ ξ

ξ ξ ξ

ξ μ ξ ξ
Σ Σ

= ∏

= − ∏

�  = − + +� !
� "

    (24) 

where T
0( ) [h( ) h( )]Nh ξ ξ ξ= � . 

 After the above derivation, the terms in (24) can be 
viewed as ‘cost’ to be minimized. Then the problem has been 
converted to a nonlinear least squares optimization problem 

and many numerical tools are available. Linearizing the 
nonlinear obstacle cost function around the current trajectory 
ξ  as is motioned in [12] 

 ( ) ( ) H , H dhh h
d ξξ δξ ξ δξ
ξ

+ ≈ + =   (25) 

 For the nonlinear goal-region-constrained cost function 
( )Ng ξ , the linearized form around Nξ  can be expressed as: 

 ( ) ( ) G .N N N Ng gξ δξ ξ δξ+ ≈ +  (26) 
 Combined with (22), when ( ( ))pd t N ε> − , we can get  

 
( ) ( ( )) ( )( )

G
( )
p N p NN

N p N N

d f fg
f

ξ ξξ
ξ ξ ξ

∂ ∂∂
= =

∂ ∂ ∂
 (27) 

 T( ( )) ( ( ))
( ( ))

( ) ( )
p N p

p
p N p

d f d t N
D t N

f t N
ξ
ξ

∂ ∂
= =

∂ ∂
 (28) 

 
( )

( )p N
p N

N

f
J

ξ
ξ

ξ
∂

=
∂

 (29) 

where T( ( ))pD t N  is a 1* tn vector ( 2or 3tn = ) which 
represents the gradient form of the shortest distance in tn -
dimensional workspace and we have derived it in (16) and 
(19). ( )p NJ ξ is a *t qn n  position Jacobian matrix of the qn -
joint manipulator. So the gradient information for the goal-
region-constrained cost is 

 
( )

T( ( )) * ( ) ( ( ))
( )

G ( ( ))
( ( ))

p p N p
N

p
N

p

D t N J if d t N
g

if d t N
if d t N

ξ ε
ξ

ε
ξ

ε

� > −
∂ �= = = −�∂ � < −�

0.5
0

(30) 

 Finally, Equation (24) is converted to a linear least 
squares problem 

 

2 2*

2

1 1argmin ( ) G
2 2
1 ( ) H .
2

goal

obs

N NK
g

h

δξ
δξ ξ δξ μ ξ δξ

ξ δξ

Σ

Σ

�= + − + +�
�

 + + !
"

  (31) 

VI. SIMULATION EXPERIMENTS 

 In our implementation, we use the ‘constant-velocity’ GP 
prior [15] with white noise injected in acceleration, ( )w tθ =�� . 

θ��  is a qn -dimensional vector which represents the 
accelerations of each joint. Then the trajectory is generated by 
the LTV-SDE in (3) with 

 ( ) , A( ) , u( ) ,F(t) .t t t
θ

ξ
θ

 � 
 � 
 �

= = = =� 
 � 
 � 

� � � � � �

0 1 0
0

0 0 1�   (32) 

 In this case, given 1i i it t t −Δ = − , we have 

 
3 2

2

( ) / 3 / 2
(t,s) , .

/ 2
i c i c

i
i c i c

t - s t Q t Q
Q

t Q t Q

 �Δ Δ
 �Φ = = � 
� 
 Δ Δ� � � �

1 1
0 1

 (33) 

Then the inverse kernel matrix 1K −  in (8) is obtained and the 
GP prior cost in (24) can be derived as 
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2 T 1

2

1 1

1 1

1 1 ( ) ( )
2 2

1 .
2

i

K

N
i i i i

i i i Q

K

t

ξ μ ξ μ ξ μ

θ θ θ
θ θ

−

− −

= −

− = − −


 �+ Δ ⋅ −
= � 
−� �

$
�

� �

 (34) 

So applying such prior will minimize the actuator acceleration 
in configuration space and cQ  has an effect on smoothness. 
 In our experiments, we realize our algorithm based on the 
GPMP2 C++ library [10] and solve the nonlinear least squares 
optimization problem with the GTSAM C++ library [17]. We 
use the Levenberg-Marquardt algorithm (initial λ  = 0.01; 
termination condition: maximum 100 iterations, or relative 
error smaller than 410− ) in GTSAM to solve the optimization 
problem. The comparison experiments based on the sampling 
method is carried out on an open source motion planning 
platform MoveIt. All Experiments are performed on Ubuntu 
system with a 1.9-GHz Intel Core i5-4300U processor and 4 
GB of RAM. 

A. Motion Planning for 3-DOF Planar Manipulator  

         
(a)                                              (b) 

         
(c)                                              (d) 

Fig. 4: The image (a) shows the given start and goal configurations and image 
(b) shows the initial constant-velocity straight line trajectory. The optimized 
trajectories with single goal and goal region are shown in image (c) and (d). 

 The first scenario we describe is to plan an obstacle-
avoidance trajectory that moves the 3-DOF manipulator from 
the initial configuration to the yellow goal region in Fig. 4 (a). 
The algorithm is initialized by a constant-velocity straight line 
trajectory in configuration space as shown in Fig. 4 (b). 
Comparing the optimized trajectories in Fig. 4 (c) and (d), our 
algorithm can obtain a better goal configuration apparently 
through an optimized approach as shown in Fig. 4 (d). 
 In order to prove the superiority of our proposed 
algorithm, we randomly selected 23 goal positions in the goal 
region and obtained the corresponding valid goal 
configurations through Inverse Kinematics (IK) solution. The 
smoothness cost was set to 1cQ =  and the obstacle cost was 
set to 0.1obsσ = . We gave a strong constraint for the goal 
region with 0.05goalσ =  and the safety distance was set to 

0.1ε = . Then, we ran both the single goal and goal region 

algorithms based on GPMP2. The comparative experimental 
performance data is shown in Table I and all data is averaged. 
The trajectory cost includes the GP prior cost and obstacle 
cost in (25). It embodies the smoothness of the planning 
trajectory and the ability to avoid obstacles. 

TABLE I 
THE COMPARATIVE EXPERIMENTAL PERFORMANCE DATA (AVERAGED) 
 Success 

Rate (%) 
Trajectory 

Cost 
Iterative 
Times 

Planning 
Time (s) 

Single 
Goal 91.3 4.819 21.5 0.0329 

Goal 
Region 100 1.707 34.9 0.0558 

 From the data in Table I we can surmise that the choice of 
goal configuration heavily influences the quality of the 
trajectory planned by GPMP2. Compared to the single-goal 
algorithm, the trajectory generated by our algorithm is 
significantly improved in quality and the cost has been reduced 
by 64.6% on average. Meanwhile, we experimented with the 
23 randomly sampled target configurations. The single-goal 
algorithm failed twice and all of the trajectories generated by 
our algorithm are collision free and eventually fall into the 
goal region. So overall, the success rate will also increase. 
However, due to the need to optimize the goal configuration in 
goal region, our algorithm requires more iterative times when 
the initial given goal configuration is farther away from the 
final optimized goal configuration. Therefore, the planning 
time will increase compared to the original algorithm, but the 
difference is small and it is within tens of milliseconds. 

B. Motion Planning for 7-DOF WAM Manipulator  

            
(a)                                           (b) 

          
 (c)                                              (d) 

Fig. 5: The image (a) shows the initial state of the manipulator and the goal 
region is the yellow transparent area. The image (b) shows the trajectory 

generated by IKBiRRT. The end-effector trajectory planned by GPMP2 with 
single goal and goal region are the green lines in (c) and (d).  

 We also carried out simulation experiments on the 7-DOF 
WAW manipulator and the task is to throw the objects on the 
cabinet into the recycling bin as shown in Fig. 5 (a). In actual 
applications, by laser or depth camera, the outline and the 
position information of the recycling bin can be obtained and 
then determine the goal region. Here the recycling bin model is 
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built in the STL format and we obtained its outline information 
through the slicing technique. Then the goal region is 
simplified into a cylindrical area as shown in the yellow 
transparent area of Fig. 5 (a). Here we set the smoothness cost 

1cQ = and obstacle cost 0.02obsσ = . Then we still gave a 
strong constraint for the goal region with 0.005goalσ = . For 
the single goal and goal region algorithms based on GPMP2, 
we randomly sampled 19 valid goal configurations and the 
initialized trajectory is a straight line with constant velocity in 
configuration space. Meanwhile, we constructed the same 
simulation environment on MoveIt as shown in Fig. 5 (b) and 
performed 50 experiments using the IKBiRRT algorithm [14] 
for the same task. The parameter sampleP  in IKBiRRT is set to 
0.3. The planning time of IKBiRRT includes two parts: path 
planning and post-processing. 

TABLE II 
THE PERFORMANCE DATA FOR WAM MANIPULATOR 

 IKBiRRT GPMP2_Single
Goal 

GPMP2_Goal
Region 

Trajectory Cost - 1428.35 1004.94 

Avg Time (s) 1.304 0.143 0.163 

Max Time (s) 2.312 0.281 0.264 

  As shown in Table II, the planning time of GPMP2 is 
much lower than IKBiRRT and the planning speed has 
increased by 87.5%. Compared to setting single goal 
configuration in GPMP2, our proposed algorithm is slightly 
increased in planning time, but the cost of the planned 
trajectory has been significantly reduced by 30%. In general, 
the trajectory optimization approach is far superior to 
sampling-based approach in planning speed. For the planning 
problems with goal region, different from IKBiRRT which 
randomly samples in the goal region, we take the goal region 
constraint as an optimization objective. Then the planner can 
find an optimized goal configuration and plan a smoother 
obstacle avoidance trajectory. 

V.  CONCLUSION 

 Motion planning problems with workspace goal region are 
very common in manipulator applications. Different from the 
original algorithms all of which are based on RRT planner, we 
use the trajectory optimization method and make 
improvements on the basis of GPMP2. Especially for irregular 
goal region, we construct a goal region distance field in 
workspace and derive the closest distance from the end 
effector to the goal region and its differential form. Then we 
take the goal region constraint as an optimization goal and 
define a goal-region-constrained likelihood which specifies the 
probability that the position of end-effector is within goal 
region. Combined with the original GP prior and obstacle 
avoidance likelihood, we convert the planning problem into a 
nonlinear least squares optimization problem and use the 
Levenberg-Marquardt algorithm to solve it. We performed 

multiple simulation experiments on a 3-DOF planar robot and 
a 7-DOF WAM manipulator respectively. The experimental 
results show that our proposed algorithm is far superior to the 
original sampling-based method in planning speed. 
Meanwhile, compared to randomly given a valid goal 
configuration within goal region, our planner can find an 
optimized goal configuration and plan a smoother obstacle 
avoidance trajectory. The future work includes implementation 
of the proposed algorithm to a physical industrial manipulator 
and determination of the goal region by laser or depth camera. 
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