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Abstract: In recent years, with the increasingly complex robot application environments, the research of robotic autonomous
obstacle avoidance motion planning is one of the key technologies to improve its intelligence. In this paper, we present an
improved algorithm based on Rapidly-exploring Random Tree (RRT) algorithm, which is called Probability Adaptive RRT
(PARRT). We analyze the defects of the original algorithm in detail from the perspective of Voronoi diagram. For some
complicated occasions, especially when the robot is surrounded by obstacles, the efficiency of the original algorithm will be
greatly reduced. For this problem, we proposed an expansion probability adaptive method. By dynamically adjusting the
extending probability of nodes near obstacles, the invalid node expansion is reduced effectively and the planning speed is greatly
improved. Finally, we experiment in both two-dimensional space and the joint space of manipulators. The planning results show

the improved effect of the proposed algorithm.
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1 Introduction

The traditional path planning algorithms include artificial

potential field method [1], D*-search algorithm [2] and so on.

Because of the need to establish a complete configuration
space model of obstacles, the computational complexity will
increase exponentially with the increase of the configuration
space dimension. Especially for the artificial potential field
method, in [3], a multi-point potential field (MPPF) method
is proposed for real-time obstacle avoidance. However, it
will easily fall into local extremum. Some intelligent
algorithms have also been applied to robot motion planning.
For example, genetic algorithm has been used in [4] which
could plan a high smooth and time-optimal trajectory for
manipulators. Long calculation time is the biggest flaw for
such algorithms. Sampling-based motion planning is
essentially different. The obstacle information can be
obtained by sampling the configuration space with a
collision detector [S] and there is no need to establish a
complete obstacle model in configuration space.
Sampling-based planning algorithms are usually divided
into two contexts: single-query planning and multiple-query
planning. The multiple-query planner is represented by
Probabilistic Roadmap (PRM) planner [6], and the map
information needs to be preprocessed and stored in a specific
data structure. The single-query planner is represented by
Rapidly-exploring Random Tree (RRT) planner [7, 8] and
there is no need for preprocessing. It is suitable for solving
the problem of redundant path planning with kinematic and
dynamic constraints in complex environment. But the
algorithm itself still has some shortcomings. For robots with
differential constraints in high-dimensional configuration
space, Lavalle et al. proposed a control-based RRT
algorithm (Kinodynamic RRT) [9]. They applied robot
kinematics to path generation and generated an effective
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motion trajectory directly. In order to improve search
efficiency, the RRT-connect algorithm is developed in [10],
where two trees are generated in parallel from the initial state
and the target state. Then in order to improve the quality of
the generated path, the heuristically-guided RRT (hRRT) has
been proposed in [11]. The cost value for each state point in
the C-space should be set and the heuristic searching is
aimed at the minimum cumulative cost. Then in [12], the
Transition-based RRT planner (T-RRT) is proposed, which
is designed to combine the rapid exploration properties of
RRT with stochastic global optimization methods. In order
to obtain the asymptotic optimality, Karaman et al. proposed
RRT* algorithm [13], which introduced an optimization
structure based on the RRT algorithm. When a new node is
added to the tree, it will optimize the structure of the tree to
ensure that the path from the initial node to the arbitrary node
is optimal in the current tree. As the iteration continues, the
final path tends to be optimal. For special applications such
as complex environments with narrow channels, RRT
algorithms based on obstacle boundaries [14], and RRT
algorithms which are biased to narrow spaces [15, 16] have
been proposed.

The RRT planner is essentially a random search algorithm,
and is lack of the ability to adjust the sampling domain of
nodes. In some cases, especially when the robot is
surrounded by obstacles, the sampling domain is not well
suitable for the problem. To solve it, an improved algorithm
called Dynamic-Domain RRTs have been proposed in [17].
The method is to limit the sampling domain of the nodes near
obstacles and set it to a circle or a sphere with a specific
radius. However the radius is the same for every nodes near
obstacles, it is not conducive to the expansion of effective
boundary nodes. Based on the basic RRT algorithm, this
paper proposes a method to dynamically adjust the extending
probability of boundary nodes and has applied it to the basic
RRT and RRT-Connect algorithm.

The paper is organized as follows. Firstly, we introduce
the concept of Voronoi region and present the problem we
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plan to solve in Section 2. The Section 3 is divided into two
parts. The first part mainly elaborates the improved
algorithm, including the principle of algorithm. Then a
simple proof of probability completeness of the proposed
improved algorithm is given in the second part. In Section 4,
we experimented in both two-dimensional space and the
joint space of manipulator. The planning results show the
improved effect of the proposed algorithm. Finally,
conclusions and some improved ideas are outlined in Section
5.

2 Preliminary Material

2.1 Voronoi Diagram and Motivating Example

(a) (b) ©

Fig. 1: This is the Voronoi diagram of the nodes in random tree.
The image (a) is a situation without obstacles. The image (b) and (c)
have different environment sizes and the red area in them is
obstacles.

The Voronoi diagram consists of many continuous
polygons which are composed of vertical bisectors for two
adjacent dots. The characterization of Voronoi diagram is
that for any point within the polygon, the distance from the
point to the sample point of corresponding polygon is closest,
and each polygon only contains one sample point. In Fig.
1(a), the point A is the sample point for the yellow area
polygon and the yellow area is its Voronoi region. If a
random node falls into the yellow area, node A will be
expanded. So the area of Voronoi region determines the
probability that a node can be chosen for an extension. For
the basic RRT algorithm, only the node in the tree that is
closest to the random node can be selected for expansion. So
each node in the random tree 7 has a corresponding Voronoi
region. The probability that a node can be chosen for
extension depends on the area size of its Voronoi region. In
Fig. 1(b), the red area is the obstacles. Before discussion, we
give some key definitions.

Definition 1: Given a C-space with obstacles and a
random tree, define the boundary node as a node which has
been failed to extend at least one time because of the
obstacles (e.g. the node A in Fig. 1(b)).

Definition 2: The invalid region of a boundary node is
the area belonging to the Voronoi region of the boundary
node. When a random node falls into the invalid region, the
corresponding boundary node cannot be extended because
of obstacles (e.g. the blue area in Fig. 1(b)).

Definition 3: Different from the invalid region, the
visibility region of a boundary node is the area where when a
random node falls into, the corresponding boundary node
can be extended (e.g. the yellow area in Fig. 1(b)).

In Fig. 1(b), the task is to move the robot outside the
obstruction of obstacles. It is obvious that most of the points
around the obstacles have a larger area of Voronoi region.
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However because of the existence of the obstacles, the
extension for boundary nodes is often invalid. Take point A
as an example, it is clear that the invalid region occupies the
vast majority of the sampling area. When random nodes fall
into the invalid region, they will consume a lot of invalid
collision detection time.

It will be worse when the sampling region is enlarged in
Fig. 1(c). The area of Voronoi region for the points around
the obstacles becomes larger and the points near the opening
have a smaller probability of being selected for extension.
Meanwhile, the size and position of the obstacles are the
same, so only the invalid area is expanded for the boundary
nodes .These make the problem worse. To solve the problem,
we propose a method to dynamically adjust the extending
probability of boundary nodes. It will be described in detail
in the next section.

2.2 Problem Formulation

Let C be an n-dimensional configuration space and n will
be six for 6-DOF arm robot system. Let C , be the set of

obs

obstacles in the space. Correspondingly, C\C,, will be the

obstacle-free space which is called C,,, . Let ¢

be two elements of C,,,

and goal state respectively.
Problem: For an arm robot, given a n-dimensional
configuration space C , an obstacle space C, —C , an

firee init and qg{)al

and they represent the initial state

initial state g¢,, €C,, , and a goal state ¢, €C

free

in

init

compute a continuous path o from ¢, to g

init goal

Cj..(0c=C,,), especially for the environment where the

sampling domain is not well suitable .
3 Algorithm Description

In this section, it will be divided into two parts to present.
Firstly, an improved algorithm based on the basic RRT will
be proposed to solve the problem which is raised above.
Then, a simple proof of probability completeness of the
proposed improved algorithm is given.

Considering the intuition of narration, we explain the
algorithm in two-dimensional space. The principle of the
algorithm is also suitable for the high-dimensional
configuration space of arm robots.

3.1 Main Algorithm

The pseudocode of Probability Adaptive RRT algorithm
is shown in Fig. 2. Compared to the basic RRT algorithm, we
have added statistics on the number of successes and failures
of node expansion. When the parameter nFail is not zero
for a node, this means the closest distance between the node
to obstacles is less than e . Then we call this node boundary
node. In general, boundary nodes have their Voronoi region
growing together with the size of the environment (e.g. the
boundary nodes in Fig. 1(c)) and they will introduce a large
number of invalid extensions. The process of node extension
is very time consuming, the reasons are as following. First, it
needs to interpolate between ¢, andg . Then, collision

detection is required for each interpolation point. Finally, for
the arm robot, forward kinematics together with
interpolation should be performed.

new
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Algorithm 1 Probability Adaptive RRT(ginie, K&, €)

1 Tinit(ginit)

2: fori=1to K do
3

4

repeat
Grand — RANDOM STATE()
5 (near & NEAREST _NEIGHBOR(qrang, T)
6:  until Domain_Checking(T, ¢uear)
T Gnew — NEW_STATE(qrand: Gnew €)
8 if CollisionFreePath(quew, Qnear) then

9: T.Add_Node(gnew)

10: T.Add_Edge(qnear qnew)

11: (near-NSUCCESS = (peqr nSuccess +1
12:  else

13: near - nF il = qreqr.nFail +1

14:  end if

15: end for

Fig. 2: The pseudocode of Probability Adaptive RRT algorithm.

In order to reduce the invalid expansion, we add the
judgment function Domain Checking. Only when the output
of the function Domain Checking is true, the program will
jump out of the loop to extend a new node.

3.2 Domain Checking

Algorithm 2 Domain Checking(T, qnear)

1: (nSuccess, nFail, h, choose Fail )+
GetCurrent Para(T, qnear)

2. = nlal

2 P = n.F"«IH+n.‘jttr:r:lrm.».-+|

3 ID-_J = e ™)

4: P = 1 ¥ P2

5. if Rand(0,1) > P then

6: h=h=a«a
7:  return true

8: else

9. if chooseFail > Failmaxr then
10: h=h/a

11: chooseFail =0

12:  else

13: chooseFail = chooseFail + 1
14:  end if

15:  return false

16: end if

Fig. 3: The pseudocode of function Domain Checking.

The function Domain Checking is presented in Algorithm
2. Here we use a method similar to Monte Carlo method. The
probability B, is the main factor that the corresponding node

in the tree is denied expansion and it is defined as:

_ nFail
' nFail + nSuccess +1

M

Where nSuccess represents the number of times the
current node ¢, has been successfully expanded and
nFail represents the number of failures. Some cases are
presented as following:
® When g is not boundary node, nFail will be zero.

Then, the probability £, will be zero. So ¢, will always

near

be allowed to extend.
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® When g, is a boundary node, for the case where the

invalid region of the node is much larger than visibility
region (e.g. the node A in Fig. 1(c)), the parameter
nSuccess may be small or even 0. With the increase of the

parameter nFail , the probability P, will gradually
increase from 0 to 1/2, 2/3, etc. B, will approach to 1

finally. So ¢, will have a small probability to be

expanded.
In general, with the increase in the number of sampling,
B, will gradually approach to a ratio @ which is defined as:

S

= invalid region (2)

Voronoi region

Where S,

invalid region

represents the area of invalid sampling

region and S, represents the total sampling area of

Voronoi region

current node g

near *

o
©

probability P2
° o
N ®

™~

o
o

2 4 6 8
variable h

(@ (b)

Fig. 4: The image (a) lists a situation where a boundary node is a
necessary node for the problem, and the image (b) shows the
relationship between the auxiliary probability and the parameter h.

Considering some situations with narrow channels, as is
shown in Fig. 4(a), the node B at the narrow exit is a
boundary node. The yellow area is visibility region and the
blue area is invalid. Obviously the ratio @ for node B is
very large, so the probability A, will gradually increase. In
order to avoid the situation that robot cannot pass through the
narrow channel, we add an auxiliary probability P, . It is

defined as:

1

P =
I+e™”

2

3

In equation (3), the parameter / is a variable greater than
0. As is shown in Fig. 4(b), with the increase of parameter h,
the auxiliary probability P, will approach to 1. When h
decreases to 0, the probability P, becomes 0.5. At the
initialization, h is set to a large value in order to reduce the
probability of extension for boundary nodes. Then, during
the exploration, the number chooseFail of the boundary
node will increase when the node is failed to be selected for
extension. When the number reaches a maximal
number Failmax , the parameter # will be divided by a
given factor o . Each time the boundary node is succeed to
be selected for extension, the parameter 4 is multiplied by
the same factor « . The auxiliary probability can effectively
improve the fault tolerance of the algorithm and ensure the
probability completeness.
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3.3 Probabilistic Completeness

The probabilistic completeness for the basic RRT planner
has been confirmed in the section 4 of [6]. The new
algorithm presented above is based on the basic RRT planner,
and it is also a probabilistically complete planner. This
property is directly inherited from the basic RRT planner.
The only difference is that in the new algorithm, the
probability that a node is extended is dynamically adjusted
because of the function Domain checking. However, for both
the main probability F, and the auxiliary probability P, , the

values of them are always between 0 and 1 strictly. So the
probability of success for function Domain Checking is
strictly positive. The same as basic RRT planner, the new
planner will converge to an entire coverage of the reachable
free configuration space.

4 Experimental Results

We have implemented our algorithm in C++ and
incorporated it into an open source movement planning
platform Open Motion Planning Library (OMPL) in Movelt
which is based on ROS. All simulations are run on a personal
computer with 3.7 GHz Intel CPU and 8 GB memory under
the Windows 7 operating system.

In order to prove the validity and versatility of the
algorithm, we have experimented in both 2D space and arm
robot space. Some given parameters shown in Table 1 are the
same for both occasions. We apply our method not only to
the basic RRT planner but also to the RRT-Connect planner.
So, PARRT and PARRT-Connect represent the probability
adaptive algorithm based on RRT and RRT-Connect
respectively. For each of the experiments, we show the
running times, the number of nodes in the final path and the
number of times the collision detection is requested during
the searching process.

Table 1: The given parameter of the improved algorithm for

simulation
Given parameter K o h(init) | Failmax
Value 50000 2 1024 10
4.1 Simulation in 2D Space
|
(6] 2 A3)

Fig. 5: The goal is to move a point robot out of the trap, and
different environment sizes are shown in (1), (2) and (3).

In order to reflect the effectiveness of the algorithm, we
experiment in different sizes of the environment which is
shown in Fig. 5. The red point is initial node and the green is
target node. The sides of the environment in Fig. 5(1) (2) and

(3) are 160, 300 and 600, respectively. Experiments for each
algorithm in each environment have been carried out 100
times. The step length for each experiment is 4 and the
probability of target bias for RRT and PARRT planner is
0.05.

Table 2: The results for different environment sizes

Our
Basic Our RRT- method
RRT method C " for
for RRT OMmeet RRT-Co
nnect
time(1) 2.896 s 2.039 s 1.295s 1.065 s
num.nodes 48 49 5] 50
€Y
num.cd(1) 1649 1198 735 543
time(2) 3.566 s 1.027 s 2.367 s 1.338 s
num.nodes
50 50 54 57
2
num.cd(2) 2119 510 1287 753
time(3) 7.302 s 1.962 s 6.341 s 2.058 s
num.nodes
52 49 53 56
3
num.cd(3) 4660 920 3120 1043

In Table 2, the numbers (1) (2) and (3) denote the
experimental results in three different environments. In
comparison, we can get the following conclusions. First, the
number of nodes in the final path for different algorithm
varies little. Then, compared to the basic RRT planner, the
RRT-Connect algorithm has a better performance. Last, due
to the reduction in the number of collision detection, the
probability adaptive algorithms have less running time than
the old algorithms and the effect is more obvious with the
increase of the environment size.

o, O

Fig. 6: The goal is to move a point robot from the red point to the
green point. The left image is planned by basic RRT algorithm and
the right is planned by the proposed PARRT algorithm.

Table 3: The performance data for different algorithms

Time Num. num.c Tree
/s nodes d size
Basic RRT 0.48 42 279 148
PARRT 0.444 41 255 176
RRT- 0.267 39 136 68
Connect
PARRT- 0.221 41 130 84
Connect
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Considering path planning in narrow obstacle
environment, there are many boundary nodes and the
planned path must pass through most of them. In order to
avoid the expansion probability of some necessary boundary
points being too low, we introduce an auxiliary probability as
mentioned in the section 3.2. Compared with the basic RRT
algorithm, the proposed algorithm only increases the time of
probability judgment and it is rarely negligible compared
with the time-consuming of collision detection. Now we add
an experiment to prove it.

For a typical labyrinth environment, the path planned by
the proposed algorithm is not much different from that of the
basic RRT algorithm as shown in Figure 6. We have
performed 100 tests on each algorithm and the average
performance data is shown in Table 3. Compared with the
basic RRT algorithm, the proposed improved algorithm has
little difference in the performance data under the narrow
obstacle environment. No matter the planning time or the
number of collision detections, there is little difference.
Therefore, this mechanism of probability adaptation does not
adversely affect path planning in a narrow obstacle
environment.

At the same time, we found an important phenomenon that
with fewer collision detection times, the improved algorithm
can extend more nodes in the rapidly-exploring random tree
as shown in the last column of Table 3. Whether for RRT or
RRT-Connect, the probabilistic adaptive approach extends
more nodes in the tree. This means the proposed
probabilistic adaptive algorithm is faster for the exploration
of obstacle-free space C,,, compared to the basic RRT

free

algorithm.

4.2 Simulation in Arm Robot Space

Table 3: The constraints of each joint

1 12 13 14 J5 16
] -2.967 | 2,094 | -2.182 | -4.712 | -2.094 | -6.283

(rad) | -2:967 | 2.094 | 2.705 | 4.712 | ,2.094 | ,6.283

¢ (r)a‘ﬂ 07 | 07 | 07 | 04 | 07 | 07
S

O@ad | o7 | 07 | 07 | 05 | 07 | 07
s2)

In order to make the simulation model more real, we use
the Japanese DENSO robot as a simulation object. It is an
arm robot with six joints. Table 3 shows several constraints
of robot joints including the joint movement range, the
maximum joint angle speed and the maximum joint angle
acceleration.

In Fig. 7(1), we build a simulation environment in Movelt
using the URDF file of DENSO robot and then add some
obstacles. The task is to take something from the green shelf
as is shown in Fig. 7(2). We have added the new algorithms
PARRT and PARRT-Connect to the OMPL framework.
Considering the existence of obstacles, the excess step size
will reduce the success rate of the motion planning. So we set
the step size to 1 and the probability of target bias for RRT
and PARRT planner is 0.05. In high-dimensional space,
collision detection is very challenging, so we use an open

source library called Flexible Collision Library (FCL) [18]
which is supported by OMPL.

Fig. 7: The task is to take something from the green shelf. The
left image shows the initial pose and goal pose for the problem and
the right shows the motion process.

Table 4: The results for different algorithms

Basic RRT- PARRT-
RRT PARRT Connect Connect
T /ms 105.5 61.2 96.6 49.5
fum. 21 18 24 21
nodes
num.cd 1242 722 1068 572

Compared with the original algorithms, the specific
experimental results are shown in Table 4. It is clear that the
probability adaptive algorithm can effectively reduce the
planning time. Compared to the basic RRT algorithm, the
proposed PARRT algorithm reduces the planning time by
nearly 42 percent for the current special environment.

There is something we need to explain. The time for
collision detection in 4.1 is longer. The reason is that the
algorithm for collision detection in 4.1 is written by
ourselves and here we use the mature collision detection
library FCL directly. So the efficiency in 4.1 is relatively
lower.

q/rad

25 08
smooth path
2 —line path 0.6
04
L5 2
=02
I
o, £
= é\ 0
= 2
05 T'>) -0.2
-0.4
0
-0.6
.. -0.8
05 2 4 6 8 10 1. 0 2 4 6 8 10 12
/s t(s)

Fig. 8: This is the results of post processing. Different stages of
post-processing are represented in image (1) (2) and (3).
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The currently obtained path is only a series of polylines
for each joint without any time information. In order to
facilitate simulation verification and achieve stable control
of the robot, the path needs to be post-processed, including
path pruning and path smoothing.

Fig. 8(1) shows the path generated by PARRT in joint
space and it has 27 nodes. Fig. 8(2) shows the path after
pruning with only four nodes left. Fig. 8(3) and (4) show the
trajectories and velocity curves of the robot's sixth joint after
smoothing. The trajectories have been planned to meet the
following three requirements as much as possible.
® Continuous speed planning. By interpolating parabolic

blends near the inflection points, it can achieve a

continuous speed planning of each joint alone the path (e.g.

Fig. 8(4)).

® Short running time as far as possible. The maximum speed
and acceleration which are shown in Table 3 are used as
reasonable as possible during each time period.

® Free of collision. To keep the path free of collision, we use
the method of combining parabola and linear polynomial
to make the path consistent with the original polyline path
as much as possible as is shown in Fig. 8(3).

5 Conclusion

In this paper, we have considered the influence of obstacle
distribution on RRT algorithm from the perspective of
Voronoi region. For some occasions, especially when robots
are surrounded by obstacles, the sampling region is
inappropriately to be chosen. Then we proposed an
expansion probability adaptive method. By dynamically
adjusting the expansion probability of the boundary nodes in
the sampling process, the invalid expansion of the boundary
nodes is effectively reduced, and the planning speed is
greatly improved. Finally, our experimental results show that
the path generated by our method is free of obstacles and can
be applied to arm robot successfully.

There are several directions to improve the current work.
First, the algorithm proposed in this paper can greatly
improve the search efficiency for special occasions, but the
path generated by the algorithm is not necessarily the best
path. Then, to keep the path free of collision as much as
possible, we adopt the method of combining parabola and
linear polynomial. It could not guarantee the continuity of
the joint acceleration.
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