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Abstract

Virtual reality, augmented reality, robotics, and autonomous driving, have recently attracted much attention from
both academic and industrial communities, in which image-based camera localization is a key task. However, there
has not been a complete review on image-based camera localization. It is urgent to map this topic to enable
individuals enter the field quickly. In this paper, an overview of image-based camera localization is presented. A
new and complete classification of image-based camera localization approaches is provided and the related
techniques are introduced. Trends for future development are also discussed. This will be useful not only to
researchers, but also to engineers and other individuals interested in this field.
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Background
Recently, virtual reality, augmented reality, robotics, au-
tonomous driving etc., in which image-based camera
localization is a key task, have attracted much attention
from both academic and industrial community. It is ur-
gent to provide an overview of image-based camera
localization.
The sensors used for image-based camera localization

are cameras. Many types of three-dimensional (3D) cam-
eras have been developed recently. This study considers
two-dimensional (2D) cameras. The typically used tool
for outdoor localization is GPS, which cannot be used
indoors. There are many indoor localization tools in-
cluding Lidar, Ultra Wide Band (UWB), Wireless Fidelity
(WiFi), etc.; among these, using cameras for localization
is the most flexible and low cost approach. Autonomous
localization and navigation is necessary for a moving
robot. To augment reality in images, camera pose deter-
mination or localization is needed. To view virtual envi-
ronments, the corresponding viewing angle is necessary
to be computed. Furthermore, cameras are ubiquitous
and people carry mobile phones that have cameras every
day. Therefore, image-based camera localization has
great and widespread applications.
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The image features of points, lines, conics, spheres,
and angles are used in image-based camera localization;
of these, points are most widely used. This study focuses
on points.
Image-based camera localization is a broad topic. We

attempt to cover related works and give a complete
classification for image-based camera localization ap-
proaches. However, it is not possible to cover all related
works in this paper due to length constraints. Moreover,
we cannot provide deep criticism for each cited paper
due to space limit for such an extensive topic. Further
deep reviews on some active important aspects of
image-based camera localization will be given in the fu-
ture or people interested go to read already existing sur-
veys. There have been excellent reviews on some aspects
of image-based camera localization. The most recent
ones include the following. Khan and Adnan [1] gave an
overview of ego motion estimation, where ego motion
requires time intervals between two continuous images
to be small enough. Cadena et al. [2] surveyed the current
state of simultaneous localization and mapping (SLAM)
and considered future directions, in which they reviewed
related works including robustness and scalability in
long-term mapping, metric and semantic representations
for mapping, theoretical performance guarantees, active
SLAM, and exploration. Younes et al. [3] specially
reviewed keyframe-based monocular SLAM. Piasco et al.
[4] provided a survey on visual-based localization from
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heterogeneous data, where only known environment is
considered.
Unlike these studies, this study is unique in that it first

maps the whole image-based camera localization and pro-
vides a complete classification for the topic. “Overview”
section presents an overview of image-based camera
localization and is mapped as a tree structure. “Reviews on
image-based camera localization” section introduces each
aspect of the classification. “Discussion” section presents
discussions and analyzes trends of future developments
“Conclusion” section makes a conclusion of the paper.

Overview
What is image-based camera localization? Image-based
camera localization is to compute camera poses under a
world coordinate system from images or videos captured
by the cameras. Based on whether the environment is
known beforehand or not, image-based camera localization
can be classified into two categories: one with known envir-
onment and the other with unknown environment.
Let n be the number of points used. The approach

with known environments consists of methods with 3 ≤
n < 6 and methods with n ≥ 6. These are PnP problems.
In general, the problems with 3 ≤ n < 6 are nonlinear and
those with n ≥ 6 are linear.
The approach with unknown environments can be di-

vided into methods with online and real-time environ-
ment mapping and those without online and real-time
environment mapping. The former is the commonly
known Simultaneous Localization and Mapping (SLAM)
and the latter is an intermediate procedure of the com-
monly known structure from motion (SFM). According to
different map generations, SLAM is divided into four
parts: geometric metric SLAM, learning SLAM, topo-
logical SLAM, and marker SLAM. Learning SLAM is a
new research direction recently. We think it is different
from geometric metric SLAM and topological SLAM by a
single category. Learning SLAM can obtain camera pose
and 3D map but needs a prior dataset to train the net-
work. The performance of learning SLAM depends on the
used dataset to a great extent and it has low generalization
capability. Therefore, learning SLAM is not as flexible as
geometric metric SLAM and its obtained 3D map outside
the used dataset is not as accurate as geometric metric
SLAM most of the time. However, simultaneously,
learning SLAM has a 3D map other than topology repre-
sentations. Marker SLAM computes camera poses from
known structured markers without knowing the complete
environment. Geometric metric SLAM consists of mon-
ocular SLAM, multiocular SLAM, and multi-kind sensor
SLAM. Moreover, geometric metric SLAM can be classi-
fied into filter-based SLAM and keyframe-based SLAM.
Keyframe-based SLAM can be further divided into
feature-based SLAM and direct SLAM. Multi-kind sensors
SLAM can be divided into loosely coupled SLAM and
closely coupled SLAM. These classifications of image-based
camera localization methods are visualized as a logical tree
structure, as shown in Fig. 1, where current active topics are
indicated with bold borders. We think that these topics are
camera localization from large data, learning SLAM,
keyframe-based SLAM, and multi-kind sensors SLAM.
Reviews on image-based camera localization
Known environments
Camera pose determination from known 3D space
points is called the perspective-n-point problem, namely,
the PnP problem. When n = 1,2, there are no solutions
for PnP problems because they are under constraints.
When n ≥ 6, PnP problems are linear. When n = 3, 4, 5,
the original equations of PnP problems are usually non-
linear. The PnP problem dated from 1841 to 1903.
Grunert [5], Finsterwalder to Scheufele [6] concluded that
the P3P problem has at most four solutions and the P4P
problem has a unique solution in general. The PnP prob-
lem is also the key relocalization for SLAM.
PnP problems with n = 3, 4, 5
The methods to solve PnP problems with n = 3, 4, 5
focus on two aspects. One aspect studies the solution
numbers or multisolution geometric configuration of the
nonlinear problems. The other aspect studies elimina-
tions or other solving methods for camera poses.
The methods that focus on the first aspect are as fol-

lows. Grunert [5], Finsterwalder and Scheufele [6]
pointed out that P3P has up to four solutions and P4P
has a unique solution. Fischler and Bolles [7] studied
P3P for RANSAC of PnP and found that four solutions
of P3P are attainable. Wolfe et al. [8] showed that P3P
mostly has two solutions; they determined the two solu-
tions and provided the geometric explanations that P3P
can have two, three, or four solutions. Hu and Wu [9]
defined distance-based and transformation-based P4P prob-
lems. They found that the two defined P4P problems are
not equivalent; they found that the transformation-based
problem has up to four solutions and distance-based prob-
lem has up to five solutions. Zhang and Hu [10] provided
sufficient and necessary conditions in which P3P has four
solutions. Wu and Hu [11] proved that distance-based prob-
lems are equivalent to rotation-transformation-based prob-
lems for P3P and distance-based problems are equivalent to
orthogonal-transformation-based problems for P4P/P5P. In
addition, they showed that for any three non-collinear
points, the optical center can always be found such that the
P3P problem formed by these three control points and the
optical center will have four solutions, which is its upper
bound. Additionally, a geometric approach is provided to
construct these four solutions. Vynnycky and Kanev [12]



Fig. 1 Overview of image-based camera localization
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studied the multisolution probabilities of the equilateral P3P
problem.
The methods that focus on the second aspect of PnP

problems with n = 3, 4, 5 are as follows. Horaud et al.
[13] described an elimination method for the P4P prob-
lem to obtain a unitary quartic equation. Haralick et al.
[14] reviewed six methods for the P3P problem, which
are [5–7, 15–17]. Dementhon and Davis [18] presented
a solution of the P3P problem by an inquiry table of
quasi-perspective imaging. Quan and Lan [19] linearly
solved the P4P and P5P problems. Gao et al. [20] used
Wu’s elimination method to obtain complete solutions
of the P3P problem. Wu and Hu [10] introduced a
depth-ratio-based approach to represent the solutions of
the complete PnP problem. Josephson and Byrod [21]
used Grobner bases method to solve the P4P problem
for radial distortion of camera with unknown focal
length. Hesch et al. [22] studied nonlinear square solu-
tions of PnP with n >= 3. Kneip et al. [23] directly solved
the rotation and translation solutions of the P3P prob-
lem. Kneip et al. [24] presented a unified PnP solution
that can deal with generalized cameras and multisolu-
tions with global optimizations and linear complexity.
Kuang and Astrom [25] studied the PnP problem with
unknown focal length using points and lines. Z. Kuke-
lova et al. [26] studied the PnP problem with unknown
focal length for images with radial distortion. Ventura
et al. [27] presented a minimal solution to the general-
ized pose-and-scale problem. Zheng et al. [28] intro-
duced an angle constraint and derived a compact
bivariate polynomial equation for each P3P and then
proposed a general method for the PnP problem with
unknown focal length using iterations. Later, Zheng and
Kneip [29] improved their work without requiring point
order and iterations. Wu [30] studied PnP solutions with
unknown focal length and n = 3.5. Albl et al. [31] studied
the pose solution of a rolling shutter camera and im-
proved the result later in 2016.

PnP problems with n ≥ 6
When n> = 6, PnP problems are linear and studies on
them focus on two aspects. One aspect studies efficient
optimizations for camera poses from smaller number of
points. The other aspect studies fast camera localization
from large data.
The studies on the first aspect are as follows. Lu et al.

[32] gave a global convergence algorithm using collinear
points. Schweighofer and Pinz [33] studied multisolu-
tions of a planar target. Wu et al. [34] presented invari-
ant relationships between scenes and images, and then a
robust RANSAC PNP using the invariants. Lepetit et al.
[35] provided an accurate O(n) solution to the PnP
problem, called EPnP, which is widely used today. The
pose problem of a rolling shutter camera was studied in
[36] with bundle adjustments. A similar problem was
also studied in [37] using B-spline covariance matrix.
Zheng et al. [38] used quaternion and Grobner bases to
provide a global optimized solution of the PnP problem.
A very fast solution to the PnP Problem with algebraic out-
lier rejection was given in [39]. Svarm et al. [40] studied
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accurate localization and pose estimation for large 3D
models considering gravitational direction. Ozyesil et al.
[41] provided robust camera location estimation by
convex programming. Brachmann et al. [42] showed
uncertainty-driven 6D pose estimation of objects and
scenes from a single RGB image. Feng et al. [43] pro-
posed a hand-eye calibration-free strategy to actively
relocate a camera in the same 6D pose by sequentially
correcting relative 3D rotation and translation. Nakano
[44] solved three kinds of PnP problems by the Grobner
method: PnP problem for calibrated camera, PnPf prob-
lem for cameras with unknown focal length, PnPfr
problem for cameras with unknown focal length and
unknown radial distortions.
The studies on the second aspect that focus on fast cam-

era localization from large data are as follows. Arth et al.
[45, 46] presented real-time camera localizations for mobile
phones. Sattler et al. [47] derived a direct matching frame-
work based on visual vocabulary quantization and a priori-
tized correspondence search with known large-scale 3D
models of urban scenes. Later, they improved the method
by active correspondence search in [48]. Li et al. [49] de-
vised an adaptive, prioritized algorithm for matching a rep-
resentative set of SIFT features covering a large scene to a
query image for efficient localization. Later Li et al. [50]
provided a full 6-DOF-plus-intrinsic camera pose with re-
spect to a large geo-registered 3D point cloud. Lei et al.
[51] studied efficient camera localization from street views
using PCA-based point grouping. Bansal and Daniilidis [52]
proposed a purely geometric correspondence-free approach
to urban geo-localization using 3D point-ray features ex-
tracted from the digital elevation map of an urban environ-
ment. Kendall et al. [53] presented a robust and real-time
monocular 6-DOF relocalization system by training a con-
volutional neural network (CNN) to regress the 6-DOF
camera pose from a single RGB image in an end-to-end
manner. Wang et al. [54] proposed a novel approach to
localization in very large indoor spaces that takes a single
image and a floor plan of the environment as input. Zeisl
et al. [55] proposed a voting-based pose estimation strategy
that exhibits O(n) complexity in terms of the number of
matches and thus facilitates considering more number of
matches. Lu et al. [56] used a 3D model reconstructed by a
short video as the query to realize 3D-to-3D localization
under a multi-task point retrieval framework. Valentin et al.
[57] trained a regression forest to predict mixtures of
anisotropic 3D Gaussians and showed how the predicted
uncertainties can be taken into account for continu-
ous pose optimization. Straub et al. [58] proposed a
relocalization system that enables real-time, 6D pose recov-
ery for wide baselines by using binary feature descriptors
and nearest-neighbor search of locality sensitive hashing.
Feng et al. [59] achieved fast localization in large-scale
environments by using supervised indexing of binary
features, where randomized trees were constructed in a su-
pervised training process by exploiting the label informa-
tion derived from multiple features that correspond to a
common 3D point. Ventura and Höllerer [60] proposed a
system of arbitrary wide-area environments for real-time
tracking with a handheld device. The combination of a
keyframe-based monocular SLAM system and a global
localization method was presented in [61]. A book of
large-scale visual geo-localization was published in [62]. Liu
et al. [63] showed efficient global 2D-3D matching for cam-
era localization in a large-scale 3D map. Campbell [64] pre-
sented a method for globally optimal inlier set
maximization for simultaneous camera pose and feature
correspondence. Real-time SLAM relocalization with
online learning of binary feature indexing was proposed by
[65]. Wu et al. [66] proposed CNNs for camera relocaliza-
tion. Kendall and Cipolla [67] explored a number of novel
loss functions for learning camera poses, which are based
on geometry and scene reprojection error. Qin et al. [68]
developed a method of relocalization for monocular
visual-inertial SLAM. Piasco et al. [4] presented a survey on
visual-based localization from heterogeneous data. A
geometry-based point cloud reduction method for mobile
augmented reality system was presented in [69].
From above the studies for known environments, we

see that fast camera localization from large data has
attracted more and more attention. This is because there
are many applications of camera localization for large
data, for example, location-based services, relocalization
of SLAM for all types of robots, and AR navigations.

Unknown environments
Unknown environments can be reconstructed from vid-
eos in real time and online. Simultaneously, camera
poses are computed in real time and online. These are
the commonly known SLAM technologies. If unknown
environments are reconstructed from multiview images
without requiring speed and online computation, it is
the known SFM, in which solving for the camera pose is
an intermediate step and not the final aim; therefore, we
only mention few studies on SFM, and do not provide
an in-depth overview in the following. Studies on SLAM
will be introduced in detail.

SLAM
SLAM was dated from 1986 in the study [70]: “On the
representation and estimation of spatial uncertainty,”
published in the International Journal of Robotics
Research. In 1995, the acronym SLAM was then coined
in the study [71]: “Localisation of automatic guided
vehicles,” 7th International Symposium on Robotics
Research. According to different map generations, the
studies on SLAM can be divided into four categories:
geometric metric SLAM, learning SLAM, topological
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SLAM, and marker SLAM. Due to its accurate compu-
tations, geometric metric SLAM has attracted increasing
attention. Learning SLAM is a new topic gaining atten-
tion due to the development of deep learning. Studies
on pure topological SLAM are decreasing. Marker
SLAM is more accurate and stable. There is a study in
[2] that reviews recent advances of SLAM covering a
broad set of topics including robustness and scalability
in long-term mapping, metric and semantic representa-
tions for mapping, theoretical performance guarantees,
active SLAM, and exploration. In the following, we
introduce geometric metric SLAM, learning SLAM,
topological SLAM, and marker SLAM.

A. Geometric metric SLAM

Geometric metric SLAM computes 3D maps with
accurate mathematical equations. Based on the
different sensors used, geometric metric SLAM is
divided into monocular SLAM, multiocular SLAM,
and multi-kind sensors SLAM. Based on the different
techniques used, geometric metric SLAM is divided
into filter-based SLAM and keyframe-based SLAM
and also, there is another class of SLAM: grid-based
SLAM, of which minority deal with images and most
deal with laser data. Recently, there was a review on
keyframe-based monocular SLAM, which provided
in-depth analyses [3].
A.1) Monocular SLAM
A.1.1) Filter-based SLAM

One part of monocular SLAM is the filter-
based methods. The first one is the Mono-
SLAM proposed by Davison [72] based on
extended Kalman filter (EKF). Later, the work
was developed by them further in [73, 74].
Montemerlo and Thrun [75] proposed
monocular SLAM based on a particle filter.
Strasdat et al. [76, 77] discussed why filter-
based SLAM is used by comparing filter-
based and keyframe-based methods. The
conference paper in ICRA 2010 by [76]
received the best paper award, where they
pointed out that keyframe-based SLAM can
provide more accurate results. Nuchter et al.
[78] used a particle filter for SLAM to map
large 3D outdoor environments. Huang et al.
[79] addressed two key limitations of the un-
scented Kalman filter (UKF) when applied to
the SLAM problem: the cubic computational
complexity in the number of states and the
inconsistency of the state estimates. They
introduced a new sampling strategy for the
UKF, which has constant computational
complexity, and proposed a new algorithm to
ensure that the unobservable subspace of the
UKF’s linear-regression-based system model
has the same dimension as that of the nonlin-
ear SLAM system. Younes et al. [3] also stated
that filter-based SLAM was common before
2010 and most solutions thereafter designed
their systems around a non-filter, keyframe-
based architecture.
.2) Keyframe-based SLAM
The second part of monocular SLAM is the
keyframe-based methods. Keyframe-based SLAM
can be further categorized into: feature-based
methods and direct methods. a) Feature-based
SLAM: The first keyframe-based feature SLAM was
PTAM proposed in [80]. Later the method was ex-
tended to combine edges in [81] and extended to a
mobile phone platform by them in [82]. The key-
frame selections were studied in [83, 84]. SLAM++
with loop detection and object recognition was
proposed in [85]. Dynamic scene detection and
adapting RANSAC was studied by [86]. Regarding
dynamic objects, Feng et al. [87] proposed a 3D-
aided optical flow SLAM. ORB SLAM [88] can
deal with loop detection, dynamic scene detection,
monocular, binocular, and deep images. The
method of [89] can run in a large-scale environ-
ment using submap and linear program to remove
outlier. b) Direct SLAM: The second part of mon-
ocular SLAM is the direct method. Newcombe
et al. [90] proposed DTAM, the first direct SLAM,
where detailed textured dense depth maps, at se-
lected keyframes, are produced and meanwhile
camera pose is tracked at frame rate by entire
image alignment against the dense textured model.
A semi-dense visual odometry (VO) was proposed
in [91]. LSD SLAM by [92] provided a dense
SLAM suitable for large-scale environments. Pascoe
et al. [93] proposed a direct dense SLAM for road
environments for LIDAR and cameras. A semi VO
on a mobile phone was performed by [94].
A.2) Multiocular SLAM

Multiocular SLAM uses multiple cameras to
compute camera poses and 3D maps. Most of
the studies focus on binocular vision. They are
also the bases of multiocular vision.
Konolige and Agrawal [95] matched visual
frames with large numbers of point features
using classic bundle adjustment techniques but
kept only relative frame pose information. Mei
et al. [96] used local estimation of motion and
structure provided by a stereo pair to represent
the environment in terms of a sequence of
relative locations. Zou and Tan [97] studied
SLAM of multiple moving cameras in which a
global map is built. Engle et al. [98] proposed a
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novel large-scale direct SLAM algorithm for ste-
reo cameras. Pire et al. [99] proposed a stereo
SLAM system called S-PTAM that can compute
the real scale of a map and overcome the limita-
tion of PTAM for robot navigation. Moreno
et al. [100] proposed a novel approach called
sparser relative bundle adjustment (SRBA) for a
stereo SLAM system. Artal and Tardos [101] pre-
sented ORB-SLAM2 which is a complete SLAM
system for monocular, stereo, and RGB-D cameras,
with map reuse, loop closing, and relocalization
capabilities. Zhang et al. [102] presented a graph-
based stereo SLAM system using straight lines as
features. Gomez-Ojeda et al. [103] proposed PL-
SLAM, a stereo visual SLAM system that com-
bines both points and line segments to work ro-
bustly in a wider variety of scenarios, particularly
in those where point features are scarce or not
well-distributed in an image. A novel direct visual-
inertial odometry method for stereo cameras was
proposed in [104]. Wang et al. [105] proposed ste-
reo direct sparse odometry (Stereo DSO) for highly
accurate real-time visual odometry estimation of
large-scale environments from stereo cameras.
Semi-direct visual odometry (SVO) for monocular
and multi-camera systems was proposed in [106].
Sun et al. [107] proposed a stereo multi-state con-
straint Kalman filter (S-MSCKF). Compared with
multi-state constraint Kalman filter (MSCKF), S-
MSCKF exhibits significantly greater robustness.
Multiocular SLAM has higher reliability than
monocular SLAM. In general, multiocular SLAM
is preferred if hardware platforms are allowed.
A.3) Multi-kind sensors SLAM

Here, multi-kind sensors are limited to vision and
inertial measurement unit (IMU); other sensors are
not introduced here. This is because, recently,
vision and IMU fusion has attracted more attention
than others.
In robotics, there are many studies on SLAM that
combine cameras and IMU. It is common for
mobile devices to be equipped with a camera and
an inertial unit. Cameras can provide rich
information of a scene. IMU can provide self-
motion information and also provide accurate
short-term motion estimates at high frequency.
Cameras and IMU have been thought to be com-
plementary of each other. Because of universality
and complementarity of visual-inertial sensors,
visual-inertial fusion has been a very active research
topic in recent years. The main research approaches
on visual-inertial fusion can be divided into two cat-
egories, namely, loosely coupled and tightly coupled
approaches.
A.3.1) Loosely coupled SLAM
In loosely coupled systems, all sensor states
are independently estimated and optimized.
Integrated IMU data are incorporated as
independent measurements in stereo vision
optimization in [108]. Vision-only pose
estimates are used to update an EKF so that
IMU propagation can be performed [109].
An evaluation of different direct methods for
computing frame-to-frame motion estimates
of a moving sensor rig composed of an
RGB-D camera and an inertial measurement
unit is given and the pose from visual
odometry is added to the IMU optimization
frame directly in [110].

A.3.2) Tightly coupled SLAM
In tightly coupled systems, all sensor states
are jointly estimated and optimized. There
are two approaches for this, namely, filter-
based and keyframe nonlinear optimization-
based approaches.

A.3.2.a) Filter-based approach

The filter-based approach uses EKF to
propagate and update motion states of
visual-inertial sensors. MSCKF in [111] uses
an IMU to propagate the motion estimation
of a vehicle and update this motion estima-
tion by observing salient features from a
monocular camera. Li and Mourikis [112]
improved MSCKF, by proposing a real-time
EKF-based VIO algorithm, MSCKF2.0. This
algorithm can achieve consistent estimation
by ensuring correct observability properties
of its linearized system model and perform-
ing online estimation of the camera-to-
inertial measurement unit calibration pa-
rameters. Li et al. [113], Li and Mourikis
[114] implemented real-time motion track-
ing on a cellphone using inertial sensing
and a rolling-shutter camera. MSCKF algo-
rithm is the core algorithm of Google’s Pro-
ject Tango https://get.google.com/tango/.
Clement et al. [115] compared two modern
approaches: MSCKF and sliding window
filter (SWF). SWF is more accurate and less
sensitive to tuning parameters than MSCKF.
However, MSCKF is computationally
cheaper, has good consistency, and improves
accuracies because more features are
tracked. Bloesch et al. [116] presented a
monocular visual inertial odometry
algorithm by directly using pixel intensity
errors of image patches. In this algorithm,
by directly using the intensity errors as an

https://get.google.com/tango/
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innovation term, the tracking of multilevel
patch features is closely coupled to the
underlying EKF during the update step.

A.3.2.b) Keyframe nonlinear optimization-
based approach
The nonlinear optimization-based ap-
proach uses keyframe-based nonlinear
optimization, which may potentially
achieve higher accuracy due to the cap-
ability to limit linearization errors
through repeated linearization of the in-
herently nonlinear problem. Forster
et al. [117] presented a preintegration
theory that appropriately addresses the
manifold structure of the rotation
group. Moreover, it is shown that the
preintegration IMU model can be seam-
lessly integrated into a visual-inertial
pipeline under the unifying framework
of factor graphs. The method is short
for GTSAM. Leutenegger et al. [118]
presented a novel approach, OKVIS, to
tightly integrate visual measurements
with IMU measurements, where a joint
nonlinear cost function that integrates
an IMU error term with the landmark
reprojection error in a fully probabilistic
manner is optimized. Moreover, to
ensure real-time operation, old states
are marginalized to maintain a bounded-
sized optimization window. Li et al. [119]
proposed tightly coupled, optimization-
based, monocular visual-inertial state
estimation for camera localization in
complex environments. This method can
run on mobile devices with a lightweight
loop closure. Following ORB monocular
SLAM [88], a tightly coupled visual-inertial
slam system was proposed in [120].

In loosely coupled systems, it is easy to
process frame and IMU data. However,
in tightly coupled systems, to optimize
all sensor states jointly, it is difficult to
process frame and IMU data. In terms of
estimation accuracy, tightly coupled
methods are more accurate and robust
than loosely coupled methods. Tightly
coupled methods have become
increasingly popular and have attracted
great attention by researchers.
B. Learning SLAM

Learning SLAM is a new topic that gained attention
recently due to the development of deep learning.
We think it is different from geometric metric
SLAM and topological SLAM by a single category.
Learning SLAM can obtain camera pose and 3D
map but needs a prior dataset to train the network.
The performance of learning SLAM depends on the
used dataset greatly and it has low generalization
ability. Therefore, learning SLAM is not as flexible
as geometric metric SLAM and the geometric map
obtained outside the used dataset is not as accurate
as geometric metric SLAM most of the time.
However, simultaneously, learning SLAM has a 3D
map other than 2D graph representations.
Tateno et al. [121] used CNNs to predict dense
depth maps and then used keyframe-based 3D
metric direct SLAM to compute camera poses.
Ummenhofer et al. [122] trained multiple stacked
encoder-decoder networks to compute depth and
camera motion from successive, unconstrained
image pairs. Vijayanarasimhan et al. [123] proposed
a geometry-aware neural network for motion
estimation in videos. Zhou et al. [124] presented an
unsupervised learning framework for estimating
monocular depth and camera motion from video
sequences. Li et al. [125] proposed a monocular vis-
ual odometry system using unsupervised deep learn-
ing; they used stereo image pairs to recover the scales.
Clark et al. [126] presented an on-manifold sequence-
to-sequence learning approach for motion estimation
using visual and inertial sensors. Detone et al. [127]
presented a point tracking system powered by two
deep CNNs, MagicPoint and MagicWarp. Gao and
Zhang [128] presented a method for loop closure de-
tection based on the stacked denoising auto-encoder.
Araujo et al. [129] proposed a recurrent CNN-based
visual odometry approach for endoscopic capsule
robots.
Learning SLAM increases gradually these years.
However, due to lower speed and generalization
capabilities of the learning methods, using
geometric methods is still centered for practical
applications.
C. Topological SLAM

Topological SLAM does not need accurate
computation of 3D maps and represents the
environment by connectivity or topology. Kuipers
and Byun [130] used a hierarchical description of
the spatial environment, where a topological
network description mediates between a control
and metrical level; moreover, distinctive places and
paths are defined by their properties at the control
level and serve as nodes and arcs of the topological
model. Ulrich and Nourbakhsh [131] presented an
appearance-based place recognition system for
topological localization. Choset and Nagatani [132]
exploited the topology of a robot’s free space to
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localize the robot on a partially constructed map
and the topology of the environment was encoded
in a generalized Voronoi graph. Kuipers et al. [133]
described how a local perceptual map can be
analyzed to identify a local topology description and
abstracted to a topological place. Chang et al. [134]
presented a prediction-based SLAM algorithm to
predict the structure inside an unexplored region.
Blanco et al. [135] used Bayesian filtering to provide
a probabilistic estimation based on the reconstruction
of a robot path in a hybrid discrete-continuous state
space. Blanco et al. [136] presented spectral graph
partitioning techniques for the automatic generation
of sub-maps. Kawewong et al. [137] proposed
dictionary management to eliminate redundant
search for indoor loop-closure detection based on
PIRF extraction. Sünderhauf and Protzel [138]
presented a back-end formulation for SLAM using
switchable constraints to recognize and reject outliers
during loop-closure detection by making the topology
of the underlying factor graph representation. Latif
et al. [139] described a consensus-based approach for
robust place recognition to detect and remove past
incorrect loop closures to deal with the problem of
corrupt map estimates. Latif et al. [140] presented a
comparative analysis for graph SLAM, where graph
nodes are camera poses connected by odometry or
place recognition. Vallvé et al. [141] proposed two
simple algorithms for SLAM sparsification, factor
descent and non-cyclic factor descent.
As shown in some above mentioned works,
topological SLAM has been modified into metric
SLAM as loop detection these years. Studies on
pure topological SLAM are reducing.
D. Marker SLAM

We introduced studies on image-based camera
localization for both known and unknown environ-
ments above. In addition, there are some studies to
localize cameras using some prior environment
knowledge, but not a 3D map such as markers.
These works are considered to be with semi-known
environments.
In 1991, Gatrell et al. [142] designed a concentric
circular marker, which was modified with additional
color and scale information in [143]. Ring
information was considered in the marker by [144].
Kato and Billinghurst [145] presented the first
augmented reality system based on fiducial markers
known as the ARToolkit, where the marker used is
a black enclosed rectangle with simple graphics or
text. Naimark and Foxlin [146] developed a more
general marker generation method, which encodes
a bar code into a black circular region to produce
more markers. A square marker was presented by
[147]. Four circles at the corners of a square were
proposed by [148]. A black rectangle enclosed with
black and white blocks known as the ARTag was
proposed by [149, 150]. From four marker points,
Maidi et al. [151] developed a hybrid approach that
combines an iterative method based on the EKF
and an analytical method with direct resolution of
pose parameter computation. Recently, Bergamasco
et al. [152] provided a set of circular high-contrast
dots arranged in concentric layers. DeGol et al.
[153] introduced a fiducial marker, ChromaTag, and
a detection algorithm to use opponent colors to
limit and reject initial false detections and grayscale.
Munoz-Salinas et al. [154] proposed to detect key
points for the problem of mapping and localization
from a large set of squared planar markers. Eade
and Drummond [155] proposed real-time global
graph SLAM for sequences with several hundreds
of landmarks. Wu [156] studied a new marker for
camera localization that does not need matching.
SFM
In SFM, camera pose computation is only an intermediate
step. Therefore, in the following, we give a brief introduc-
tion of camera localization SFM.
In the early stages of SFM development, there were more

studies on relative pose solving. One of the useful studies is
the algorithm for five-point relative pose problem in [157],
which has less degeneracies than other relative pose solvers.
Lee et al. [158] studied relative pose estimation for a
multi-camera system with known vertical direction. Kneip
and Li [159] presented a novel solution to compute the rela-
tive pose of a generalized camera. Chatterjee and Govindu
[160] presented efficient and robust large-scale averaging of
relative 3D rotations. Ventura et al. [161] proposed an effi-
cient method for estimating the relative motion of a
multi-camera rig from a minimal set of feature correspon-
dences. Fredriksson et al. [162] estimated the relative transla-
tion between two cameras and simultaneously maximized
the number of inlier correspondences.
Global pose studies are as follows. Park et al. [163] esti-

mated the camera direction of a geotagged image using
reference images. Carlone et al. [164] surveyed techniques
for 3D rotation estimation. Jiang et al. [165] presented a
global linear method for camera pose registration. Later,
the method was improved by [166] and [167].
Recently, hybrid incremental and global SFM have

been developed. Cui et al. [168, 169], estimated rotations
by a global method and translations by an incremental
method and proposed community-based SFM. Zhu et al.
[170] presented parallel SFM from local increment to
global averaging.
A recent survey on SFM is presented in [171]. In

addition, there are some studies on learning depth from
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a single image. From binoculars, usually disparity maps
are learnt. Please refer to the related works ranked in
the website of KITTI dataset.
Discussion
From the above techniques, we can see that currently there
are less and less studies on the PnP problem in a small-scale
environment. Similarly, there are few studies on SFM using
traditional geometric methods. However, for SLAM, both
traditional geometric and learning methods are still popular.
Studies that use deep learning for image-based camera

localization are increasing gradually. However, in prac-
tical applications, using geometric methods is still cen-
tered. Deep learning methods can provide efficient
image features and compensate for geometric methods.
The PnP problem or relocalization of SLAM in a

large-scale environment has not been solved well and de-
serves further research. For reliability and low cost practical
applications, multi low cost sensor fusion for localization
but vision sensor centered is an effective way.
In addition, some works study the pose problem of

other camera sensors, such as the epipolar geometry of a
rolling shutter camera in [172, 173] and radial-distorted
rolling-shutter direct SLAM in [174]. Gallego et al.
[175], Vidal et al. [176], Rebecq et al. [177] studied event
camera SLAM.
With the increasing development of SLAM, maybe it

starts the age of embedded SLAM algorithms as shown
by [178]. We think integrating the merits of all kinds of
techniques is a trend for a practical SLAM system, such
as geometric and learning fusion, multi-sensor fusion,
multi-feature fusion, feature based and direct approaches
fusion. Integration of these techniques may solve the
current challenging difficulties such as poorly textured
scenes, large illumination changes, repetitive textures,
and highly dynamic motions.
Conclusion
Image-based camera localization has important applica-
tions in fields such as virtual reality, augmented reality,
robots. With the rapid development of artificial
intelligence, these fields have become high-growth mar-
kets, and are attracting much attention from both aca-
demic and industrial communities.
We presented an overview of image-based camera

localization, in which a complete classification is pro-
vided. Each classification is further divided into categor-
ies and the related works are presented along with some
analyses. Simultaneously, the overview is described in a
tree structure, as shown in Fig. 1. In the tree structure,
the current popular topics are denoted with bold blue
borders. These topics include large data camera
localization, learning SLAM, multi-kind sensors SLAM,
and keyframe-based SLAM. Future developments were
also discussed in the Discussion section.
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