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Abstract

Identifying event instance in text plays a critical role in build-
ing NLP applications such as Information Extraction (IE)
system. However, most existing methods for this task focus
only on monolingual clues of a specific language and ig-
nore the massive information provided by other languages.
Data scarcity and monolingual ambiguity hinder the perfor-
mance of these monolingual approaches. In this paper, we
propose a novel multilingual approach — dubbed as Gated
MultiLingual Attention (GMLATT) framework — to ad-
dress the two issues simultaneously. In specific, to allevi-
ate data scarcity problem, we exploit the consistent infor-
mation in multilingual data via context attention mechanism.
Which takes advantage of the consistent evidence in multilin-
gual data other than learning only from monolingual data. To
deal with monolingual ambiguity problem, we propose gated
cross-lingual attention to exploit the complement information
conveyed by multilingual data, which is helpful for the dis-
ambiguation. The cross-lingual attention gate serves as a sen-
tinel modelling the confidence of the clues provided by other
languages and controls the information integration of vari-
ous languages. We have conducted extensive experiments on
the ACE 2005 benchmark. Experimental results show that our
approach significantly outperforms state-of-the-art methods.

Introduction

The goal of Event Detection (ED) is to recognize event in-
stance of particular type in plain text. Specifically, given a
sentence, ED requires to decide whether the sentence con-
tains events of interest. If so, it also needs to identify the spe-
cific event type and locate the event trigger for each event.
Take the following sentence for example:

In Baghdad, a cameraman died when an American tank
fired on the Palestine hotel.

According to the ACE 2005 annotation guideline1, two
events are mentioned here: a Die event triggered by “died”,
and an Attack event triggered by “fired”. An ED system
should be able to identify all of them. Building a robust ED
system is challenging. According to (Ji and Grishman 2008),
human annotator achieves only about 73% of F1 score on the
ACE 2005 evaluation task.

Copyright c© 2018, Association for the Advancement of Artificial
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1https://goo.gl/C9T6Fg

To date, many methods (Li, Ji, and Huang 2013; Chen et
al. 2015; 2017; Nguyen and Grishman 2015; 2016; Liu et
al. 2016; 2017; Feng et al. 2016) have been proposed and
obtain state-of-the-art performance. However, most of these
methods are indeed monolingual approaches and focus only
on exploiting textual clues in monolingual data. We argue
that at least two problems hinder their performance:

Data scarcity. We analysis the widely used ACE 2005
corpus and show the statistics in Figure 1. The corpus de-
fines 33 event types, however, nearly 70% of them only
have instances fewer than 100. (Three types have instances
even fewer than ten). The inadequacy of training data hin-
ders the performance of the currently existing methods,
which are under supervised learning paradigm and rely on
huge amount of training examples to guarantee good per-
formance. Besides, obtaining extra instances for training is
also difficult. Valid data for training must be in accordance
with the ACE 2005 annotation guideline, which is a 77-page
document where the detailed event schemas and annotation
specifications are elaborately illustrated.
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Figure 1: Statistics of ACE 2005 corpus. Dashed line indi-
cates the threshold of 100.

Monolingual ambiguity. Monolingual ambiguity is an-
other problem appears in ED task. On the one hand, the iden-
tical event can be described by completely different expres-
sions which have different trigger words. On the other hand,
the same word can express completely different events. To
illustrate, consider the following sentences:

s1: An American tank fired on the Palestine hotel.
s2: Two airline pilots were reportedly fired for stripping

down.
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Both of s1 and s2 contain a word “fired” indicating an
event happening. However, in s1, “fired” means “discharge
a gun (or other weapon)2” and triggers an Attack event. In
s2, “fired” means “dismiss (an employee) from a job”, which
triggers an event of End-Position. The specific event types
are totally different. Ambiguity is a common phenomenon
in English literature. For quantitative measurement, we ex-
amine the annotated events in ACE 2005 and observe that
57% of the trigger words are ambiguous, which makes iden-
tifying and categorizing events challenging.

In this paper, we propose a novel multilingual approach
called Gated MultiLingual Attention (GMLATT) frame-
work to tackle with the above two issues simultaneously. We
argue that multilingual approach can take the advantage of
two types of information compared with monolingual ap-
proach:

1. Multilingual consistency. Sentences conveying identi-
cal idea but in different languages usually have same or simi-
lar semantic components (McDonald et al. 2013). For exam-
ple, the parallel Chinese sentence of s1 is: “YiLiang MeiGuo
TanKe Xiang Palestine LvDian KaiHuo.”, where “MeiGuo
TanKe” is the corresponding counterpart of English expres-
sion “American tank”, which refers to a military weapon. No
matter in English or Chinese, weapon word tend to appear
along with Attack event, which provides important clue for
identifying the Attack event. The evidence among different
languages is consistent and coherent. The augment clues can
be leveraged to alleviate data scarcity in source language.

2. Multilingual complementation. Different languages
usually have distinct characteristics and idioms. Ambigu-
ous expression of one language might have non-ambiguous
counterpart in other language, which can provide comple-
ment information for disambiguation (Lin, Liu, and Sun
2017). For example, when projected s1 and s2 to Chinese,
the corresponding translations of “fired” are “KaiHuo” and
“JieGu” respectively. The two Chinese words share no com-
mon character or semantic and express Attack event and
End-Position event without ambiguity. The information in
Chinese side are helpful for disambiguating the event types
in English side, which we referred as multilingual comple-
mentation.

Guided by these motivations, our framework, GMLATT
employs two attention mechanisms for exploiting the two
types of information to identify and categorize events:

(1) To exploit the consistent evidence among different lan-
guages, we adopt monolingual context attention for each
language side. It is intuitive that the words in a sentence
are of different importance. For example, in s1, “American
tank” provides more important clue that an event might hap-
pen in conflict scenario than other words. In s2, “airline pi-
lots” and “stripping down” are the salient parts implying
an End-Position event happening. These words should get
more attention than other words. Guided by this, we employ
context attention mechanism to model the context texts sur-
rounding the candidate trigger. Attention weights indicate
the importance of different words in the sentence to predict
the event type.

2http://www.dictionary.com/browse/fire

(2) To exploit the complement information, we adopt
gated cross-lingual attention. Texts from other languages in-
deed provide valuable clues. However, how to combine them
with the source features is a problem. We employ gated
cross-lingual attention to model the confidence of the fea-
tures provided by other languages. The attention gate serves
as a sentinel to control the information flow from other lan-
guages to source side. Thus controls the information integra-
tion of various languages.

Our main contributions are three folds: (1) We propose
a novel multilingual framework for ED task, which tack-
les with data scarcity and monolingual ambiguity problems
simultaneously. (2) The framework contains two attention
mechanisms: monolingual context attention and gated cross-
lingual attention. To our best, this is the first work to intro-
duce attention mechanism for modelling multilingual data
in ED task. (3) We have conducted extensive experiments on
the ACE 2005 corpus, and the experimental results show that
our method achieves significant improvement over existing
methods and sets a new state-of-the-art on this evaluation
task.

Task Description

In ACE 2005, an event is defined as a specific occurrence
involving one or more participants. The standard Event Ex-
traction (EE) task requires certain types of events, which are
mentioned in the source language text to be detected.

We introduce some ACE terminologies to facilitate the
understanding of the task:

Entity: an object in one of the semantic categories of in-
terests. Entity mention: a reference to an entity (typically,
a noun phrase). Event mention: a phrase or sentence within
which an event is described, including the trigger and ar-
guments. Event trigger: the word most clearly expresses
the event mention, most often a single verb or noun. Event
argument: an entity mention, temporal expression or value
(e.g. Job-Title) that serves as a participant or attribute with a
specific role in an event mention.

For the sentence: “He died in the hospital.” An event ex-
tractor should detect a Die event, along with the event trig-
ger “died” and the event arguments “He” (Role=Victim) and
“hospital” (Role=Place). In this paper, instead of doing the
overall standard EE task, we concentrate only on ED task —
namely Event Trigger Identification and Event Type Clas-
sification. That is, for the previous example, our goal is to
identify that the token “died” is an event trigger and the
event type is Die.

Methodology

In this section, we illustrate the details of the GMLATT
framework. The representation of GMLATT is given in Fig-
ure 2. GMLATT works in four steps:

Multilingual Projection — Project monolingual text to
parallel multilingual texts. We leverage Machine Translation
(MT) to bootstrap the source data.

Sentence Representation — Transfer symbolic repre-
sentation of sentence to unified distributed representation.

4866



Figure 2: The overall architecture of the GMLATT framework. After multilingual projection, the framework leverages BiGRU
encoder to encode sentence to distributed representation. Monolingual context attention and gated cross-lingual attention are
employed to do multilingual information integration.

Recurrent Neural Networt (RNN) is leveraged to model sen-
tence of each language.

Multilingual Information Integration — Assemble the
information from different languages. It refers to: (1) Use
monolingual context attention to assemble information in
each language. (2) Use gated cross-lingual attention to in-
tegrate information of different languages.

Event Type Prediction — Do the fine-grained event type
classification.

In this paper, we focus on English event detection, namely
the SOURCE language is set to English. And we use Chi-
nese as the sole TARGET language to bootstrap the source
data. Note that in theory, our framework is not limited by
specific language, and can even use various languages as
TARGET languages simultaneously, which we leave for the
future work.

Multilingual Projection

Since ACE 2005 only has annotated monolingual events, to
apply our framework, we first use online machine translation
service3 to obtain the parallel text in TARGET language.

For trigger projection, instead of using heuristic rules or
external dictionary, we learn the alignments in an unsuper-
vised way. We employ GIZA++4 — a commonly used tool
in MT — to learn multilingual alignments. GIZA++ treats
word alignment as hidden variables and use EM algorithm
to find the best alignments unsupervisedly (Och and Ney
2003). We concatenate the translated multilingual data with
a 200k parallel English-Chinese corpus5 released by (Eisele
and Chen 2010) to learn the alignments together.

3http://fanyi.baidu.com/, in our experiment
4http://www.fjoch.com/GIZA++.html
5http://opus.lingfil.uu.se/MultiUN.php

Figure 3: An example of multilingual projection. Straight
lines indicate alignments. The English trigger word “fired”
is correctly projected to the Chinese word “KaiHuo”.

Note that, the alignments learned by GIZA++ are di-
rected. We learn both SOURCE-to-TARGET and TARGET-
to-SOURCE alignments and then leverage grow-diag-final-
and algorithm published in (Och and Ney 2003) to merge
them. Below is one example of multilingual projection:

Sentence Representation

Recurrent Neural Network (RNN) shows promising result in
sequence modelling. We adopt a particular implementation
of RNN called Gated Recurrent Units (GRU) (Chung et al.
2014) to model word sequence to represent sentence.

At each step t, the vanilla GRU accepts a current input
xt and previous hidden state ht−1 to compute the current
hidden state ht = GRU(xt, ht−1) as:

zt = σ(Wzxt + Uzht−1 + bz) (1)
rt = σ(Wrxt + Urht−1 + br) (2)

h̃t = tanh(Whxt + rt ◦ Uhht−1 + bh) (3)

ht = zt ◦ ht−1 + (1− zt) ◦ h̃t (4)

A more advanced model is bidirectional GRU (Bi-GRU).
It maintains two hidden states at each time-step t, one
for the left-to-right propagation −→

ht = GRUltr(xt,
−→
h t−1)

and another for the right-to-left propagation ←−
ht =
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GRUrtl(xt,
←−
h t+1). It combines the two states as the cur-

rent state: ht = [
−→
ht ;

←−
ht ].

We adopt Bi-GRU to encode sentence. Each token in the
sentence is first transferred to lexical features by three look-
up tables:

Word Embedding Table: Word embeddings are able
to capture the meaningful semantic regularities of words
(Turian, Ratinov, and Bengio 2010). We use word embed-
dings as the basic features. We use the Skip-gram model to
learn word embeddings of different languages — NYT cor-
pus for English and CN Wikipedia for Chinese.

Entity Embedding Table: Following existing work (Li,
Ji, and Huang 2013; Chen et al. 2015; Nguyen and Grish-
man 2015; Liu et al. 2016), we exploit the annotated entity
information as additional features. We randomly initialize
embedding vectors for each entity type (including the NA
type) and update them during training procedure. Entity em-
bedding table is shared by different languages.

Position Embedding Table: In the task of relation extrac-
tion, (Zeng et al. 2014) uses position embedding to repre-
sent the distance between context words and entities, which
brings huge performance improvement. Similarly, we also
use position embeddings specified by the relative distances
between context words and the candidate trigger. We ran-
domly initialize embedding vectors and update them during
training procedure.

We concatenate the above three features as the input to
Bi-GRU. The hidden state sequence in Bi-GRU is used as
the representation of sentence. We denote the sentence rep-
resentation in SOURCE side as Ssrc = {hs1, hs2, ..., hsL},
and in TARGET side as Stgt = {ht1, ht2, ..., htN}, where L
and N are sentence lengths respectively.

Multilingual Information Integration

This is the core part of the GMLATT framework. The frame-
work leverages monolingual context attention to model con-
text texts for exploiting the consistent evidence among dif-
ferent languages. And it leverages gated cross-lingual atten-
tion to model the confidence of the complement clues pro-
vided by TARGET side, which controls the information in-
tegration from various languages.
Monolingual Context Attention Mechanism

Monolingual context attention mechanism is performed
on each side. We only use SOURCE side for illustration to
avoid duplication. Give a SOURCE sentence and its repre-
sentation Ssrc = {hs1, hs2, ..., hsL}, we first treat each to-
ken as a candidate trigger with its representation denoted as
hc src. We then leverage attention mechanism to exploit the
context texts surrounding it to find evidence for deciding its
type. The importance of each token in the context texts is
computed as:

ai =
exp(mi)∑L
l=1 exp(ml)

(5)

where mi is the relatedness between the candidate trigger
representation hc src and the context token representation
hsi, modelled by bi-linear attention as:

mi = tanh(hT
c srcWAtt srchsi + bAtt src) (6)

where WAtt src is the weight matrix and bAtt src is the
bias term. Given all the importance weights, the compre-
hensive information conveyed by Ssrc with respect to the
candidate trigger is obtained by weighted sum:

Rsrc =
∑L

i=1
ai ∗ hsi (7)

For TARGET side, we first find the aligned token of the
candidate trigger — we denote its representation as hc tgt

— and then do the same process as SOURCE side to exploit
the relation between the aligned candidate trigger and the
TARGET sentence representation. Rtgt denotes the compre-
hensive information of the corresponding sentence in TAR-
GET side.
Gated Cross-Lingual Attention Mechanism

Given Rsrc and Rtgt, the next step in to combine them to
get the integrated information. We come up with two com-
bination strategies:

STG1: Averaged Sum. We assume that the information
from SOURCE side and TARGET side are of same impor-
tance. The integrated information is computed as:

Rintegrated = 0.5 ∗Rtgt + 0.5 ∗Rsrc (8)

STG2: Weighted Sum. We assume that information from
SOURCE side and TARGET side are of different impor-
tance. We leverage gated cross-lingual attention to model the
confidence of clues provided by target side Rtgt. The value
of the attention gate is computed as:

Gcl = σ(Wcl[Rsrc;Rtgt] + bcl) (9)

where Wcl is the weight matrix and bcl is the bias term.
σ is the multivariate sigmoid function accepting vector as
input, and compute the output as:

σ(x) = 1/(1 + exp(−x)) (10)

We use 1 - Gcl and Gcl as the combination weights of
SOURCE side and TARGET side to assemble Rsrc and
Rtgt. Since our original intention is do ED in the SOURCE
side, the attention gate can be seen as a sentinel to control in-
formation flow from TARGET side to SOURCE side. Note
that the dimension of the attention gate is same as Rsrc

and Rtgt, and the integrated information is computed by
weighted sum as:

Ritgd = (Gi ◦Rtgt) + ((1−Gi) ◦Rsrc) (11)

where ◦ stands for element-wise multiplication operation.
Ritgd represents the final integrated information of various
languages.

Event Type Prediction

Follow previous works, we formulate ED as a multiclass
classification problem. For each token in SOURCE sen-
tence, we predict whether is an event trigger and decide
event type for it. We combine hc src, hc tgt and Ritgd as
input to a softmax classifier:
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O = softmax(tanh(Wcls[hc src;hc tgt;Ritgd] + bcls))
(12)

where Wcls is the weight matrix, and bcls is the bias term.
The output O is a real-valued vector indicating the predicted
probabilities of different types. The probability of the candi-
date trigger t belongs to type j is:

P (j|t,Θ) = O(j) (13)

where Θ represents all the parameters of GMLATT. O(j)

indicates the jth element of O.

Training and Optimization

Here we introduce the learning and optimization details of
the GMLATT framework. The optimization objective func-
tion is defined as multi-class cross-entropy loss:

J(Θ) = −
K∑
i=1

lnP (yi|ti,Θ) + λ(Θ) (14)

where K indicates the number of all tokens in the training
data. yi is the true event type of token ti. λ is the regulariza-
tion parameter and Θ indicates all parameters.

For optimization method, we adopt mini-batch stochastic
gradient descent (SGD) to minimize the objective function.
We add dropout layer to prevent the co-adaptation of the pa-
rameters to fight against overfitting problem (Srivastava et
al. 2014). Negative sampling is adopted to tackle with data
imbalance problem. (The ratio of Non-Type event to typed
event is about 200:1 in training data).

Experiments

Dataset and Evaluation Metrics

We conduct experiments on the widely used ACE 2005
dataset. This corpus contains 599 documents annotated with
8 types and 33 subtypes of events. Following previous
works (Liao and Grishman 2010; Li, Ji, and Huang 2013;
Chen et al. 2015; Nguyen and Grishman 2015; Liu et al.
2016), we simply treat them as 33 separate event types and
ignore the hierarchical structure. We use the same data sep-
aration as the previous works: 40 particular articles are used
as the blind test set; 30 articles are used as the development
set; and the remaining 529 articles are used for training.

We use the following criteria for evaluation: (1) A trigger
is correctly identified if its offset matches a reference trigger
(Event Trigger Detection). (2) A trigger is correctly classi-
fied if both its offset and event type match a reference trigger
(Event Type Classification). Precision (P ), recall (R), and
F1 score (F1) are used as the evaluation metrics. Same as all
the previous works for meaningful comparison.

Comparison with Existing Methods

We compare our model with many state-of-the-art methods.
We classify these methods into three types:

Feature-based approach. MaxEnt: The method in (Li,
Ji, and Huang 2013), which only employs human-designed

features. CrossEvent: The method in (Liao and Grishman
2010), which leverages document information for complex
features. Combined-PSL: The method in (Liu et al. 2016),
which uses probabilistic soft logic model to exploit global
information, the best reported feature-based system.

Representation-based approach. DMCNN: The method
in (Chen et al. 2015), which uses CNN to do automatical
feature extraction. JRNN: The method in (Nguyen, Cho, and
Grishman 2016), which uses more complicated structure to
model event inter-dependencies. NC-CNN: The method in
(Nguyen and Grishman 2016), which models non-continue
n-grams to achieve higher performance.

External resource based approach. DMCNN-DS: The
method in (Chen et al. 2017), which uses FreeBase to la-
bel new training data by Distance Supervision. ANN-FN:
The method in (Liu et al. 2016), which exploits events in
FrameNet to bootstrap training. ANN-AugATT: The method
in (Liu et al. 2017), which leverages additional arguments
information and FrameNet.

The performance is shown in Table 1. From the results,
we have several observations:

Among all these methods, representation-based ap-
proaches beat feature-based approaches ( by 1.9% of
F1 on average) and external resource based approaches
achieve the best results (1.0% of F1 on average over
the represent-based approaches). This phenomenon is not
surprising. Representation-based approaches achieve better
performance by avoid complex feature engineering, and au-
tomatically learn salient features in the data. While exter-
nal resource based methods combine feature learning with
much more data from external resource to achieve further
improvement.

Besides, among all the approaches, our method behaves
best. It achieves the best performance (72.4% of F1) on
Event Type Classification and beats the best reported exter-
nal resource based approach ANN-AugATT by 0.7% on F1.
For Event Type Identification, it achieves comparative per-
formance (74.1% vs 74.3%) compared with the best system.

We make a reasonable explanation: compared with
representation-based approaches, our method can leverage
the augment clues provided by multilingual data to enhance
feature learning. Compared with external resource based
approaches, the result is interesting: Our model tends to
achieve higher precise score (highest both in Event Type
Classification and Event Type Identification) but lower re-
call. We argue it is the different types of additional informa-
tion causes this phenomenon. Our model use multilingual
parallel data to learn features, and multilingual consistency
and multilingual complementation provide more coherent
and related clues attribute for the higher precision. While for
external resource based methods, they usually need to trans-
fer external data to fit the current event schemas by some
heuristic rules (Chen et al. 2017; Liu et al. 2017). The data
they leveraged is of huge amount but is indeed imprecise
and noisy, which is responsible for the the higher recall but
lower precision.
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Event Trigger Event Type
Models Identification (%) Classification (%)

P R F1 P R F1
MaxEnt (Li, Ji, and Huang 2013) 76.2 60.5 67.4 74.5 59.1 65.9
CrossEvent (Liao and Grishman 2010) n/a n/a n/a 68.7 68.9 68.8
Combined-PSL (Liu et al. 2016) n/a n/a 71.7 75.3 64.4 69.4
DMCNN (Chen et al. 2015) 80.4 67.7 73.5 75.6 63.6 69.1
JRNN (Nguyen, Cho, and Grishman 2016) 68.5 75.7 71.9 66.0 73.0 69.3
NC-CNN (Nguyen and Grishman 2016) n/a n/a n/a n/a n/a 71.3
DMCNN-DS (Chen et al. 2017) 79.7 69.6 74.3 75.7 66.0 70.5
ANN-FN (Liu et al. 2016) n/a n/a n/a 77.6 65.2 70.7
ANN-AugATT (Liu et al. 2017) n/a n/a n/a 78.0 66.3 71.7
GMLATT (Ours) 80.9† 68.1 74.1 78.9† 66.9 72.4†

Table 1: Performance of all the methods. Bold denotes the best result. † denotes signification improvement.

Detailed Analysis

We conduct extra experiments to do detailed analysis. EI
and EC stand for F1 score of Event Trigger Identification
and Event Type Classification respectively.
Impact of Different Attention Strategies

We come up with five models comparing with two base-
lines to exploit the effects of different attention strategies.

Monolingual Setting
DNN-ED is the basic fast-forword neural network model

proposed in (Liu et al. 2016). DMCNN is the model in (Chen
et al. 2015) leveraging CNN to do automatically feature
capturing. GMLATT-Mon is GMLATT without any atten-
tion mechanisms. GMLATT-MonATT is GMLATT only with
monolingual context attention.

Multilingual Setting
GMLATT-TA is GMLATT without gated cross-lingual at-

tention but leverages the aligned candidate trigger as multi-
lingual information. STG1 and STG2 are two different strate-
gies have been described previously.

Results are shown in Table 2:

Models EI (%) EC (%)

Monolingual

DNN-ED 68.1 66.9
DMCNN 73.5 69.1
GMLATT-Mon 72.7 68.3
GMLATT-MonATT 73.6 70.4

GMLATT-TA 73.6 71.2
Multilingual GMLATT with STG1 73.6 71.7

GMLATT with STG2 74.1 72.4

Table 2: Performance on different attention strategies.

We find that: 1) Even the simplest model in multilingual
setting beats the best monolingual approach (0.8% of F1 on
EC), which justifies the intuition of exploiting multilingual
data to detect event. 2) Among monolingual approaches,
GMLATT-MonATT beats two baselines and achieves the best
result, showing the effectiveness of monolingual context
attention mechanism. 3) Among multilingual approaches,
both STG1 and STG2 achieve better results than GMLATT-
TA, which only uses aligned triggers as multilingual data.
Besides, STG2 beats STG1 by a large margin (0.7% on EI,
and 0.8% on EC), showing the advantages of using gated
cross-lingual attention to assemble information.

Impact of Feature Combinations

We exploit the effects of feature combinations. The ex-
periments are conducted in monolingual setting to eliminate
the effect of multilingual data. DNN-ED is treated as sim-
ple model, and GMLATT-MonATT serves as complex model.
Results are shown in table 3:

Models Features EI (%) EC (%)

DNN-ED

Word Embedding 66.6 65.7
+ Entity Embedding 67.5 66.2
+ Position Embedding 67.2 66.1
All 68.1 66.9

Word Embedding 72.4 68.4
GMLATT- + Entity Embedding 73.1 69.2
MonATT + Position Embedding 72.9 68.8

All 73.6 70.4

Table 3: Performance on features combination.

According to the results, entity embedding and position
embedding provide complement improvement both in sim-
ple model and complex model. It seems that, entity embed-
ding is more effective than position embedding (by 0.2% on
average). An intuition explanation is that: when using RNN
to encode sentence, position information might have been
encoded by some extent to the distributed representations.
Which reduces the effect of adding position embedding.
Performance on the Projected Data

We examine the performance on the projected data. Re-
sults are shown in Table 4.

Models EI (%) EC (%)

DNN-ED 64.4 62.1
DMCNN 67.0 64.7
GMLATT-MonATT 67.3 65.8

Table 4: Performance on the projected Chinese data.

Compared with ED in English, the performance on the
projected Chinese data is relatively lower. We attribute the
poor performance to the noise introduced by MT. The noise
includes translation error and alignment error. Nevertheless,
it still demonstrates the consistence performance of English
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Figure 4: Attention visualization. The heatmap indicates the
context attention. Blue for SOURCE language, and orange
for TARGET language. The pie chart indicates the average
value of the gated cross-lingual attention.

ED — GMLATT with attention mechanism outperforms the
two baselines.

Attention Visualization

Attention weights of two examples are visualized in Figure
4.

In Exp.1, “chairman” and “London” in SOURCE side and
“ZhuXi” and “LunDun” in TARGET side are of higher at-
tention weights. Which implies an event related to profes-
sion changing and decides the event type of “leaving” is
End-Position. In Exp.2, “scheduled” and “their talks” are the
words with much attentions in SOURCE side. They imply a
common life scenario and yield out an Movement event for
“leave”. Note that, the attention weights in TARGET side
of Exp.2 are messy. Which is in accordance with the lower
value of the averaged gated cross-lingual attention weight of
TARGET side compared with Exp.1.

We sample out 100 examples to exploit the gated cross-
lingual attention weight, and find that the ratio of SOURCE
to TARGET is 0.59:0.41. The lower weight of TARGET side
implies that — the noise leaded by MT makes TARGET side
less reliable than SOURCE side.

Error Analysis

For that the F1 score is the compromise of precision and re-
call, for each metric, we sample out 50 examples to examine
the reasons. We give them a brief summary in Table 5.

Metric Reasons Count

Precision
Highly ambiguous triggers 29

Annotation ambiguity 16
Others 5

Rare triggers 24
Recall Nouns and adjectives triggers 16

Others 10

Table 5: Error analysis for precision and recall

For precision, highly ambiguous trigger (word triggers
too many events, especially support verbs such as “go”,
“take”) is the main reasons affect the performance. Annota-
tion ambiguity is also a serious problem. For example, does
“hacked to death” express an Attack event or Die event?
ACE 2005 only assigns one event for each event mention,
which leads to annotation ambiguity.

For recall, rare trigger (with training instances less than
five), nouns and adjectives based triggers are the main rea-

sons. Other reasons include indirect triggers such as “this”,
“what”, which needs deep semantic analysis of the sentence
to identify them out.

Related Work

Various methods have been proposed for ED. Feature-based
approaches rely on discriminative features to build statistical
models. (Ahn 2006) leverages lexical features and syntac-
tic features. More advanced features include cross-document
features (Ji and Grishman 2008), cross-event features (Gupta
and Ji 2009; Liao and Grishman 2010), etc. (Li, Ji, and
Huang 2013) presents a joint framework based on struc-
tured perceptron and beam search to do event trigger and
event argument prediction jointly. (Liu et al. 2016) uses
probabilistic soft logic based approach to combine local and
global features. Representation-based approaches have been
introduced into ED very recently. It includes (Chen et al.
2015; Nguyen and Grishman 2015) using convolutional neu-
ral network (CNN) to avoid complicated feature engineer-
ing, modelling non-continue skip-grams (Nguyen and Gr-
ishman 2016). Representation-based methods achieve rel-
atively high performance due to their ability of automatic
features capturing and modelling complicated hidden in-
teractions in data. However, as we mentioned before, data
scarcity in ED limits their further performance. External re-
source based model tackles data scarcity problems by ex-
ploiting additional information. (Chen et al. 2017) uses Free-
Base to label new training data by Distance Supervision.
(Liu et al. 2016) exploits events in FrameNet to obtain more
available data. (Liu et al. 2017) leverages additional infor-
mation from arguments and FrameNet to detect event, which
achieves a better performance.

For multilingual approaches, (Ji 2009; Li et al. 2012;
Wei et al. 2017) are excellent works, belong to traditional
feature-based approaches. (Agerri et al. 2016; Danilova,
Alexandrov, and Blanco 2014; Feng et al. 2016) illustrate
technics for building multilingual event extraction systems,
however, the “multilingual” in their works indeed means
“language independent”, which is orthogonal to our work.

Attention-based deep learning is also related to our work.
It has attracted a lot of interests of researchers for its abil-
ity to learn implicit relationship between source and target.
Attention-based models have been applied to various areas
such as machine translation (Bahdanau, Cho, and Bengio
2014), machine comprehension (Hermann et al. 2015), im-
age caption generation (Xu et al. 2015), etc. To the best of
our knowledge, this is the first effort to adopt attention-based
neural network for tackling with ED task.

Conclusion

In conclusion, we leverage two attention mechanisms in a
novel multilingual framework to tackle with data scarcity
and monolingual ambiguity problems appear in ED si-
multaneously. Experimental results show that our method
achieves significant improvement over existing methods and
sets a new state-of-the-art performance.
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