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Abstract. Knowledge graph embedding aims at learning low-dimensional
representations for entities and relations in knowledge graph. Previous
knowledge graph embedding methods use just one score to measure the
plausibility of a fact, which can’t fully utilize the latent semantics of
entities and relations. Meanwhile, they ignore the type of relations in
knowledge graph and don’t use fact type explicitly. We instead propose
a model to fuse different scores of a fact and utilize relation and fact
type information to supervise the training process. Specifically, scores
by inner product of a fact and scores by neural network are fused with
different weights to measure the plausibility of a fact. For each fact,
besides modeling the plausibility, the model learns to classify different
relations and differentiate positive facts from negative ones which can be
seen as a muti-task method. Experiments show that our model achieves
better link prediction performance than multiple strong baselines on two
benchmark datasets WN18 and FB15k.

Keywords: Knowledge graph embedding - Relation supervised - Fact
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1 Introduction

Knowledge graphs can be regarded as large knowledge bases(KBs) which consist
of structured triples in the form (entity, relation, entity). There are many KBs,
such as DBpedia [14], YAGO [24] and Freebase [1] which can offer great help
in many natural language processing applications such as relation extraction
[8, 28, 21], question answering [4, 2, 6] and machine reading comprehension [30].
However, these KBs are far from complete, that is to say, many valid facts aren’t
contained in the KBs. Therefore, many researches have been focused on the task
knowledge base completion which aims to predict the tail entity when given the
head entity and relation, or vice versa.

In order to conduct the knowledge base completion task, different models have
been proposed in recent years. Roughly, these can be divided into two categories
[26], one is Translational Distance Models and they measure the plausibility of a
fact as the distance between the two entities, usually after a translation carried
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out by the relation. The other is Semantic Matching Models and they measure
plausibility of facts by matching latent semantics of entities and relations em-
bodied in their vector space representations.

These models can learn good representation for entities and relations in KBs
and perform well in knowledge base completion task. But there are two problems
in existing methods, one is that they just use one score to measure the plausibility
for each fact triple. Take the classic model TransE [3] for example, for each fact
triple (h,r,t), the score is represented as f.(h,t) = —||h + r — t||2 by looking
up the embedding table and the score is used for subsequent training. We argue
that the only one score is too simple to make full use of the latent semantics
of entities and relations encoded in the low-dimensional vector representation.
The other problem is that they ignore the relation type and don’t explicitly use
the fact type, most models just minimize a loss like the pairwise ranking loss to
encourage positive triples to get high scores and negative ones to get low scores.

To solve the above two problems, we propose a model to fuse different scores
of a fact and utilize relation and fact type information. First, scores by inner
product of a fact and scores by neural network are fused with different weights.
Then for each fact, besides obtaining a score, we use multi-task learning to learn
a classifier to differentiate positive facts from negative ones. At last, we add a
relation classification loss and a fact type classification loss to the multi-task
learning loss to jointly train the model.

In summary, our contributions in this paper are as follows:

— We propose a model to fuse different scores of a fact which can fully utilize
the latent semantics of entities and relations.

— In order to make better use of relation and fact type information, we use
muti-task learning to simultaneously train a relation classifier and fact clas-
sifier besides modeling the scores of a triple.

— We evaluate our model on two benchmark datasets and our model achieves
better link prediction performance than multiple strong baselines. Besides,
we conduct ablation study which shows the effectiveness of both the relation
and fact type information and the weighted scores.

2 Related Work

Translational Distance Models use additive functions over embeddings to obtain
a score. TransE [3] is the first model to introduce translation-based embedding,
which represents both entities and relations as real vectors of same length. It
assumes h + r ~ t and minimizes f.(h,t) = [|h + 7 — t[[; /2. TransH [27] intro-
duces relation-specific hyperplanes in order to better model the 1-to-N, N-to-1
and N-to-N relations which can’t be well dealt with in TransE. TransR [15] is
similar to TransH, but it introduces relation-specific spaces instead of hyper-
planes. In order to reduce the number of parameters, TransD [9] decomposes the
relation-specific matrix in TransR into product of two vectors. TranSparse [10]
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also reduces the parameters in TransR by utilizing sparse relation-specific ma-
trix. There are also some works considering the uncertainty in knowledge graph
and modeling entities and relations as random vectors [7,29].

Semantic Matching Models use product-based functions over embeddings to
obtain a score. RESCAL [20] represents each entity as a vector and each rala-
tion as a matrix. It defines the score of a triple by f,.(h,t) = h' M,t rather
than the translational distance in TransE. In order to reduce the number of pa-
rameters, DistMult [31] replace the relation matrix in RESCAL with a diagonal
matrix. ComplEx [25] extends DistMult by introducing complex-valued embed-
dings which can better model asymmetric relations. There are also some works
using neural netwok to calculate the score for each triple. MLP [5] first maps
embeddings of entities and relations into hidden representations which will be
added up, then the score is obtained by dot product. ConvKB [17] uses CNN to
produce feature maps and then calculated the score by dot product.

3 The Proposed Model

A knowledge graph G can be seen as a set which contains valid tiples (head
entity, relation, tail entity) denoted as (h,r,t) such that h,t € £ and r € R
where £ is a set of entities and R is a set of relations. Each embedding model
aims to define a score for a triple such that valid triples get higher scores than
invalid ones. Table 1 gives score functions of some previous SOTA models.

Table 1. The score functions in previous SOTA models. (vp, v, v¢) = D, Vi, Vr, Uy,
denotes a tri-linear dot product. Re is an operation to take the real part of a complex
number.

Model  |The score function f(h,r,t)
TransE | = [lon +vr —ve], o
ComplEx|Re ({(vh, vr, Tt))

DistMult [{(vp, vy, v¢)

MLP  |w' tanh (M'h + M*r + M>t)

We have two lookup tables for entities in RI¥/*? named head table and tail
table respectively and two lookup tables for relations in RI®1*¢ named relation
table and reverse relation table respectively, where d denotes the embbeding size.

Given a triple (h,r,t), we first look up the head table, relation table and
tail table to get their corresponding embeddings denoted as a matrix E =
[Vp, v, 0] € R4%3. Then v, is input to a MLP to conduct relation classification:

p, = softmax (f (UTTWT + br)) (1)

here W, € R4X"r ig a weight matrix and b, € R™" is a weight vector, n,. is the
number of relation type and p, € R"" is a relation probability distribution for
v,.. Meanwhile, we get score s1 = (vp, Uy, ).
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Fig. 1. Illustration of proposed model with relation and fact type supervision via
weighted scores.

Then the embedding matrix E is input to a convolutional neural network
[13] to get differrent feature maps which will be concatenated to form a vector
m. Specifically, we have k filters and each is of shape [f,3]. Thus each filter
will produce a feature map of size [d — f5 + 1,1]. After concatenation of these k
feature maps we have m of shape [k(d — fr + 1),1] and get score sy = (m, w)
where w is a weight parameter. Meanwhile, another task to classify a fact is
conducted with m:

Py = softmax (f (m"™W;+by)) (2)

here Wy € R"»*"s is a weight matrix and by € R™/ is a weight vector, vy, (i.e.,
k(d — fn + 1)) is the dimension of vector m, ny is the number of fact type(In
our experiment n; equals 2, namely the positive fact and the negative fact.) and
py € R" is a fact probability distribution for m.

Similar to [11], for the triple (h,r,t) we also reverse it to get a triple (¢,7, h),
then we look up the head table, reverse relation table and tail table to get their
corresponding embeddings denoted as a matrix E' = [v}, v}, v}] € R4 and in
the meantime we get score s; = (v}, v}, v}) . The matrix E’ will be input to
another CNN of the same structure as described above to get score s = (m/, w’).
It should be noted that we don’t do relation or fact type classification this time.
Fig. 1 illustrates the structure of our model.

With score s1, s2, s] and s}, we define the weighted score function f of our
model as follows:

f(h, T, t) = A181 + A2So + )\38’1 + )\45’2 (3)
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where A1, A2, A3 and )4 are weight parameters tuned on validation set.
The loss function £, generated by the weighted scores with Ly regularization
on all the embedding vector e of the model is:

A
L= > log(itesp (e fhrt)) +5lel} @)
(h,r,t)e{GUG"}
l _ f1for (h,rt)eg 5)
(hrt) = —1 for (h,r,t) € G’

where G’ is a set of triples generated by corrupting valid triples in G.
We use cross entorpy loss Lo as our relation classification loss:

S D AN ®

i=1 j=1
where [, is the label vector of relation and N is the number of training instances.
Similarly, the fact classification loss L3 is:

N ny

=35 (s 1) »

i=1 j=1

where I is the label vector of fact type and N is the number of training instances.
With £y, L5 and L3, the total weighted loss L is:

L=0oa1L1+ a3l + a3Lls (8)

where a1, as and a3 are weight parameters tuned on validation set. We optimize
our model by minimizing the total loss L.

4 Experiments

4.1 Datasets

Our experiments are conducted on two benchmark datasets: WN18 and FB15k.
WN18 is a subset of Wordnet [16] which is a KB whose entities (termed synsets)
correspond to senses of words, and relationships between entities define lexical
relations. FB15k is a subset of Freebase [1] which is a huge and growing KB for
common facts with around 1.9 billion triplets. In our experiments, we use the
same train/valid/test sets split as in [3]. The detailed statistics of WN18 and
FB15k are showed in Table 3.

4.2 Baselines

We compare our model with several previous methods. Our baselines include
TransE, TransR, STransE [19], NTN [22], DistMult, ComplEx and SimpleE,
some of them are strong baselines. We report the results of TransE, STransE,
DistMult, and ComplEx from [25]. The results of TransR and NTN are reported
from [18], and SimpleE is reported from [11].
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Table 2. Statistics of the experimental datasets.

Dataset | || |R| F#Triples in train/valid/test
WN18 (40943 18 141442 5000 5000
FB15k (14951 1345 483142 50000 59071

4.3 Evaluation Metrics

The purpose of link prediction or KB completion task [3] is to predict a missing
entity given the relation and another entity in the valid triple, i.e, predicting h
giving (r,t) or predicting ¢ giving (h,r). Then the results are evaluated based
on the rankings of the scores calculated by the score function.

Specifically, for each valid triple, we first replace the head entity or tail entity
randomly by all the other entity in G to produce a set of corrupted triples, i.e.,the
negative triple sets for the valid triple. Then the score function will be used to
calculate all the scores of corrupted triples together with the valid triple and we
rank the results based on the scores. We employ common metrics to evaluate
the ranking list: mean reciprocal rank (MRR)(i.e., the reciprocal mean rank of
the correct test triples), Hits@10(i.e., the proportion of the correct test triples
ranked in top 10 predictions), Hits@3 and Hits@1.

As pointed out in [3], the above corrupted triple set for each test triple may
contain some valid triples in G and these valid triples may be ranked above the
test triple. To avoid this, we follow [3] to remove from the corrupted triple set
all the triples that appear in G. The former is called Raw setting and the latter
is called Filter setting. We then evaluate results with MR, MRR, Hit@10, Hit@Q3
and Hit@1 on the new ranking list.

4.4 Training Protocol

We use the common Bernoulli trick [27,15] to generate the head or tail entities
when producing negative triples, i.e.,with probabily p the head entity of a test
triple is replaced and with probabily 1—p the tail entity is replaced. We calculate
MRR in both Raw and Filter setting and Hit@Q1, Hit@3 and Hit@Q1 in Filter

setting.

In our experiment, the dimension d of entities and relations are all 200. We
e . T 6.0 _6.0
initialize all the lookup tables by uniform distribution between {— /5007 m].

The filters of CNN are initialized by a uniform distribution [—ﬁ, ﬁ} . The

number of filters for CNN is 3 and the filter size is [3,101]. We also use Dropout
[23] after the CNN and the dropout rate is 0.5. We choose ReLU as the activa-
tion function f. The Lo regularizer A is fixed at 0.03. The weight parameters A,
A2, A3, A4 a1, ag and ag are set to 0.4, 0.2, 0.3, 0.1, 0.6, 0.2 and 0.2 respectively.
Besides, we also try attention mechanism to dynamically tune these weight pa-
rameters in our experiment. For the WN18 dataset, the batchsize is 1415 and for
the FB15k dataset the batchsize is 4832. For both datasets, we sample 1 nega-
tive triple for each positive triple. The Adam optimizer [12] is used to train our
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model with initial learning rate 0.1. We run our model on both datesets to 1000
epochs and the validation set is used to select the best model in these epochs to
do test set evaluation.

4.5 Experimental Results

Table 3 compares the performance of our model with results of previous models,
from which we can see that our model outperforms TransE, TransR, STransE,
NTN and DistMult on both datasets for all the valuation metrics. This shows
the effectiveness of our model.

Compared with ComplEx and SimplE, on WN18 dataset our model achieves
best performance as for MRR and Hit@1. Hit@3 is slightly lower than ComlpEx
and we obtain the same Hit@10 as ComlpEx and SimplE. On FB15k dataset, our
model obtains lower MRR in the Filter setting and Hit@Q3 but we achieve best
performance as for MRR in the Raw setting, Hit@Q1 and Hit@10. Besides, our
model achieves significant improvement compared with all the baselines as for
the MRR in the Raw setting on both datasets. This also shows the effectiveness of
our model, in fact ComplEx and SimplE are strong baselines which are previous
SOTA models.

Table 3. Results on WN18 and FB15k. Best results are in bold.

WN18 FB15k
MRR Hit@ MRR Hit@

Model Filter Raw 1 3 10  Filter Raw 1 3 10
TransE  0.454 0.335 0.089 0.823 0.934 0.380 0.221 0.231 0.472 0.641
TransR  0.605 0.427 0.335 0.876 0.940 0.346 0.198 0.218 0.404 0.582
STransE 0.657 0.469 - - 0.934 0.543 0.252 - - 0.797
NTN 0.530 - - - 0.661 0.250 - - - 0.414
DistMult 0.822 0.532 0.728 0.914 0.936 0.654 0.242 0.546 0.733 0.824
ComplEx 0.941 0.587 0.936 0.945 0.947 0.692 0.242 0.599 0.759 0.840
SimplE  0.942 0.588 0.939 0.944 0.947 0.727 0.239 0.660 0.773 0.838
Ours 0.943 0.596 0.940 0.944 0.947 0.715 0.258 0.661 0.770 0.843

Ablation Study Table 4 shows the results of our ablation study on WN18, from
which we can see that the full model achieves the best performance as for MRR
in both Filter and Raw setting. If we ablate Relation classifier or Fact classifier,
the performance will degrade. After ablation of both classifier, the model obtains
the lowest performance. This demonstrates the effectiveness of both the relation
and fact type information for knowledge graph embedding task. Besides, after
ablating the Relation classifier the performance degrades more than ablating the
Fact classifier, which indicates that relation information is more important than
fact type information for knowledge graph embedding task.
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Table 4. Ablation study for WN18.

Ablation MRR(Filter) MRR(Raw)

Full model 0.943 0.596
Relation classifier 0.940 0.590
Fact classifier 0.940 0.594
Both 0.939 0.580

5 Conclusion

In this paper, we propose a novel model for the knowledge graph embedding
task. The model fuses scores by inner product of a fact and scores by neural net-
work with different weights to measure the plausibility of a fact. The model also
learns a classifier to classify different relations and differentiate positive facts
from negative ones which can be seen as a muti-task method when modeling
the plausibility for each fact. Both of these can help to obtain better representa-
tions for entities and relations. Experiments show that our model achieves better
performance in link prediction task than multiple strong baselines on two bench-
mark datasets WN18 and FB15k. In the future, we plan to use more complicated
fusion strategy and further utilize relation and fact type information to better
model the knowledge embedding task.
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