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Abstract—Localization technology plays a key role in 

autonomous driving. Stereo visual odometry is a meaningful 

visual localization method to estimate the pose of autonomous 

vehicles. VINS-Fusion provides a state-of-the-art stereo visual 

odometry with Kanade-Lucas-Tomasi (KLT) tracker to 

achieve fast feature tracking. However, KLT tracker is prone 

to fall into local minima in urban environments due to 

illumination changes and large displacements, leading to 

catastrophic cumulative drift over time. Aiming to solve this 

problem, we present a light and adaptive feature tracking 

technique for VINS-Fusion to get a reliable set of 

measurements for pose estimation. First, a disparity constraint 

is incorporated into left-right check to refine the measurements. 

Next, we propose a light bi-circular check to further remove 

outliers, which has high efficiency with the ingenious design. 

Additionally, an adaptive strategy for feature selection is 

proposed to dynamically balance the quantity and quality of 

the measurements. Experiments demonstrate that our method 

outperforms VINS-Fusion by producing more accurate pose 

estimation with 20% speedup on the KITTI odometry 

benchmark. 
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I.  INTRODUCTION  

Localization is one of the key technologies in vehicle 
speed control, path planning, and obstacle avoidance, etc. 
Stereo visual odometry [1][2] is a meaningful vision-based 
localization method to estimate the pose of autonomous 
vehicles. With the advancement of image processing 
algorithms and computing power, stereo visual odometry has 
gained more popularity in embedded systems and becomes a 
vital component of autonomous driving. It has great 
superiority in utilizing captured images for 3D pose 
estimation with lower cost, especially in GPS-denied 
environments. 

The concept of visual odometry was first proposed by 
Nister et al. [3] in 2004. In 2012, Fraundorfer et al. [4] 
indicated that stereo visual odometry could achieve good 
estimation of relative translation and rotation by minimizing 
the reprojection error of 3D space features on the 2D images. 
The core steps of stereo visual odometry consist of feature 
association and pose estimation. Feature association is based 
on the measurements of feature detection and tracking, and 
pose estimation is based on feature association. Therefore, 
how to obtain a reliable set of measurements is of great 
significance. 
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In order to obtain a reliable set of measurements, 
Deigmoeller et al. [5] adopted forward-backward check and 
disparity measure to limit the feature association obtained by 
Lucas & Kanade optical flows [6]. Besides, circular check 
was used for outlier removal. Feng et al. [7] incorporated 
KLT tracker [8] to track features in stereo images, and used 
time-consuming 2-point Random Sample Consensus 
(RANSAC) [9] and circular matching to remove outliers. 
Cvisic et al. [10] utilized SAD check, circular matching and 
NCC check to remove outliers and obtain feature association 
for pose estimation. Fanfani et al. [11] used sGLOH 
descriptor with sCOr nearest neighbor matching to get initial 
feature association, and refined them using loop chain 
matching integrated with four RANSAC. Wu et al. [12] 
adopted ego-motion prior and automatic tracking failure 
detection scheme in order to improve the robustness of KLT 
tracker. 

VINS-Fusion is a general optimization-based framework 
for pose estimation [13]. It provides four algorithms for 
different sensor suites: stereo cameras, monocular camera 
with an IMU, stereo cameras with an IMU and stereo 
cameras with GPS. In this paper, we focus on the algorithm 
for stereo cameras. Thence the VINS-Fusion in subsequent 
content refers to the stereo visual odometry of VINS-Fusion. 
VINS-Fusion incorporates KLT tracker for fast feature 
tracking, then adopts bundle adjustment [14] and 
marginalization techniques to get accurate pose estimation 
on the KITTI Benchmark [15]. However, KLT tracker, as 
proposed in [8], is prone to fail in urban environments in the 
cases of illumination changes and large displacements. 
VINS-Fusion does not take it into full consideration and 
adopts forward-backward check as the only criterion to judge 
whether a feature is tracked successfully or needs to be 
deleted. This simple check makes insufficient tracking 
failure detection with remaining outliers, and also increases 
the burden of optimization. Even worse, it will cause a bias 
in pose estimation and lead to cumulative drift over time. 

In this paper, we propose a stereo visual odometry with 
light and adaptive feature tracking based on VINS-Fusion. 
The main contributions include: 

 A disparity constraint is incorporated with left-right 
check in VINS-Fusion to refine the measurements 
and improve feature tracking efficiency. 

 Inspired by circular matching, a light bi-circular 
check with high efficiency is proposed to further 
remove outliers. 

 In order to dynamically balance the quantity and 
quality of measurements, an adaptive strategy for 
the feature selection is proposed by automatically 



 

Figure 1.  Flow chart of VINS-Fusion. Feature tracking is implemented by KLT tracker with checks.

adjusting the threshold of bi-circular check. 

 Experimental results on the KITTI odometry 
benchmark have shown that our method achieves 
more accurate pose estimation with 20% speedup 
than VINS-Fusion. 

II. METHODOLOGY 

In this section, we first review VINS-Fusion. Then our 
innovations are introduced in the feature tracking module of 
VINS-Fusion, including the disparity constraint, light 
bi-circular check and adaptive feature selection.  

A. Vins-Fusion 

VINS-Fusion is a state-of-the-art stereo visual odometry. 
The flow chart of VINS-Fusion is shown in Fig. 1. 

In VINS-Fusion, the states in a sliding window to be 
estimated are defined as: 

𝜒 = [p0, R0, p1, R1, … , p𝑛, R𝑛 , λ0, λl, … , λ𝑛]

where p𝑖 and R𝑖 are relative translation and rotation in the 
world coordinate. λ𝑖  is the depth of per feature. 

In each stereo image, corner features [16] are detected 
and tracked by KLT tracker to establish the feature 
association. Features are first tracked in the temporal frame 
with forward-backward check, and then tracked in the spatial 
frame with left-right check. If one feature is tracked 
successfully in the temporal frame, its age is increased by 1.  

Next, the 2D features in the current frame and their 
corresponding 3D map points are used to get the initial pose 
by Perspective-N-Point (PnP) method. Some new features in 
the frame are triangulated for the following tracking. 

Based on the feature association, VINS-Fusion constructs 
the reprojection residual with per feature in each frame by 
projecting the feature from its first observation into the 
following frames. Suppose that the first observation of 
feature l is in the i-th frame, its reprojection residual in the 
t-th frame is: 

z𝑡
𝑙 − ℎ𝑡

𝑙 (𝜒) = z𝑡
𝑙 − ℎ𝑡

𝑙 (R𝑖 , p𝑖 , R𝑡 , p𝑡 , λ𝑙)            
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where [
𝑢𝑡

𝑙

𝑣𝑡
𝑙]  is the observation of feature l on the t-th 

frame. 𝜋𝑐 is the pinhole model which projects the feature 

from camera coordinate to image coordinate. T represents 

the camera pose, which is a 4x4 homogeneous matrix 

[
R p
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] . For stereo visual odometry, VINS-Fusion also 

needs to construct spatial residual by the same way as it 

does for temporal residual. 
VINS-Fusion uses a bundle adjustment formulation, and 

obtains the maximum likelihood estimation of states by 
minimizing the reprojection residual: 

𝜒∗ = arg min
𝜒

∑ ∑ ‖z𝑡
𝑘 − ℎ𝑡

𝑘(𝜒)‖
Ω𝑡

𝑘

2
𝑘∈S

𝑛
𝑡=0 ,      

where S is the set of measurements and Ω𝑡
𝑘 is covariance 

matrix of the reprojection residual. The norm is defined as 
‖x‖Ω

2 = x𝑇Ω−1x . This formulation can be solved by 
Gauss-Newton or Levenberg-Marquardt approaches. 

As system states increase over time, marginalization is 
adopted to reduce computational complexity. It converts the 
previous measurements into a prior for the remaining states 
in the sliding window, and removes the past partial states 
from system states in order to balance accuracy and 
efficiency. 

B. Disparity Constraint 

VINS-Fusion uses KLT tracker for fast feature tracking. 
As an optical flow method, KLT tracker is prone to fall into 
local minimum in the cases of illumination changes and large 
displacements, leading to performance deterioration in urban 
environments. VINS-Fusion takes forward-backward check 
as the only criterion to judge whether a feature is tracked 
successfully or needs to be deleted. However, the established 
feature association may not be reliable, since this check is 
not thorough and still leaves some outliers. To deal with this 
problem, we incorporate disparity constraint with left-right 
check after forward-backward check. 
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Figure 2.  Forward-backward check. 

We first describe forward-backward check in detail.  

Suppose that {𝐼𝑡1
𝑙 , 𝐼𝑡1

𝑟 , 𝐼𝑡2
𝑙 , 𝐼𝑡2

𝑟 } are the input images, where 



𝑡1 and 𝑡2 denote the consecutive frames, l and r denote the 
left and right images. As shown in Fig. 2, forward-backward 

check in VINS-Fusion is only performed between 𝐼𝑡1
𝑙  and 

𝐼𝑡2
𝑙 . The feature 𝐱𝑡1

𝑙  in 𝐼𝑡1
𝑙  is tracked by KLT tracker to 

obtain the temporal matching 𝐱𝑡2
𝑙  in 𝐼𝑡2

𝑙 , and then 𝐱𝑡2
𝑙  is 

tracked back to 𝐼𝑡1
𝑙  with the reverse point  𝐱𝑡1

𝑙 ′ . If the 

distance between 𝐱𝑡1
𝑙  and 𝐱𝑡1

𝑙 ′ is less than the threshold 𝛿1, 
the feature passes forward-backward check. Otherwise, it is 
rejected and deleted. The constraint for forward-backward 
check can be defined as: 

‖𝐱𝑡1
𝑙 − 𝐱𝑡1

𝑙 ′‖ < 𝛿1.               
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Figure 3.  Left-right check. 

Similarly, left-right check is performed between 𝐼𝑡2
𝑙  and 

𝐼𝑡2
𝑟  in the same manner. As shown in Fig. 3, feature 𝐱𝑡2

𝑙  is 
tracked to the right image with the corresponding feature 𝐱𝑡2

𝑟 , 

and tracked back with the reverse point 𝐱𝑡2
𝑙 ′. The constraint 

for left-right check is: 

‖𝐱𝑡2
𝑙 − 𝐱𝑡2

𝑙 ′‖ < 𝛿2.              
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Figure 4.  Disparity constraint. 

Based on the left-right check, we incorporate a disparity 
constraint to refine the measurements as shown in Fig. 4. In 
the calibrated stereo images, the epipolar lines are horizontal, 
which means that the y-component of the spatial matching 

(𝐱𝑡2
𝑙 , 𝐱𝑡2

𝑟 ) should be the same. However, considering that the 
calibration may not be such precise, we retain the feature 
when the y-component difference is within a certain range. 
After features are tracked to the right image, we get many 
spatial matchings. A matching is passed if it satisfies 
disparity constraint. The disparity constraint is defined as: 

|𝑦𝑡2
𝑙 − 𝑦𝑡2

𝑟 | < 𝛿3,               

where the threshold 𝛿3 mainly depends on the calibration 
level. Otherwise, we directly delete the feature and do not 
track it back to avoid unnecessary computation on reverse 
KLT tracking and left-right check.  

C. Light Bi-circular Check 

According to [10], circular matching is an effective 
method to remove outliers and check the consistency of 
feature association. As shown in Fig. 5(a), circular matching 
means that per feature needs to be matched between two 
consecutive frames of left and right images following the 

order 𝐼𝑡2
𝑙 → 𝐼𝑡2

𝑟 → 𝐼𝑡1
𝑟 → 𝐼𝑡1

𝑙 → 𝐼𝑡2
𝑙 . We hope to combine 

circular matching to further remove outliers and get a 
reliable set of measurements for pose estimation. However, it 
requires double computation if circular matching is 
performed after forward-backward check and left-right check. 
Therefore, we propose a light bi-circular check, which is 
similar to circular matching in structure but has high 
efficiency. The ingenious design of bi-circular check is 
described as follow. 

The sketch map of the proposed method is shown in Fig. 
5(b). In the method, forward-backward check and left-right 
check are regarded as part of the bi-circular check. As 
another left-right check has already been performed between 

𝐼𝑡1
𝑙  and 𝐼𝑡1

𝑟  in the last round, we only need to perform an 
additional forward-backward check between 𝐼𝑡2

𝑟  and 𝐼𝑡1
𝑟 . It 

is defined as: 

‖𝐱𝑡2
𝑟 − 𝐱𝑡2

𝑟 ′‖ < 𝛿𝑑,              

where 𝐱𝑡2
𝑟 ′ is the reverse point of 𝐱𝑡2

𝑟  tracked to 𝐼𝑡1
𝑟  and 

then tracked back to 𝐼𝑡2
𝑟 . If one feature fails this check, we 

regard it as a tracking failure and delete it. With this light 
modification, a two-way loop is constructed and we name it 
bi-circular check. Moreover, in order to reduce 
computational burden, we directly delete one feature if it 
fails any check, rather than tracking it till the whole loop is 
completed. 
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Figure 5.  Sketch maps of (a) circular matching and (b) light bi-circular 

check. Forward-backward check and left-right check(blue) are regarded as 

part of the bi-circular check, and we have performed another left-right 
check (gray) in the last round. With additional forward-backward check 

between 𝑰𝑡1
𝑟  and 𝑰𝑡2

𝑟  (red), light bi-circular check is constructed. 



D. Adaptive Feature Selection 

In above subsections, disparity constraint is utilized to 
refine the measurements and light bi-circular is proposed for 
further outlier removal. However, the simple combination of 
two methods may remove valuable features since the 
restriction is too strict. In order to balance the quantity and 
quality of measurements, we propose an adaptive strategy for 
feature selection by automatically adjusting the threshold of 
bi-circular check 𝛿𝑑.  

Two factors are considered in determining the threshold, 
the number of lost features as 𝑙𝑜𝑠𝑠 and the maximum of 
feature age as 𝑚𝑎𝑥𝑡𝑟𝑎𝑐𝑘. The adaptive threshold is defined 
as: 

𝛿𝑑 = ρ ∗
𝑙𝑜𝑠𝑠

𝑚𝑎𝑥𝑡𝑟𝑎𝑐𝑘
+ ε,          

where ρ and ε are predefined parameters. On one hand, the 
threshold 𝛿𝑑  is positively correlated with loss. When 𝛿𝑑 
increases with the growth of loss, our model retains more 
features with a loose constraint. On the other hand, the 
threshold 𝛿𝑑  is negatively correlated with maxtrack. As 
stated in [10], the feature with an older age is more stable 
and has lower probability to be an outlier. Therefore, we 
consider a maxtrack as an index of the quality of features. 
When the maxtrack is large, features are stable and our 
model retains features with a tight constraint. In this way, 
adaptive feature selection is carried out to balance the 
quantity and quality of features.  

To further illustrate our model, we analyze two typical 
examples in detail. When an autonomous vehicle is in a large 
movement, such as a sharp turn, the vision changes greatly 
and many old features are lost frequently. It will result in an 
increasing 𝑙𝑜𝑠𝑠  and a decreasing 𝑚𝑎𝑥𝑡𝑟𝑎𝑐𝑘 . Under this 
circumstance, the increasing threshold 𝛿𝑑  can make our 
model retain more useful features and alleviate performance 
deterioration. When the autonomous vehicle is in a mild 
movement, such as on the straight with a slow speed, loss is 
generally stable and maxtrack continues to increase. In this 
case, the threshold 𝛿𝑑 approaches ε, and features satisfied 
with a tight constraint are retained. 

III. EVALUATION 

To evaluate the proposed methods, we conduct 
experiments on the KITTI odometry benchmark. This dataset 
is usually used to evaluate the performance of visual 
odometry in an autonomous vehicle. KITTI contains images 
from real-world scenes such as urban, rural, and highways 
with illumination changes and displacement variations. We 
first introduce the experiment setup and evaluation criteria, 
then compare the proposed methods with VINS-Fusion in 
accuracy and computation time evaluation. 

A. Experiment Setup 

We use C++ to implement the proposed methods. All 
experiments are performed on an Intel® CoreTM i7-4770 
CPU (3.40 GHz) computer with 16 GB memory. For the 
proposed methods and VINS-Fusion, the max number of 
features is set to 200, and features are detected and tracked 

using OpenCV library tools. The thresholds of forward- 
backward check 𝛿1 and left-right check 𝛿2 are both set to 
0.5, and the threshold of disparity constraint 𝛿3 is set to 2. 
The predefined parameters ρ is set to 0.23 and ε is set to 5. 
We set 𝛿𝑑 to 5 in the experiment when the adaptive feature 
selection is not used. 

B. Evaluation Criteria 

The evaluation metric computes translational and 
rotational errors for all the subsequences of length (100, 
200, …, 800) meters from all test sequences. We use the 
evaluation toolkit provided by the KITTI benchmark to 
compute the root mean squared error (RMSE) of translation 
𝑡𝑟𝑒𝑙 and rotation 𝑟𝑟𝑒𝑙 . They are computed as: 

𝑡𝑟𝑒𝑙 = √
1

𝑚
∑ (𝑡𝑡𝑒𝑠𝑡 − 𝑡𝑔𝑡)2𝑚

𝑖=1 ,           (9) 

𝑟𝑟𝑒𝑙 = √
1

𝑚
∑ (𝜃𝑡𝑒𝑠𝑡 − 𝜃𝑔𝑡)2𝑚

𝑖=1 ,          (10) 

where t and 𝜃 are translation and rotation of each frame, 
test and gt are test results and the ground truth. 

C. Experiment 1:Accuracy Evaluation 

We evaluate VINS-Fusion and the proposed methods as 
follow on 00-10 sequences of the KITTI benchmark: 

 VINS-Fusion + disparity constraint (VINS-Fusion+dc) 

 VINS-Fusion + bi-circular check (VINS-Fusion+bc) 

 VINS-Fusion + disparity constraint + bi-circular check 
(VINS-Fusion+db) 

 VINS-Fusion + disparity constraint + bi-circular check 
+ adaptive feature selection (Ours).  

Table I shows the average pose estimation RMSE results 
of these methods on the KITTI benchmark. Compared to 
VINS-Fusion, VINS-Fusion+dc and VINS-Fusion+bc reduce 
translation errors by 0.07% and 0.1%, rotation errors by 0.07 
deg/100m and 0.09 deg/100m respectively. These results 
demonstrate that both disparity constraint and bi-circular 
check techniques can improve accuracy of pose estimation as 
they impose more restrictions on feature tracking and retain 
features with higher quality for pose estimation.  

TABLE I.  POSE ESTIMATION RMSE COMPARISON 

Method 𝒕𝒓𝒆𝒍 (%) 𝒓𝒓𝒆𝒍 (º/100m) 

VINS-Fusion 1.53 0.63 

VINS-Fusion+dc 1.46 0.56 

VINS-Fusion+bc 1.43 0.54 

VINS-Fusion+db 1.50 0.56 

Ours 1.38 0.51 

𝑡𝑟𝑒𝑙(%): average translational RMSE drift (%) on a length of 100-800m. 𝑟𝑟𝑒𝑙: average rotational 

RMSE drift (º/100m) on a length of 100-800m. 

However, with the combination of disparity constraint 
and bi-circular check with fixed threshold (𝛿𝑑=5) to restrict 
feature tracking, the accuracy improvement of VINS-Fusion 
+db decreases. One reason is that the restrictions on features 
is so strict that some useful features are refused. Fig. 6 
illustrates that only 130 useful features are tracked by 



VINS-Fusion+db and 146 useful features are tracked by our 
method. Obviously, the latter is better than the former. In 
other words, there are more wrong rejections without 
adaptive feature selection in a sharp turn. When an 
autonomous vehicle is on the straight with a low speed, 152 
features are tracked by VINS-Fusion+db and 153 features 
are tracked by our method, as shown in Fig.7. These two 
methods have similar performance on feature selection. We 
can see that the adaptive feature selection is able to improve 
tracking quality by automatically adjusting the threshold of 
bi-circular check. With this adaptive strategy to balance the 
quantity and quality of features, our method further reduces 
translation and rotation errors to 1.38% and 0.51 deg/100m.  
 

 
Figure 6.  Feature tracking in a sharp turn. Only 130 useful features are 

tracked by VINS-Fusion+db and 146 useful features are tracked by our 

method. 

 

Figure 7.  Feature tracking on the straight with a low speed. 152 features 

are tracked by VINS-Fusion+db and 153 features are tracked by our 
method. 

Fig. 8 shows that the reconstructed paths from our 
method are closer to ground truth. In other words, our 
method produces more accurate pose estimation than 
VINS-Fusion. 

     
(a)Sequence03                   (b)Sequence 10 

Figure 8.  Reconstructed paths from VINS-Fusion, our method and ground 

truth. (a) Sequence 03. (b) Sequence 10. 

D. Experiment 2:Computation Time Evaluation 

The comparison of computation time is performed 
among VINS-Fusion and the proposed methods in this paper. 
The baseline is VINS-Fusion. Table II shows that our 
method reduces average tracking time from 38.01 ms to 
21.22 ms and total time from 101.16 ms to 81.13 ms. It 
achieves 44% and 20% speedup over the baseline, which 

proves that the light and adaptive feature tracking technique 
has good performance. The improvement comes from two 
aspects. One is the effect of disparity constraint. Features 
unsatisfied with disparity constraint are deleted and not 
tracked back, which avoids unnecessary computation on 
reverse KLT tracking. It decreases tracking time by 15.04 ms 
and total time by 21.04 ms. The other is the influence of light 
bi-circular check. If a feature fails any check, we delete it at 
once instead of tracking it till the end of bi-circular check. It 
decreases tracking time by 16.91 ms and total time by 21.60 
ms. Therefore, features with good quality and quantity are 
tracked for pose estimation, and algorithm efficiency is 
improved. 

According to Table II, we can see that our method 
consumes a little more total time than VINS-Fusion+dc and 
VINS-Fusion+bc, since it requires computation on more 
checks. VINS-Fusion+db acquires the best efficiency 
because least features are used for pose estimation. With 
adaptive feature selection, some useful features are retained 
for tracking and pose estimation, resulting in the increase of 
total computation time in our method. 

TABLE II.  COMPUTATION TIME COMPARISON 

Method Tracking (ms) Total (ms) 

VINS-Fusion 38.01  101.16  

VINS-Fusion+dc 22.97  80.12  

VINS-Fusion+bc 21.10  79.56  

VINS-Fusion+db 21.54  69.08  

Ours 21.22  81.13  

IV. CONCLUSIONS 

This paper presents a stereo visual odometry with light 
and adaptive feature tracking based on VINS-Fusion, aiming 
to overcome the limitations of KLT tracker. First, a disparity 
constraint is incorporated with left-right check to refine the 
measurements and improve feature tracking efficiency. Next, 
we propose a light bi-circular check to further remove 
outliers which has high efficiency with the ingenious design. 
Additionally, in order to balance the quantity and quality of 
features, an adaptive strategy for feature selection is 
proposed by automatically adjusting the threshold of 
bi-circular check. With all these tools, our method obtains a 
relatively reliable set of measurements for pose estimation. 
The experiments on the KITTI odometry benchmark have 
shown that our method not only performs well in accuracy 
but also reduces 20% calculation time compared with 
VINS-Fusion. 

Our future work will focus on trying to utilize IMU to 
provide an ego-motion prior for feature tracking and further 
improve accuracy of pose estimation. 
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