
Path Generation for Robotic Polishing of

Free-form Surfaces

Zhaosheng Li1,2, Linlin Shang1,2, Wei Wang1 and Taiwen Qiu3
1Institute of Automation, Chinese Academy of Sciences, Beijing, China

2University of Chinese Academy of Sciences, Beijing, China
3Shanghai Aircraft Manufacturing Co., Ltd., Shanghai, China

{lizhaosheng2017, shanglinlin2016, wei.wang}@ia.ac.cn, qiutaiwen@comac.cc

Abstract This paper develops an off-line programming system
to generate tool paths for robotic polishing. The system extracts
CAD data from STL format files of free-form surfaces and builds
topology relations of triangular facets. We adopt direction-
parallel path pattern, since it needs less degrees of freedom and is
much easier to avoid the physical intervention and the dynamic
singularity. We incorporate topology relations of triangular facets
into the direction-parallel path generation algorithm with equal
axis intervals, so this can remove the redundant data and
facilitate the efficiency of path generation. Again, we propose the
constant contour interval path generation algorithm, which can
generate paths with equal contour intervals. The generated paths
with equal contour intervals are desired for robotic polishing. We
implement the off-line programming system based on Qt and
OpenGL. The system can generate accurate and uniform paths of
free-form surfaces, such as the turbine blade surface and the
propeller blade surface.

Index Terms - path generation; free-form surface; robotic
polishing; off-line programming

I. INTRODUCTION

During the process of mold manufacturing, the surface

roughness of mold affects the product quality. Molds are

general polished manually, as the finishing process after

milling. This process requires special technical skills and takes

much time, which leads to higher cost of the molds [1].

Moreover, high-end manufacturing fields, such as turbine and

propeller blades manufacturing, also requires the polishing

technology. The surface quality of these work-pieces has a

direct impact on the service life, stability and reliability of

related equipment. To improve the surface quality, the skilled

workers cost much time to polish the work-piece [2]. It is

absolutely essential to develop the off-line programming

system to generate tool path for robotic polishing.

There have been many researches about path generation for

robotic polishing. F. Nagata et al. [3] develop a furniture

polishing robot using a trajectory generator based on cutter

location (CL) files. Then F. Nagata et al. [4][5][6] apply the

robot to the polishing process of poly ethylene terephthalate

(PET) bottle molds and get paths from the CL data generated

from 3D CAD/CAM systems. K. Zhang et al. [7] utilize the

six-axis machine tool to polish the blade and propose the path

generation method of machining on the surface of the blade.

X. Yang et al. [8] design an automatic belt grinding system to

grind the blade and generate the path of grinding. Hon-yue

Tam et al. [9] utilize the scanning paths method to generate the

polishing path Y. Mizugaki et al. [10] suggest a new method

of Fractal path generation in a robot system of polishing metal

molds. Rososhansky. M et al. [11] present a path generation

method for automated polishing and apply contact mechanics

for contact area modeling and analysis. Kout. A et al. [12]

present a general method of offset curve construction with tool

adaptive offset and an application-independent algorithmic

framework of the method for work-piece surfaces represented

by a triangular mesh. W.L Li et al. [13] propose a new tool

path generation method for triangular meshes based on the

least-squares conformal map. R. S. Freitas et al. [14] describe

the methodology and steps involved in off-line programming

for automatic trajectory generation. Although some tool path

generation algorithms are developed, there are still plenty of

challenges for the variety of free-form surfaces which have

many different shapes and curvatures.

Conventional industrial robots only provide a teaching

pendant as the user interface device and the teaching of free-

form surface is extremely difficult and complicated. The off-

line programming using the CAD models is convenient and

efficient. This paper utilizes the stereolithography (STL) file

which includes plenty of unstructured triangular facets to

represent the CAD model. It is difficult to plan paths on the

independent triangles. Therefore, we use the half edge

structure to build topology relations of triangular facets. The

active edge algorithm is used to extract the polishing surface.

After analyzing the direction-parallel and the contour-parallel

path patterns, we adopt the direction-parallel path pattern,

since it needs less degrees of freedom and is much easier to

avoid the physical intervention and the dynamic singularity.

We incorporate topology relations of triangles into the

direction-parallel path generation algorithm with equal axis

intervals, so this can remove the redundant data and facilitate

the efficiency of path generation. Again, we propose the

constant contour interval algorithm, which can generate paths

with equal contour intervals. We implement the off-line

programming system based on Qt and OpenGL. The system

can generate accurate and uniform paths of free-form surfaces,

such as the turbine blade surface and the propeller blade

surface.

II. PRELIMINARY WORK

A. Extraction of CAD Data from STL Files

1671978-1-7281-1699-0/19/$31.00 ©2019 IEEE

Proceedings of 2019 IEEE
International Conference on Mechatronics and Automation

August 4 - 7, Tianjin, China

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 11,2020 at 14:04:54 UTC from IEEE Xplore. Restrictions apply.

A STL file describes an unstructured triangulated surface

by the unit normal and vertices (ordered by the right-hand rule)

of the triangles using a three-dimensional cartesian coordinate

system. According to the characteristics of the STL files, we

extract CAD data from STL files using Qt program.

n

1v

2v

3v

Fig. 1 The mesh surface of the face acquired from the STL file.

The data redundancy of the STL file is very large as almost

every vertex is recorded repeatedly 6 times [15]. At the same

time, it is difficult to analyze the free-form surface feature and

generate paths on hundreds of unstructured triangular facets. It

is essential to build topology relations, which can remove the

redundant data and improve the efficiency of path generation.

B. Topological reconstruction
The half edge structure [16] used to build the topology

relation is shown in Fig. 2.

1F

3F

4F
1V

2V 3V

4V

5V

6V
1E

2E

3E
1HE

2HE

3HE
4HE

5HE

6HE
2F

Fig. 2 The half edge structure.

An edge in the mesh surface is divided into two directed

edges. Each triangle consists of three half edges and three

vertices, and all of them meet the right-hand rule. Building

topology relations is to create the adjacent information among

triangles, half edges and vertices.
During the process of building the topology relations, the

data structures of vertices, half edges and triangles need to be

built. The data structures are divided into four classes: Vertex,

HalfEdge, Facet and STLSolid.

The main work of the topological reconstruction process is

to merge duplicate vertices, which asks for lots of searches, so

the speed of searching vertices affects the speed of the

topological reconstruction. The set container of C++ Standard

Template Library is used to build topology relations, because

it is very fast to search data for the set container which is

implemented by binary search trees. The set container stores

unique elements following a specific order. The value of an

element is also the key used to identify it. It is essential to

overload the comparison operator for the set container.

Algorithm 1 shows the steps of topological reconstruction.

Algorithm 1: BUILD_TOPO (verArray, heArray, fArray)
1 declare vertexSet and halfEdgeSet.
2 for i in num triangles

3 for j in three vertices

4 if (j vertex in the vertexSet) continue

5 else

6 insert the vertex into the vertexSet and verArray

7 complete other relations such as the index of vertex

8 and the relation of vertex and facet

9 for k in three half edges

10 insert k half edge into the halfEdgeSet and heArray

11 if (adjacent half edge of the k in halfEdgeSet)
12 add the adjacent relation of the k half edge

13 complete other relations such as the relations of the half edge

14 and vertices, the relations of the half edge and the facet

15 insert the facet into fArray

C. Extraction of Polishing Surface
The process of extracting polishing surface mainly includes

two steps, judging if the triangle is needed and extraction of

triangles and boundary half edges.

To determine if the triangle is needed, we improve the

edge-based method for defining feature boundaries which

relies on the dihedral angle between two triangles [17]. The

normal vector of a new triangle is n1, the given normal vector

is n2 and the threshold is threshold. If

1 2

1 2

n nthreshold
n n

� (1)

the new triangle is needed.

We use the active edge algorithm to extract the polishing

surface. Algorithm 2 shows the steps to extract the surface.

Algorithm 2: EXTRACT_SURFACE(exfacetSet, bdhfSet)
1 declare the active half edge linked list halfedgeList.
2 find the first facet needed, add the three half edges to halfedgeList
3 and add the facet to exfacetSet.
4 while (halfedgeList is not empty)

5 search the adjacent triangle of the current half edge.

6 if(adjacent triangle dissatisfies the threshold condition)

7 add the half edge to the bdhfSet
8 else

9 insert adjacent facet into exfacetSet.
10 add the two half edges of the adjacent facet to halfedgeList

11 delete the current half edge in halfedgeList

III. PATH GENERATION

A. Path Patterns
There are two main path patterns, the contour-parallel path

pattern and the direction-parallel path pattern [18].

1) Contour-parallel path pattern
A series of cutting planes which are vertical to Z-axis cut

the surface of the work-piece. The cutting plane intersects with

the work-piece generating the color one and its boundary red

line is the path of tool in Fig. 3(a).

1672

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 11,2020 at 14:04:54 UTC from IEEE Xplore. Restrictions apply.

Z

X

Y

�
�

P

xv
yv

X
Y

Z

A

B C

D

(a) (b)

Fig. 3 The contour-parallel path pattern.

The path generation not only needs the accurate trajectory

but also needs to guarantee the correct pose of the tool. The

movement of the polishing tool is shown in Fig. 3(b). In the

process of polishing, the feed motion of the tool includes the

movement on the cutting plane and the rotation around the

point P. The rotation motion of the tool main includes the

changes of the cycloid angle and the elevation angle. The

motion on the plane is that the tool moves along the X-axis

and Y-axis, namely the vx and vy.

2) Direction-parallel path pattern
Likewise, a cluster of cutting planes which are vertical to

X-axis cut the surface of the work-piece. The cutting plane

intersects with the work-piece generating the color one and its

boundary red line is the path of polishing tool in Fig. 4(a).

�
yv

zv

Z

X

Y

P

X
Y

Z

A

B
C

D

(a) (b)

Fig. 4 The direction-parallel path pattern.

The movement of the polishing tool is shown in Fig. 4(b).

The feed motion of the tool includes the movement on the

cutting plane and the rotation. The rotation of the tool is the

change of the � . The movement on the plane includes the

motion along Y-axis and Z-axis, namely vy and vz.

The tool movement of the contour-parallel pattern has two

linear motions and two rotations, and the tool movement of the

direction-parallel pattern has two linear motions and one

rotation. Compared with the contour-parallel pattern, the

direction-parallel path pattern needs less degrees of freedom

and is much easier to avoid the physical intervention and the

dynamic singularity, so we adopt the direction-parallel pattern

to generate the path.

B. Direction-parallel Paths with Equal Axis Intervals
As shown in Fig. 5, the path generation algorithm is that a

series of cutting planes with equal axis intervals cut the work-

piece and intersect with the work-piece generating paths.

path

cutting plane free-form surface

path

cutting plane
free-form surface

Fig. 5 Two different directions paths sliced by a series of parallel planes.

We can get boundary half edges of the free-form surface in

previous sections, and this facilitate us calculate the first and

the last intersections of one path. We can get the coordinate of

the cutting plane after we get the range of the free-form surface.

The steps of path generation are as follows.

Step 1: Calculate the x coordinate of the cutting plane X[i].
Declare the vector container nodeVec which stores the

intersections.

Step 2: Traverse the boundary half edge array and get two

half edges bHFi[2] which intersect with the cutting plane.

Declare the current triangle which has the boundary half edge
bHFi[0]. Add the intersection between the cutting plane and

the half edge bHFi[0] into the nodeVec.

Step 3: Traverse the three half edges of the current triangle

and calculate the intersection between the plane and the half

edge. If the intersection is new, add the intersection into the
nodeVec. Else, continue.

Step 4: Update the current triangle. If the intersection last

searched lies in the half edge, we update current triangle to

adjacent triangle of the half edge. If the intersection lies in the

vertex, we traverse the adjacent triangles of the vertex and

update the current triangle to the adjacent triangle which

intersects with the plane.

Step 5: Judge if the half edge last searched is the boundary

half edge, namely bHFi[1]. If so, end. If not, return step 3.

The steps above help us get one path, and we can get a

series of paths by updating coordinates of cutting planes.

C. Constant Contour Interval Algorithm
For the direction-parallel path generation algorithm with

equal axis intervals, the intervals on the contour between two

paths is different as shown in Fig. 6. This algorithm only keeps

axis intervals equal, which is not desired. There will be the

problem of overlap or leak between two paths during the

process of polishing.

L L L

L1

L2

L3

X

Z

P1

P2

P3

P4

Fig. 6 The lateral view of the path on the free-form surface.

1673

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 11,2020 at 14:04:54 UTC from IEEE Xplore. Restrictions apply.

To solve the problem of the above algorithm, we propose

an improved algorithm based on the contour intervals of the

free-form surface. We call it constant contour interval

algorithm. The steps of constant contour interval algorithm are

as follows.

Step 1: Get the intersections between the cutting planes and

the free-form surface. The intersections are the small black

circles shown in Fig.7.

cutting
plane

L L L L L L

path1 path2 path3 path4 path5 path6 path7

plane1
plane2
plane3
plane4
plane5
plane6
plane7
plane8
plane9
plane10
plane11
plane12tool

path

: Vi

: Pi

Fig. 7 The constant contour interval algorithm.

Step 2: Get the path points from each array which stores

intersections between the plane and the free-form surface

according to the path interval L. The path points are the red

points shown in Fig. 7.

Let the first intersection be the first path point. Then

iterative search the path points as shown in Algorithm 3.

Algorithm 3: SEARCH_POINTS(n, V, P, L)
1 preSum = 0, curSum = 0, P0=V0, k=1

2 for i = 1 to n

3 preSum = curSum

4 curSum = curSum + Vi-1Vi

5 if (curSum < L) continue

6 else if (curSum == L) Pk=Vi, k++, curSum=0

7 else

8 calculate the Pk between the Vi-1 and Vi using the

9 Vi-1 Pk = L-preSum, k++, curSum=Vi-1Vi-Vi-1Pk

Step 3: Connect the path points obtained from the step 2

along the path direction.

Fig. 8 shows the two paths using the two methods. As is

shown, constant contour interval algorithm can generate more

uniform paths on the free-form surface.

 (a) (b)

Fig. 8 The comparison of direction-parallel path generation algorithm with

equal axis intervals and constant contour interval path generation algorithm.

(a) The direction-parallel paths. (b) The paths with equal contour intervals.

D. Normal Vector of the Path Point

The polishing tool maintains a constant angle with the

normal vector of the surface in the process of polishing. Hence,

we need to calculate the normal vector of the path point. Path

points have three situations, inside of the triangle, on the

vertex of the triangle and on the edge of the triangle. Fig. 9

shows the last two cases.

A

B

C

P x

X

Y
AVN

PVN

BVN

2fN1f
N

3f
N

4fN

5f
N

vN

(a) (b)

Fig. 9 The calculation of the normal vector. (a) The normal vector of the

vertex. (b) The normal vector of the intersection.

The calculation methods of three cases are as follows.

� The normal vector of the path point is same with the

normal vector of the triangle when the path point is

inside of the triangle.

� When the path point is on the vertex of the triangle,

the normal vector of the point is

 (2)

where i is the adjacent triangle index of the vertex.

� When the path point is on the edge of the triangle, the

normal vector of the point is

 (3)

IV. ALGORITHM IMPLEMENT

A. Off-line Programming System
The off-line programming system is developed on Qt

creator 4.03. In order to display the STL model and the paths

generated by above algorithms, we use the OpenGL which is a

cross-platform application programming interface for render-

ing graphics. The development of user interface software and

the calculation of the path generation is on Qt 5.7.1. The path

generation system is shown in Fig. 10.

Fig. 10 The path generation system developed on Qt creator.

1674

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 11,2020 at 14:04:54 UTC from IEEE Xplore. Restrictions apply.

B. Path Generation Results
In order to verify the direction-parallel path generation

algorithm with equal axis intervals and the constant contour

interval path generation algorithm, the Robotic Polishing

System generates plenty of paths of different free-form surface.

1) Direction-parallel paths with equal axis intervals
The system generates the paths of two representative

surfaces, the turbine blade and the propeller blade surfaces.

Fig. 11 shows the CAD model of the turbine blade and the

free-form surface.

Fig. 11 The CAD model of the turbine blade and the free-form surface.

The system generates the paths of different directions and

different cutting intervals in consideration of the polishing

process and the polishing tool size. We get the desired paths of

the turbine blade surface. The results of the path generation for

the turbine blade surface are shown in Fig.12.

(a) (b)

(c) (d)

Fig. 12 The result of path generation. (a) Paths along Y-axis in a small

interval. (b) Paths along Z-axis in a small interval. (c) Paths along Y-axis in a

large interval. (d) Paths along Z-axis in a large interval.

The cutting planes vertical to Z-axis cut the free-form

surface in a small interval shown in Fig. 12(a). The cutting

planes vertical to Y-axis cut the free-form surface in a small

interval shown in Fig. 12(b). The cutting planes vertical to Z-

axis cut the free-form surface in a large interval shown in Fig.

12(c). The cutting planes vertical to Z-axis cut the free-form

surface in a large interval shown in Fig. 12(d).

Fig. 13 shows the CAD model of the propeller blade and

the free-form surface.

Fig. 13 The CAD model of the propeller and the free-form surface.

The system generates the paths of different directions and

different cutting intervals between two paths. We get the

desired paths of the propeller blade. The results of the path

generation for the propeller blade are shown in Fig.14. The

uniform paths cover the free-form surface of the propeller

blade.

(a) (b)

(c) (d)

Fig. 14 The paths of the propeller blade. (a) Paths along X-axis in a small

interval. (b) Paths along Y-axis in a small interval. (c) Paths along X-axis in a

large interval. (d) Paths along Y-axis in a large interval.

2) Constant contour interval paths

1675

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 11,2020 at 14:04:54 UTC from IEEE Xplore. Restrictions apply.

The system can generate the constant contour interval

paths using the proposed algorithm. The CAD model and the

free-form surface to be polished is shown in Fig. 15.

Fig. 15 The CAD model and the free-form surface.

The results of the path generation are shown in Fig. 16.

The Fig. 16(a) shows the results of the direction-parallel path

algorithm and Fig. 16(b) shows the result of the constant

contour interval algorithm. As is shown, constant contour

interval algorithm can generate more uniform paths on the

free-form surface. This path generation algorithm solves the

problem of overlap or leak between two paths.

(a) (b)

Fig. 16 The paths generated by two algorithms. (a) Direction-parallel path

generation algorithm. (b) Constant contour interval path generation algorithm.

V. CONCLUSION AND FUTURE WORK

In this paper, we develop an off-line programming system

to generate tool paths for robotic polishing. The system

extracts CAD data from STL format files of the free-form

surface and builds topology relations of triangular facets. We

use the direction-parallel path generation algorithm with equal

intervals based on topology relations and propose the constant

contour interval path generation algorithm. We implement the

off-line programming system based on Qt and OpenGL. The

system can generate accurate and uniform paths of free-form

surface, such as the turbine blade and the propeller blade. The

proposed algorithm solves the problem of overlap or leak

between two paths in the process of polishing.

Future work will concentrate on improvement of path

generation, polishing process, polishing system and force

control of the industrial robot.

ACKNOWLEDGMENT

The research is sponsored by the National Commercial

Aircraft Manufacturing Engineering & Technology Research

Center Innovation Fund of China (COMAC-SFGS-2017-

36737).

REFERENCES

[1] Daqi Li, Lei Zhang, Ji Zhao, Xu Yang and Shijun Ji, "Research on

polishing path generation and simulation of small mobile robot," IEEE
2009 International Conference on Mechatronics and Automation, pp.

4941-4945, 2009.

[2] B. Tsong-Jye Ng, Wen-Jong Lin, Xiaoqi Chen, Zhiming Gong and

JingBing Zhang, "Intelligent system for turbine blade overhaul using

robust profile re-construction algorithm," ICARCV 2004 8th Control,
Automation, Robotics and Vision Conference, vol. 1, pp. 178-183, 2004.

[3] F. Nagata, K. Watanabe and K. Izumi, "Furniture polishing robot using a

trajectory generator based on cutter location data," IEEE International
Conference on Robotics and Automation, vol. 1, pp. 319-324, 2001.

[4] F. Nagata et al., "Polishing robot for PET bottle molds using a learning-

based hybrid position/force controller," 2004 5th Asian Control
Conference, vol. 2, pp. 914-921, 2004.

[5] F. Nagata et al., "New finishing system for metallic molds using a hybrid

motion/force control," 2003 IEEE International Conference on Robotics
and Automation, vol. 2, pp. 2171-2175, 2003.

[6] Nagata F, Hase T, Haga Z, "CAD/CAM-based position/force controller

for a mold polishing robot," Mechatronics, vol. 17, pp 207-216, 2007.

[7] K. Zhang, G. Zhu, S. Liu, B. Qian, X. Zhang and C. Zhang, "Path

generation for machining on surface of a blade," 2017 IEEE
International Conference on Robotics and Biomimetics, pp. 2093-2098,
2017.

[8] Xu Yang, Ji Zhao, Lei Zhang and Daqi Li, "Research on the automatic

belt grinding system for machining blade with complex surface," 2010
2nd International Conference on Advanced Computer Control, pp. 530-

534, 2010.

[9] Hon-yue Tam, Osmond Chi-hang Liu, Alberet C.K. Mok, "Robotic

polishing of free-from surfaces using scanning path," Journal of
Materials Processing Technology, vol. 95, pp. 191-200, 1999.

[10] Y. Mizugaki, m. Sakamoto, T. Sata, "Fractal path generation for a metal-

mold polishing robot system and its evaluation by the operability," Ann
CIRP, vol. 42, no. 1, pp. 531-534, 1992.

[11] Rososhansky M, Xi F, "Coverage based tool-path generation for

automated polishing using contact mechanics theory," Journal of
Manufacturing Systems, pp. 144-153, 2011.

[12] Kout A, Müller, Heinrich, "Tool-adaptive offset paths on triangular mesh

workpiece surfaces," Computer-Aided Design, 2014.

[13] WenlongLi, ZhoupingYin, YonganHuang, "Tool path generation for

triangular meshes using least-squares conformal map," International
Journal of Production Research, 2011.

[14] R. S. Freitas, E. E. M. Soares, R. R. Costa and B. B. Carvalho, "High

precision trajectory planning on freeform surfaces for robotic

manipulators," 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 3695-3700, 2017.

[15] Zhan Haisheng, Z. Ding and L. Zhou, "Connectivity Compression for

meshes," Active Media Technology - the Second International
Conference, 2014.

[16] Sieger D, Botsch M. Design, "implementation and evaluation of the

surface mesh data structure," Proceedings of the 20th International
Meshing Roundtable, pp. 533-550, 2012.

[17] Razdan A, Bae M S, "A hybrid approach to feature segmentation of

triangle meshes, " Computer Aided Design, 2003.

[18] J. M. Zhan, X.Q. Zhou, L.Y. Hu, "Study on Path generation for

Industrial Robots in Free-Form Surfaces Polishing", Key Engineering
Materials, vols. 392-394, pp. 771-776, 2009.

1676

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 11,2020 at 14:04:54 UTC from IEEE Xplore. Restrictions apply.

