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Abstract—Recently, numerous deep learning based scene
text detection methods have achieved promising performances
in different text detecting tasks. Most of these methods are
trained in a supervised way, which requires a large amount of
annotated data. In this paper, we explore a weakly supervised
method to locate text regions in scene images. We propose a
fully convolutional network (FCN) architecture to implement
binary classification. The training data we used do not need
any text location annotation, we only need to divide the training
data into two categories according to whether it contains text
or not. We can obtain the text localization map (TLM) directly
from the last convolutional layer. By setting a fixed threshold,
the TLM is converted to a mask map. Then the connected
component analysis and the text proposals method based on
Maximally Stable Extremal Regions (MSERs) are used to get
the text region bounding boxes. We conduct comprehensive
experiments on standard text datasets. The results show that
our text localization method achieves comparable recall per-
formance with other methods and has more stable property.

Keywords-weak supervision; fully convolutional network;
text localization map;

I. INTRODUCTION

With the development of the Internet and portable mobile

devices, more and more scene images are created. The text

contains rich semantic information and contributes to the

analysis and understanding of scene images.

In the past years, there have been many deep neural

network based methods proposed for scene text detection

tasks. We require a large amount of annotated image data

to train these neural networks. Annotating these images in

bounding box level is a time-consuming and laborious task.

In this paper, we propose a text localization method based

on weak supervision. We do not need any image annotation

of the objects. First, we train a binary classification network,

the network is a fully convolutional architecture. By merging

multi-layer information together, it can capture more low-

level features which are more suitable for text classification

and localization. We use the conv1×1 to generate the text

localization map (TLM). It is a two-dimension feature layer

that represents the text location confidence score. Then, we

use a fixed threshold and connected components analysis

to convert the TLM to a binary mask. It works like the

attention mechanism in the image. The MSERs and Single

Linkage Criterion proposed in [1] is used to extract text

region proposals out of the image.

This work is inspired by the research of Zhou et al.

[2, 3] and Wei et al. [4, 5]. Li et at. [6] firstly use the

weakly supervisory way to generate class activation maps

(CAM) and use MSERs to obtain the bounding box of

the text regions. They adapt the network architecture in

[3] by substituting the global average pooling (GAP) layer

with the spatial pyramid average pooling (SPP) layer. They

generate the CAM in two steps: first, they train the text

attention neural network to classify the images into text

images or neural images. The features output from the last

spatial pyramid pooling (SPP) layer are passed to softmax

classifier and the corresponding weights are recorded. Then

the CAM is calculated by weighting the feature maps with

the recorded weights.

Comparing with the previous works, our work makes the

following contributions:

(1) The work is a further exploration of weak supervision

methods in scene text detection.

(2) The network we designed uses a U-Net shape architec-

ture rather than the CAM architecture, it allows images with

arbitrary scales as input. By merging low-level and high-

level features it can capture more fine-grained features.

(3) Without extra steps, we can directly obtain the TLM

from the last convolutional layer.

(4) Our proposed method is stable and has comparable

recall performance with other supervised methods.

The rest of the paper is organized as follows. Section

II introduces the related work in the field of scene text

detection and weakly supervised methods. The details of the

proposed method are presented in Section III. In Section IV,

we compare our method with other methods on standard text

datasets. Section V concludes the paper.

II. RELATED WORK

A. Traditional Natural Scene Text Detection Method

The traditional scene text detection methods can be di-

vided into two categories: the methods based on connected

components and the methods based on sliding windows.

The methods based on connected components use the

bottom-up strategy to detect text. Such as edge detection

methods and text-level detection methods. The edge detec-

tion methods obtain the text proposal region by detecting

the edges or corners of text and then use a classifier to tell

whether it belongs to text or not. The text-level detection
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methods utilize the characteristics that the scene text pixels

usually have similar color and stroke width, by processing

specifically, the adjacent pixels show connectivity in their

spatial structure. These methods obtain text proposals by

detecting connected components in the image. Some of the

representative methods are external regions (ERs) [7, 8],

maximally stable extremal regions (MSER) [9, 10], stroke

width transform (SWT) [11, 12] and binarized normed

gradients (BING) [13].

the methods based on sliding windows use the top-

down strategy [14–18] to detect texts. They adopt multiscale

sliding windows to scan the whole image and extract features

from the text candidate regions, the confidence scores of the

text regions are obtained by combining a trained classifier.

B. Deep Learning Based Scene Text Detection Method

The performance of traditional text detection methods is

limited to the handcrafted features. With the development

of deep learning technology, the deep neural network can

combine low-level features to obtain a more abstract high-

level presentation of text regions. The deep learning based

scene text detection methods can be divided into anchor-

based methods and pixel-based methods.

The anchor-based methods are inspired by faster-RCNN

[19] and the SSD [20] series framework. Zhong et al. [21]

propose a unified framework for text proposal generation

based on faster-RCNN. Tian et al. [22] use fixed-length

anchors to get the text regions and send them to a Bi-LSTM

network. By merging space features and sequence features,

the network can obtain the text proposals. To handle the large

variation in aspect ratios of words, Liao et al. [23] design

several inception-style output layers that utilize both irregu-

lar convolutional kernels and default boxes. In the following

work, they improved the previous work and proposed the

Textboxes++ method [24], its main contribution is expanding

the horizontal text detector into the arbitrary orientation text

detector.

The pixel-based methods take the text detection task as

a general segmentation task. they use the fully convolu-

tional network structure to determine whether the pixel in

the image belongs to the foreground(text) or background.

The most representative method is EAST [25]. Considering

the efficiency, the semantic segmentation methods usually

predict the text/non-text score map on small feature maps.

These methods can avoid the direction of text alignment and

the effect of the aspect ratio variation. Li et al. [27] propose

a novel end-to-end framework by combining semantic seg-

mentation and anchor-based methods in one network to deal

with the large variances in size and aspect ratio.

C. Weakly Supervised Detection Method

While using the deep learning based method to detect text

in the scene images, the scale of the training set will have an

important impact on the results. The small scale training set

will lead to the overfitting problem, the large scale training

set will consume too much labor to annotate the data. Some

researchers provide a valid solution [28–30] to hander the

problem by synthesizing images.

There are some methods try to detect the object in images

without data location annotation. Zhou et al. [2, 3] find that

the convolutional neural network can localize the objects

by training a classification network. They use the class

activation maps (CAM) to indicate the object regions. But

this method can only identify the most discriminative part

of the object. Wei et al. [4] propose an adversarial erasing

approach to obtain the whole object regions by training

several classification networks and merge the results. Singh

et al. [31] use a strategy to hide the patches of input images

randomly so that it can find other discriminative parts of the

object. Wei et al. [5] enhance their previous work by propos-

ing an Adversarial Complementary Learning approach for

discovering the entire object via weakly supervised training.

Li et al. [6] adapt the CAM to generate localization maps

in the text detection task, it allows multiscale inputs by

substituting the global average pooling layer (GAP) with

spatial pyramid average pooling (SPP) layer.

Unlike [3] and [6], our proposed method is very easy to

implement and has good generalization ability and stability.

The network architecture is more suitable for text features

extraction and the TLM can be obtained in a more concise

way.

III. THE PROPOSED METHOD

A. The Feature Extraction and Merging Branch

We design the classification network with the idea of

semantic segmentation. As is shown in Figure 1. Considering

the low-level feature is also important for text classification

and detection tasks, we adopt the U-Net architecture. It is

a kind of fully convolutional network architecture that can

merges multiscale features together. Similar to the pipeline

in EAST [25] algorithm, the whole model architecture can

be decomposed into three parts: feature extraction branch,

feature merging branch, and the TLM output branch.

In the feature extraction branch, we use VGG16 as the

base feature extraction backbone network. The backbone

network was pre-trained on ImageNet dataset. Begin from

the second convolutional and pooling block, we denote the

output feature maps as fi, i = 4, 3, 2, 1, and the size of each

feature map is 1/16, 1/64, 1/256, 1/1024 of the input image,

respectively.

In the feature merging branch, we gradually merge them

according to the following formulas:

gi =

{
upsample(hi) if i ≤ 3
conv3×3(hi) if i = 4

(1)

hi =

{
fi if i = 1
conv3×3(conv1×1([gi−1; fi])) otherwise

(2)
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where gi is the upsampled results of input hi in the first

three blocks, after the upsampling, the size was doubled.

Then we concatenate gi and the corresponding fi to make

the full use of the multi-layer information. The conv1×1

is applied in the next layer to reduce computation and

then followed by a conv3×3 that the features of the text

can be extracted furthermore. In the final layer of the

feature merging branch, we use conv3×3 to generate the

output feature map. The output feature map size is 1/16

of the input image, and the channel is expanded to 32.

The Batch Normalization is used after each concatenation

and convolution layer, and the activation function in each

convolution layer is ReLU.

Conv block1
64, /2

Conv block1
64, /2

Conv block1
64, /2

Conv block1
64, /2

Conv block1
64, /2

3 3, 32

3*3, 32

Upsampling, 2

1*1, 32
Concat

3 3, 32

Upsampling, 2

1 1, 32
Concat

3 3, 32
1 1, 32
Concat

Image
H W 3
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GAP
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g2
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Figure 1. Architecture of classification network

B. The Classification Part and TLM Generation

Previous class activation map generation methods need

an extra step to generate object localization maps after

the forward pass. Inspired by the work [5], we use a

conv1×1 connected to the output feature map in the feature

merging branch. The convolutional kernel is set to 2 that

corresponding to the foreground(text) and the background

activation map respectively. So the text localization maps

(TLM) can be directly obtained in the forward pass.

TLM = conv1×1(g4) (3)

The TLM is a two-channel feature map, and each channel

represents the activation of each class (text/background). In

the classification stage, we set the first category to image-

contain-text and the second category to image-without-text,

so the first channel in the TLM represents the text class

activation. We extract the first channel and resize it to the

input image size with the bilinear interpolation method.

Then the TLM is followed by a global average pooling

layer (GAP) and a softmax activation function is used for

classification. We use the categorical cross-entropy as the

loss function.

Because of the fully convolutional architecture, the net-

work allows images with arbitrary scales and aspect ratios as

input. In shallow convolutional layers, the receptive field is

small, it learns some local features such as the edges or the

corners of text. In deep convolutional layers, the receptive

field is large, it learns more high-level, abstract features.

The upsampling operation in Feature merging branch in-

creases the resolution of the output feature map, so it can be

concatenated with high-resolution features from the Feature

extraction branch. The successive convolutional layer can

then learn to assemble a more precise output based on this

information.

(b1) (b2)

(a1) (a2) (c1) (c2)

Figure 2. TLM heatmap in different situations: (a) The carved text (b)
The tiny scale text (c) The tilted text

In Figure 2. We demonstrate some TLM results on IC-

DAR2013 dataset in the form of the heatmap. We notice that

the method can handle different situations and whatever the

text scale changes, the TLM is always sensitive to the text

region and ignore the background noise automatically.

C. Text Proposals Generation

According to the observation of the generated TLM, we

find that the activation of text in the TLM is a distributed

representation. Some parts of the text corners or edges have

high activation value and the TLM is sensitive to the most

discriminal part of the text. The threshold method is not

enough to cover the whole text region. What is more, the

text in scene images has large scale variance. We can hardly

split the text line but to take them as a whole part in some

dense-text images.

Combining all the above considerations, we firstly seg-

ment the foreground and background from TLM with a fixed

threshold. Then, we use the connected components analysis

to merge each text tiny patch to form a text region mask.

The mask works like the attention mechanism to the image.

Furthermore, the text extraction method presented in [1]

was applied to generate bounding-box level text proposals,

this method is based on MSERs and uses Single Linkage

Criterion (SLC) to aggregate tiny text unit into text line
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proposals. At last, we use the quicksort algorithm to rank the

proposals according to the confidence value. The pipeline is

shown in Figure 3.

(a) (b)

(c)(d)

Figure 3. The TLM method pipeline: (a) The original scene image (b)
The heatmap of TLM (c) The text mask generated from the TLM (d) Text
proposals on text mask regions.

IV. EXPERIMENTS AND RESULTS

A. Datasets and Evaluation Metrics

The scene text dataset we collected are based on the

following datasets: (1) The Street View Text (SVT) dataset

[17], it contains 350 total street images from 20 different

cities, 100 for training and 250 for testing. (2) ICDAR2013

focused scene text dataset [32], it contains 229 training sets

and 223 test sets which were extracted from web pages and

email messages. (3) MSRA Text Detection 500 Database

(MSRA-TD500) [34], it contains 500 natural images, which

are taken from indoor and outdoor scenes using a pocket

camera.

We use a total of 900 images as the positive dataset. Some

of them are extracted from the above datasets, except the 223

test sets in ICDAR2013 dataset and the 250 test sets in SVT

datasets. Besides, we manually select images that contain

text from PASCAL VOC2007 dataset as supplementary. On

the other hand, we randomly selected 2500 images as neg-

ative datasets from the following datasets: 1) The PASCAL

VOC2007 dataset [35]. 2) The Scene UNderstanding (SUN)

database [36]. In particular, we manually clean the negative

dataset so that there was no image contains text in it.

B. Training and evaluation Details

We implement our method with Python and Keras (Ten-

sorflow backend). The VGG16 backbone network weights

are initialized with the weights trained on ImageNet dataset.

We train the network on NVIDIA GeForce 1080Ti with

11GB memory. Considering the memory size and training

speed, we resize the input images to 512×512 pixels and set

batch size to 8. We also use horizontal/vertical flip operation

to augment the data scale. The Adam optimizer is used for

training and the base learning rate is set to 1e-3.

We use the evaluation framework provided in ICDAR2015

robust reading competition. We compare the recall rate

under a certain intersection over union (IoU) threshold with

different supervised text detection methods.

C. Evaluation on ICDAR2013 dataset

Table I shows the comparison with other text detection

methods on ICDAR2013 dataset. The WSTAN method is

a weakly supervised method and the others are supervised

methods. We can see that our method outperforms the BING,

EdgeBoxes, and GOP in terms of recall rate. Our method

has comparable performance with the INCEPTION-RPN

and WSTAN methods but more stable. The performance of

other methods is dropped quickly with the IoU threshold

increasing.

Figure 4 shows the recall rate versus IoU threshold from

0.1 to 0.9 of our method on ICDAR2013 dataset. From the

figure, we can see that our method has stable performance,

which means the region proposals we extracted are close to

the real text region. It is beneficial for the next recognition

process.

In Figure 5, we demonstrate the heatmap of TLM versus

the WSTAN method on ICDAR2013 dataset. It is obvious

that our TLM has more fine-grained presentations in text

regions.

The TLM has the pixel-level attention mechanism rather

than the region-level attention mechanism [6], Considering

from the perspective of traditional methods, it can be seen as

a bottom-up text method, it obtains the text region proposal

by the corners or the edges activation.

Figure 4. Recall versus IoU threshold of TLM method on ICDAR2013.

D. Evaluation on SVT dataset

We evaluate the performance of our TLM method on the

SVT dataset. Table II shows the results compared with other

methods. our TLM pipeline is better than most methods at
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Table I
RECALL RATE AT DIFFERENT IOU THRESHOLDS ON ICDAR2013.

Method Proposals 0.5 IoU 0.7 IoU 0.9 IoU

Ours (TLM)

1000 0.82 0.77 0.63
500 0.76 0.71 0.56
300 0.72 0.65 0.50
100 0.57 0.51 0.38

WSTAN[6]
500 0.87 0.81 0.38
300 0.80 0.74 0.35
100 0.57 0.50 0.24

DeepText[21]
500 0.86 0.67 0.04
300 0.88 0.66 0.04
100 0.88 0.62 0.036

BING[13] 2716 0.63 0.08 0.00
EdgeBoxes[18] 9554 0.85 0.53 0.08

GOP[37] 855 0.45 0.18 0.08
MSERs group[1] 8164 0.98 0.96 0.79

(a) (b) (c)

Figure 5. Column (a) shows the original test images on ICDAR2013.
Column (b) shows the WSTAN heatmaps. Column (c) are our TLM
heatmaps.

0.5 and 0.7 IoU. Due to using the MSERs group[1] in the

post-process stage, the method is limit to the performance

of MSERs-group, so that our stability properties are not

reflected.

In Figure 6, we show some of the heatmaps of TLM

on SVT dataset. Comparing the ICDAR2013 focused scene

text dataset, SVT contains more challenging text, with high

variability and low resolution. Our TLM method still works

well on the dataset.

V. CONCLUSION

In this paper, we propose a fully convolutional network

to locate the text region in natural scene images in a

weakly supervised manner. The training data we used do

not need any annotation about the text location. The text

localization map can be directly obtained from the last

convolutional layer. Extensive experiments show our method

Figure 6. Our TLM heatmaps on the SVT dataset.

Table II
RECALL RATE AT DIFFERENT IOU THRESHOLDS ON SVT DATASET.

Method Proposals 0.5 IoU 0.7 IoU 0.9 IoU

Ours (TLM)
1000 0.80 0.48 0.04
500 0.75 0.41 0.02
300 0.69 0.37 0.02
100 0.58 0.26 0.01

BING[13] 2987 0.64 0.09 0.00
EdgeBoxes[18] 15319 0.94 0.63 0.04

GOP[37] 778 0.53 0.19 0.03
MSERs group[1] 10365 0.95 0.61 0.06

can mine fine-grained text information. It has comparable

recall performance with other methods and higher stability.
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