
Design of a Dual-core Processor Based Controller with

RTOS-GPOS Dual Operating System

Yuansong Sun1,3, En Li1, Guodong Yang1, Zize Liang1, Rui Guo2

1. The State Key Laboratory of Management and Control for Complex Systems,
Institute of Automation Chinese Academy of Sciences, Beijing 100190, China

2. State Grid Shandong Electric Power Company, Jinan 250001, China
3. The University of Chinese Academy of Sciences, Beijing 100049, China

{sunyuansong2017, en.li, guodong.yang, zize.liang}@ia.ac.cn & guoruihit@qq.com

 Abstract - The controller is one of the key components of the
robot system. The general-purpose controller usually uses multi-
processor scheme with master-slave structure or distributed
structure. This kind of scheme is complex and high-cost. It is
difficult to adapt to the design requirements of embedded
miniaturized robots. In view of this situation, this paper proposes
a controller design based on dual-core dual-operating system,
solving various real-time and non-real-time tasks in robot control
through a single chip. According to the design requirements, a
dual-core chip ZYNQ works as the core of the controller
hardware platform. Linux and FreeRTOS are transplanted as
master-slave system on different core, and the asymmetric multi-
processing (AMP) architecture is introduced as the working
framework of the dual-core processor. After that, the key
technologies of ZYNQ running under the AMP architecture are
analyzed, including the allocation of shared resources, the dual-
core booting mode and the dual-core communication mode.
Finally, using the open source architecture OpenAMP to
transplant the Linux+FreeRTOS dual system and achieve
parallel running. The communication capability and real-time
performance of the dual system are tested, and the results verify
the effectiveness of the controller.

Index Terms - robot controller; embedded system; GPOS; RTOS;
AMP;

I. INTRODUCTION

 The robot is a typical integrated system with mechatronics

and control technologies. The past robot controller research

was usually aimed at specific problems. However, the robot

controller software includes non-real-time tasks such as

human-computer interaction and path planning, as well as

real-time tasks such as motion control and emergency

operations. The past robot controller has poor reusability, long

development cycle, and high cost. They can't balance different

types of tasks. In order to solve this problem, some present

robot controllers use a multi-processor architecture to achieve

both versatility and real-time performance, but this results in

higher cost and lower communication efficiency. To enhance

the versatility of robot controllers, some robotics teams had

proposed modular robot controller designs. A modular

controller based on ARM+FPGA was one of the options. This

controller was characterized by modularity and quick

configuration [1]. This solution made full use of ARM's high-

performance computing ability and FPGA's fast configuration

ability by using ARM as the upper controller and FPGA as the

lower interface. At the same time, in order to control the robot

in real time, the real-time operating system was running on

ARM. This design improves the reusability of the hardware

platform and shortens the development time. But the

disadvantage is that there is no special communication path

between ARM and FPGA, which easily affects the overall

performance improvement. FPGA will lead to an increase in

overall cost while its hardware acceleration characteristics

cannot be exerted. The Beijing University of Aeronautics and

Astronautics proposed a modular controller architecture based

on dual-core dual operating systems [2]. They formed a hybrid

robot operating system with RTOS and GPOS. The GPOS

contains non-real-time ROS code that runs on Linux, while

the real-time operating system contains real-time ROS code

running on Nuttx. The hybrid ROS runs on a dual-core x86

architecture chip. GPOS and RTOS run respectively on

different CPU. This hybrid operating system was used in

controllers for six-degree-of-freedom modular manipulators,

and its performance was demonstrated by software testing

experiments [3][4]. The scheme can balance both versatility

and real-time performance, but the system is complex and

difficult to implement. In summary, the research on robot

controllers has achieved a lot of results. However, current

research lacks a concise, lightweight and low-cost solution

that combines versatility and real-time.

In this paper, a robot controller scheme that can balance

the versatility and real-time of the controller is proposed. This

paper designs a controller hardware platform based on the

dual-core chip, which enables GPOS and RTOS to run on two

processors in parallel. The RTOS guarantees the real-time

requirements in robot control and the GPOS makes full use of

software resources. It enables the controller to perform both

general and real-time tasks simultaneously. The hardware of

the controller is light and low-cost, and the system

architecture is concise, which has certain advantages

compared with the existing controller scheme.

II. CONTROLLER SCHEME

A. Controller ystem Structure
 The dual operating system robot controller is designed to

enable two operating systems to run in parallel on one

controller chip, making full use of the structural advantages of

1859978-1-7281-1699-0/19/$31.00 ©2019 IEEE

Proceedings of 2019 IEEE
International Conference on Mechatronics and Automation

August 4 - 7, Tianjin, China

Authorized licensed use limited to: University of Chinese Academy of SciencesCAS. Downloaded on June 10,2020 at 18:34:27 UTC from IEEE Xplore. Restrictions apply.

the multi-core processor to achieve complementary functions

of the two systems. The structure of the controller is shown in

Fig. 1.

Fig. 1 Dual operating system robot controller system structure.

At the hardware layer, it requires a dual-core or multi-

core processor that can run two different operating systems in

parallel and support inter-core communication.

At the operating system layer, it requires suitable GPOS

and RTOS. They need to be portable and reliable. At the same

time, they need to be able to run on our chosen hardware

platform, which means they have a board support package that

supports the hardware platform.

At the application software layer, since there are no

specific control objects by now, the current application

software layer is used to test the controller.

B. Controller Hardware Design
 According to the requirements, GPOS and RTOS should

run in parallel and be able to communicate. Therefore, the

hardware platform needs to meet the following conditions:

dual-core or multi-core, support for heterogeneous systems,

communication channels between multiple cores and enough

memory space

After comparing the performance of the current

mainstream embedded processor chips, combined with the

design requirements of the robot controller, the ZYNQ-7000

AP Soc from Xilinx is selected, and the controller hardware

platform based on ZYNQ-7020 chip is designed [5]. The

ZYNQ chip integrates a dual Cortex-A9 ARM core and FPGA

to form a fully programmable chip. Each CPU has separate

memory management units and caches that allow them to run

independently. The AXI bus is used in the dual-core processor

to enable dual-core communication with low latency. In

general, the hardware architecture of ZYNQ is very suitable

for this design purpose. The dual-core processors in PS have

their own set of basic devices, which makes sure they can

work together and run independently. It is suitable for the

heterogeneous multi-core architecture.

Fig. 2 Hardware structure.

 (a) (b)

Fig. 3 Hardware platform. (a) kernel board, (b) expansion board.

The controller hardware platform consists of the kernel

board and the expansion board. The core board is based on the

ZYNQ processor, and the external parts include DDR3

memory, human-computer interaction interface module, SD

card interface, USB interface, and Ethernet interface. The

DDR memory will be used as shared memory for dual-core

communication. The kernel board is the core of this design.

The dual system will be built and run on the kernel board. It is

also responsible for interacting with the host computer. The

resources on expansion board include motor drive module,

motor status feedback module, emergency braking module,

encoder interface module, and indicator light. The expansion

board is used to interact with robot actuator and sensor. The

hardware structure and material object are shown in Fig. 2 and

Fig. 3.

The operating mode of multi-core processors has

symmetric multiprocessing mode (SMP) and asymmetric

multiprocessing mode (AMP) [6]. The AMP is characterized

in that each core in a multi-core processor can be viewed

independently. According to the requirements, AMP is

selected as the operating mode of multi-core processors.

1860

Authorized licensed use limited to: University of Chinese Academy of SciencesCAS. Downloaded on June 10,2020 at 18:34:27 UTC from IEEE Xplore. Restrictions apply.

C. Operating System Selection
 At present, the operating systems commonly used by

robot controllers include general-purpose operating systems

(GPOS) such as Windows, Linux, Android, Ubuntu, ROS

(based on Ubuntu), and real-time operating systems (RTOS)

such as μC/OS, FreeRTOS, and VxWorks. This design

requires a GPOS system and an RTOS system. They need to

be open source, tailorable, and portable.

The current GPOS includes Windows, Linux, Android,

and so on. Among them, embedded Linux is the best choice

from the perspective of easy portability and tailor ability.

Linux is currently the most widely used embedded general-

purpose operating system. Embedded Linux comes from a

standard Linux system. It is widely used, and its reliability is

fully verified.

Current RTOS includes μC/OS, VxWorks, FreeRTOS,

and the like. In this design, the processor resources are

limited, so we need to choose a small operating system. In

addition, the Xilinx official IDE provides support for

FreeRTOS, which greatly facilitates software development on

real-time systems, so FreeRTOS is selected. FreeRTOS is an

open source, lightweight real-time system. Its kernel consists

of only three files, and the main part is used for task

scheduling. FreeRTOS uses the task scheduler for task control

and controls tasks according to their priority. Therefore, users

need to set the priority of each task according to specific

needs.

Therefore, Linux and FreeRTOS are selected as GPOS

and RTOS respectively. The ZYNQ chip supports both

systems, so they can be used in this design.

III. DUAL OPERATING SYSTEM DESIGN BASED ON OPENAMP

A. OpenAMP Overview
 OpenAMP is an open source AMP framework developed

by the Multicore Association (MCA). The current OpenAMP

can support a variety of mainstream operating systems,

including Linux, Nucleus, FreeRTOS, μC/OS, VxWorks and

more.

OpenAMP provides three functional modules:

Remoteproc, RPMsg, and virtIO. virtIO is a virtualized

communication standard that provides a communication

interface for upper layer software by virtualizing the slave

device. Remoteproc is a software interface module used by the

main processor to control the life cycle of the slave processor.

RPMsg is a software interface module that provides

communication channels for heterogeneous multi-core

systems. Remoteproc and RPMsg are the software interface

modules we mainly use, which are responsible for dual-core

startup and communication. The key technologies of ZYNQ

running under the OpenAMP architecture is analyzed next

section.

B. Key Technologies of AMP Architecture
1) Dual-core shared resources: The main shared

resources of the dual-core include 512KB L2 cache, 256KB

on-chip memory (OCM), DDR memory, interrupt controller

GIC, clock, etc. In our design, the L2 cache is used by the

main CPU. The DDR memory is divided according to the size

of the system on each CPU so that the two systems can only

identify the fixed size area on the DDR, and a small area is

divided into shared memory. On-chip memory OCM is used

by dual cores.

2) Dual-core boot method: During the dual core boot

process, the slave processor is booted under the control of the

master processor. The Remoteproc module of OpenAMP

provides a software interface to manage the remote processor's

lifecycle for software applications running on the main

processor. The boot process is shown in Fig. 4.

Fig. 4 Dual-core boot process under OpenAMP.

3) Dual-core communication method: Shared memory is

used for communication in the AMP architecture. Dual cores

have the right to read and write to the same memory area [7].

In this design, DDR is used as the shared memory and reading

and writing interrupts are set as the inter-core communication

mechanism. The communication method is shown in Fig. 5.

Fig. 5 Dual-core communication method under OpenAMP.

1861

Authorized licensed use limited to: University of Chinese Academy of SciencesCAS. Downloaded on June 10,2020 at 18:34:27 UTC from IEEE Xplore. Restrictions apply.

C. AMP Architecture for Linux+FreeRTOS
The Xilinx development environment supports

OpenAMP. Petalinux is used to build the AMP architecture of

Linux and FreeRTOS under the OpenAMP framework. Xilinx

SDK is used to build communication software.

In this design, Linux is the host operating system running

on CPU0 while FreeRTOS is the slave operating system

running on CPU1. At the same time, in order to verify that the

two systems can run in parallel and communicate, the

verification software is needed. The host operating system

Linux sends data to the slave operating system FreeRTOS.

After receiving the data, FreeRTOS will send it back. Linux

checks the sending and receiving data to verify whether the

communication is valid. The modules provided by OpenAMP

is used to complete the configuration of the system.

D. Software Design in Linux
The host operating system Linux runs on CPU0. When

the new application is created in SDK, Linux and CPU0 are

selected to be the environment and the processor respectively.

Applications can control devices by reading and writing

files in Linux. The communication module RPMsg exists in

the form of files in the Linux system. The communication

between CPU0 and CPU1 is realized by reading and writing

the file corresponding to the RPMsg module.

In this program, the open(rpmsg_dev) function is used to

get the file identifier of the RPMsg module. The ioctl ()

function is used to make necessary configuration for the IO

channel, such as the baud rate of the transmission. The

malloc() function is used to allocate space for the payload of

the data. The write(fd,i_payload) function and

read(fd,r_payload) function are used to send and receive data

respectively. At last, write(fd, shutdown_msg) is used to send

a shutdown command to CPU1 to shut it down. The running

flowchart of the software is shown in Fig. 6.

E. Software design in FreeRTOS
The slave operating system FreeRTOS runs on CPU1.

When the new application is created in SDK, FreeRTOS and

CPU1 are selected to be the environment and the processor

respectively.

After the application is created, the processor

precompilation constant needs to be added to activate the

configuration of CPU1 in AMP architecture and the

OpenAMP library needs to be added.

The application in FreeRTOS exists in the form of tasks.

The task scheduler controls all tasks according to the priority

of each task, and only one task can be run at the same time. In

this program, the task needs to constantly detect whether

Linux has passed data and if so, return the data. The

remoteproc_resource_init() function is used to initialize the

slave device, including the RPMsg module. The hil_poll()

function is used to get the data from CPU0. The rpmsg_send()

function is used to send the data back to CPU0. This task will

keep running until the data received by FreeRTOS is the

CPU1 shutdown signal. Then remoteproc_resource_init()

function is used to release the resource and vTaskDelete()

function is used to end the running of this task in FreeRTOS.

The running flowchart of the software is shown in Fig. 7.

open(rpmsg_dev)
Open device and return file identifier fd

ioctl ()
configure IO channel

whether it is shutdown
information

write(fd,shutdown_msg)
Send shutdown message

Release
i_payload and r_payload

close(fd)
Close RPMsg device

no

memset()
Set payload for sending data

write(fd,i_payload)
Send message i_payload

Whether slave OS
returns r_payload

no

yes

r_payload = i_payload

yes

Error occurs

no

Malloc()
allocate space for the payload

Yes

Fig. 6 Flowchart of communication software in Linux.

vTaskStartScheduler()
Task scheduler startup

Task begins to run

remoteproc_resource_init()
Initialize related resource

hil_poll()
Whether host OS send data

yes

Whether shutdown message

yes

vTaskDelete()
Release resource and shutdown

no rpmsg_send()
Send message back

no

Fig. 7 Flowchart of communication software in FreeRTOS.

The communication software of the two systems is

developed using the Xilinx SDK and then the operating

system is configured using the Xilinx Petalinux.

F. Configuration of The Operating System
Xilinx Petalinux is used to build the AMP architecture,

which includes the following steps.

(1) Establish the petalinux project as the host system

Linux;

1862

Authorized licensed use limited to: University of Chinese Academy of SciencesCAS. Downloaded on June 10,2020 at 18:34:27 UTC from IEEE Xplore. Restrictions apply.

(2) Import the communication software, including the

communication software running in Linux, the system

firmware of FreeRTOS and its communication software. The

compilation script needs to be modified accordingly.;

(3) Configure OpenAMP, including adding function

modules, memory allocation, kernel boot address, and adding

shared memory nodes in the device tree.

At this point, the construction of the dual system

controller is completed.

IV. PERFORMANCE TEST

A. CPU Occupancy Test
In order to verify whether the two CPUs are running in

the AMP state, the CPU occupancy test is needed.

Before starting the AMP, enter the cat command in the

terminal to check the CPU status. Both CPUs are occupied by

Linux system in SMP state. After starting the AMP, enter the

command again and only CPU0 is occupied Linux. The results

are shown in Table I. It can be verified that the CPU can run

in the AMP state.
TABLE I

CPU OCCUPANCY TEST

Occupation status CPU0 CPU1

SMP Running Running

AMP Running None

B. Dual-Core Communication Test
The test performs multiple data exchanges between the

host and slave processors. If there is no data transfer error in

the test, it can be verified that the AMP architecture of

Linux+FreeRTOS is working properly and that there is

efficient communication between the two processors. Each

round of communication time is obtained by adding timing

function to the communication software. The test shows that

the communication time of each round increases as the size of

the transmitted data increased. The communication time and

accuracy curve are shown in Fig. 8. The measurement data is

shown in Table II.

Fig. 8 Communication time and accuracy curve.

TABLE II

COMMUNICATION TIME

Maximum time(μs) Minimum time(μs) Average time(μs)

91.322 665.635 349.169

Through several repeated experiments, the data

transmission can run reliably without error. It can be verified

that the dual system architecture can operate and communicate

effectively on dual-core processors.

C. Response Time Test
Rhealstone is a standard for testing the real-time

performance of an operating system [8]. The system is tested

by this standard below.

1) Task switching time test: The task switching time is

the time required for the system to switch between two

separate tasks that are in the ready state and have the same

priority.

The test program creates two tasks with equal priority

into the previous communication program in FreeRTOS. The

currently running task will switch back and forth. The

switching time is obtained by subtracting the previously

measured pure communication time from the communication

time including the task switching.

2) Preemption time test: Preemption time is the time it

takes for the system to switch from a low priority task to a

high priority task.

The test program creates two tasks in FreeRTOS. Task 2

with the higher priority runs first and then delay. Then task 1

will begin a counting process until Task 2 wakes up and

preempts the operation of Task 1.

In order to obtain the pure preemption time, the

processing time of the test program without delay is also

measured. In this program no preemption will occur, so the

measured time is the time that the rest of the program spends

except for the preemption process. The preemption time can

be obtained by subtracting two measured times.

Since the preemption time also includes the task

switching time, the task switching time measured before

should also be subtracted to obtain the pure preemption time.

3) Semaphore shuffle time test: The semaphore shuffling

time is the time it takes from when task 1 releases a

semaphore to task 2 that waits for that semaphore to be

activated.

The test program creates two tasks with the same priority

and a binary semaphore. Each task can either take or give the

semaphore and then yield after either action. Task 1 starts first

by getting the semaphore and then yield without giving it.

Task 2 also needs to take the semaphore, so it blocks to wait.

Task 1 re-runs and releases the semaphore, then yields again.

Now task 2 can take the semaphore, then give it and end the

program [9].

In order to obtain the pure semaphore shuffle time, the

processing time of the test program without taking and giving

semaphore is also measured. The preemption time can be

obtained by subtracting two measured times. Additional

switching time also needs to be subtracted.

1863

Authorized licensed use limited to: University of Chinese Academy of SciencesCAS. Downloaded on June 10,2020 at 18:34:27 UTC from IEEE Xplore. Restrictions apply.

4) Test results: The response time curve obtained by

performing 500 tests is shown in Fig. 9. The statistical data is

shown in Table 3.

Fig. 9 Response time curve.

TABLE III

STATISTICAL DATA OF RESPONSE TIME

 Maximum

time(μs)

Minimum

time(μs)

Average

time(μs)

task switching

time
3.230 2.125 2.568

preemption time 14.016 10.352 12.241

semaphore

shuffle time
5.153 3.252 4.055

By comparing with other RTOS, the response time of the

dual-system is within the normal range, which can ensure real-

time performance.

V. CONCLUSION

This paper designs a dual-core GPOS-RTOS dual

operating system controller, which provides a robot controller

solution that takes both general tasks and real-time tasks from

the perspective of the embedded operating system. The

feasibility of the dual-system architecture and the real-time

performance are verified. In practical applications, GPOS is

mainly responsible for human-computer interaction, robot

path planning, and other tasks, while RTOS is responsible for

real-time tasks such as motion control and emergency

operations. In the future research, the proposed controller

could be combined with actual robot to further verify the

effectiveness of GPOS and RTOS in practical applications.

ACKNOWLEDGMENT

 This work was supported by the National Key R&D

Program of China (2018YFB1307400) and the National

Natural Science Foundation of China (61873267, U1713224).

REFERENCES

[1] Li Li, Xingming Wu, Weihai Chen, “Implementation of Robot Motion

Controller Based on ARM and FPGA,” Computer Measurement &
Control, vol. 9, no. 15, pp. 1162-1171, 2007.

[2] Wei H, Huang Z, Yu Q, “RGMP-ROS: A real-time ROS architecture of

hybrid RTOS and GPOS on multi-core processor,” 2014 IEEE
International Conference on Robotics and Automation, 2014, pp. 2482-

2487.

[3] Yu Q, Wei H, “A novel multi-OS architecture for robot application,”

2011 IEEE International Conference on Robotics and Biomimetics,

2011, pp. 2301-2306.

[4] Wei H, Shao Z, Huang Z, “RT-ROS: A real-time ROS architecture on

multi-core processors,” Future Generation Computer Systems, vol.5, no.

8, pp. 171-178, 2015.

[5] Rajagopalan V, Boppana V, Dutta S, “Xilinx Zynq-7000 EPP: An

extensible processing platform family,” 2011 IEEE Hot Chips
Symposium, 2011, pp. 1-24.

[6] Chen X, Gu Y, Wang C, “Asymmetric multiprocessing for motion

control based on Zynq SoC,” 2016 IEEE International Conference on
Field-programmable Technology, 2016, pp. 315-318.

[7] Powell A A, Performance of the Xilinx Zynq System-on-Chip
interconnect with asymmetric multiprocessing, Master Thesis, Temple

University, Philadelphia, PA, USA, 2014.

[8] Kar R P, “Implementing the Rhealstone real-time benchmark,” Dr Dobbs
Journal, vol.15, no. 4, pp. 46-55, 1990.

[9] Boger T J, Rhealstone benchmarking of FreeRTOS and the Xilinx Zynq
Extensible Processing Platform, Master Thesis, Temple University,

Philadelphia, PA, USA, 2013.

1864

Authorized licensed use limited to: University of Chinese Academy of SciencesCAS. Downloaded on June 10,2020 at 18:34:27 UTC from IEEE Xplore. Restrictions apply.

