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 Abstract - The controller is one of the key components of the 
robot system. The general-purpose controller usually uses multi-
processor scheme with master-slave structure or distributed 
structure. This kind of scheme is complex and high-cost. It is 
difficult to adapt to the design requirements of embedded 
miniaturized robots. In view of this situation, this paper proposes 
a controller design based on dual-core dual-operating system, 
solving various real-time and non-real-time tasks in robot control 
through a single chip. According to the design requirements, a 
dual-core chip ZYNQ works as the core of the controller 
hardware platform. Linux and FreeRTOS are transplanted as 
master-slave system on different core, and the asymmetric multi-
processing (AMP) architecture is introduced as the working 
framework of the dual-core processor. After that, the key 
technologies of ZYNQ running under the AMP architecture are 
analyzed, including the allocation of shared resources, the dual-
core booting mode and the dual-core communication mode. 
Finally, using the open source architecture OpenAMP to 
transplant the Linux+FreeRTOS dual system and achieve 
parallel running. The communication capability and real-time 
performance of the dual system are tested, and the results verify 
the effectiveness of the controller. 
 
Index Terms - robot controller; embedded system; GPOS; RTOS; 
AMP; 
 

I.  INTRODUCTION 

 The robot is a typical integrated system with mechatronics 

and control technologies. The past robot controller research 

was usually aimed at specific problems. However, the robot 

controller software includes non-real-time tasks such as 

human-computer interaction and path planning, as well as 

real-time tasks such as motion control and emergency 

operations. The past robot controller has poor reusability, long 

development cycle, and high cost. They can't balance different 

types of tasks. In order to solve this problem, some present 

robot controllers use a multi-processor architecture to achieve 

both versatility and real-time performance, but this results in 

higher cost and lower communication efficiency. To enhance 

the versatility of robot controllers, some robotics teams had 

proposed modular robot controller designs. A modular 

controller based on ARM+FPGA was one of the options. This 

controller was characterized by modularity and quick 

configuration [1]. This solution made full use of ARM's high-

performance computing ability and FPGA's fast configuration 

ability by using ARM as the upper controller and FPGA as the 

lower interface. At the same time, in order to control the robot 

in real time, the real-time operating system was running on 

ARM. This design improves the reusability of the hardware 

platform and shortens the development time. But the 

disadvantage is that there is no special communication path 

between ARM and FPGA, which easily affects the overall 

performance improvement. FPGA will lead to an increase in 

overall cost while its hardware acceleration characteristics 

cannot be exerted. The Beijing University of Aeronautics and 

Astronautics proposed a modular controller architecture based 

on dual-core dual operating systems [2]. They formed a hybrid 

robot operating system with RTOS and GPOS. The GPOS 

contains non-real-time ROS code that runs on Linux, while 

the real-time operating system contains real-time ROS code 

running on Nuttx. The hybrid ROS runs on a dual-core x86 

architecture chip. GPOS and RTOS run respectively on 

different CPU. This hybrid operating system was used in 

controllers for six-degree-of-freedom modular manipulators, 

and its performance was demonstrated by software testing 

experiments [3][4]. The scheme can balance both versatility 

and real-time performance, but the system is complex and 

difficult to implement. In summary, the research on robot 

controllers has achieved a lot of results. However, current 

research lacks a concise, lightweight and low-cost solution 

that combines versatility and real-time. 

In this paper, a robot controller scheme that can balance 

the versatility and real-time of the controller is proposed. This 

paper designs a controller hardware platform based on the 

dual-core chip, which enables GPOS and RTOS to run on two 

processors in parallel. The RTOS guarantees the real-time 

requirements in robot control and the GPOS makes full use of 

software resources. It enables the controller to perform both 

general and real-time tasks simultaneously. The hardware of 

the controller is light and low-cost, and the system 

architecture is concise, which has certain advantages 

compared with the existing controller scheme. 

II.  CONTROLLER SCHEME 

A. Controller ystem Structure 
 The dual operating system robot controller is designed to 

enable two operating systems to run in parallel on one 

controller chip, making full use of the structural advantages of 
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the multi-core processor to achieve complementary functions 

of the two systems. The structure of the controller is shown in 

Fig. 1. 
    

 
Fig. 1 Dual operating system robot controller system structure. 

 

At the hardware layer, it requires a dual-core or multi-

core processor that can run two different operating systems in 

parallel and support inter-core communication. 

At the operating system layer, it requires suitable GPOS 

and RTOS. They need to be portable and reliable. At the same 

time, they need to be able to run on our chosen hardware 

platform, which means they have a board support package that 

supports the hardware platform. 

At the application software layer, since there are no 

specific control objects by now, the current application 

software layer is used to test the controller. 

B. Controller Hardware Design 
 According to the requirements, GPOS and RTOS should 

run in parallel and be able to communicate. Therefore, the 

hardware platform needs to meet the following conditions: 

dual-core or multi-core, support for heterogeneous systems, 

communication channels between multiple cores and enough 

memory space 

After comparing the performance of the current 

mainstream embedded processor chips, combined with the 

design requirements of the robot controller, the ZYNQ-7000 

AP Soc from Xilinx is selected, and the controller hardware 

platform based on ZYNQ-7020 chip is designed [5]. The 

ZYNQ chip integrates a dual Cortex-A9 ARM core and FPGA 

to form a fully programmable chip. Each CPU has separate 

memory management units and caches that allow them to run 

independently. The AXI bus is used in the dual-core processor 

to enable dual-core communication with low latency. In 

general, the hardware architecture of ZYNQ is very suitable 

for this design purpose. The dual-core processors in PS have 

their own set of basic devices, which makes sure they can 

work together and run independently. It is suitable for the 

heterogeneous multi-core architecture. 

 
Fig. 2 Hardware structure. 

 

   

 (a)                                                  (b) 

Fig. 3 Hardware platform. (a) kernel board,   (b) expansion board. 

 

The controller hardware platform consists of the kernel 

board and the expansion board. The core board is based on the 

ZYNQ processor, and the external parts include DDR3 

memory, human-computer interaction interface module, SD 

card interface, USB interface, and Ethernet interface. The 

DDR memory will be used as shared memory for dual-core 

communication. The kernel board is the core of this design. 

The dual system will be built and run on the kernel board. It is 

also responsible for interacting with the host computer. The 

resources on expansion board include motor drive module, 

motor status feedback module, emergency braking module, 

encoder interface module, and indicator light. The expansion 

board is used to interact with robot actuator and sensor. The 

hardware structure and material object are shown in Fig. 2 and 

Fig. 3. 

The operating mode of multi-core processors has 

symmetric multiprocessing mode (SMP) and asymmetric 

multiprocessing mode (AMP) [6]. The AMP is characterized 

in that each core in a multi-core processor can be viewed 

independently. According to the requirements, AMP is 

selected as the operating mode of multi-core processors. 
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C. Operating System Selection 
 At present, the operating systems commonly used by 

robot controllers include general-purpose operating systems 

(GPOS) such as Windows, Linux, Android, Ubuntu, ROS 

(based on Ubuntu), and real-time operating systems (RTOS) 

such as μC/OS, FreeRTOS, and VxWorks. This design 

requires a GPOS system and an RTOS system. They need to 

be open source, tailorable, and portable. 

The current GPOS includes Windows, Linux, Android, 

and so on. Among them, embedded Linux is the best choice 

from the perspective of easy portability and tailor ability. 

Linux is currently the most widely used embedded general-

purpose operating system. Embedded Linux comes from a 

standard Linux system. It is widely used, and its reliability is 

fully verified. 

Current RTOS includes μC/OS, VxWorks, FreeRTOS, 

and the like. In this design, the processor resources are 

limited, so we need to choose a small operating system. In 

addition, the Xilinx official IDE provides support for 

FreeRTOS, which greatly facilitates software development on 

real-time systems, so FreeRTOS is selected. FreeRTOS is an 

open source, lightweight real-time system. Its kernel consists 

of only three files, and the main part is used for task 

scheduling. FreeRTOS uses the task scheduler for task control 

and controls tasks according to their priority. Therefore, users 

need to set the priority of each task according to specific 

needs. 

Therefore, Linux and FreeRTOS are selected as GPOS 

and RTOS respectively. The ZYNQ chip supports both 

systems, so they can be used in this design. 

III.   DUAL OPERATING SYSTEM DESIGN BASED ON OPENAMP 

A. OpenAMP Overview 
 OpenAMP is an open source AMP framework developed 

by the Multicore Association (MCA). The current OpenAMP 

can support a variety of mainstream operating systems, 

including Linux, Nucleus, FreeRTOS, μC/OS, VxWorks and 

more. 

OpenAMP provides three functional modules: 

Remoteproc, RPMsg, and virtIO. virtIO is a virtualized 

communication standard that provides a communication 

interface for upper layer software by virtualizing the slave 

device. Remoteproc is a software interface module used by the 

main processor to control the life cycle of the slave processor. 

RPMsg is a software interface module that provides 

communication channels for heterogeneous multi-core 

systems. Remoteproc and RPMsg are the software interface 

modules we mainly use, which are responsible for dual-core 

startup and communication. The key technologies of ZYNQ 

running under the OpenAMP architecture is analyzed next 

section. 

B. Key Technologies of AMP Architecture 
1) Dual-core shared resources: The main shared 

resources of the dual-core include 512KB L2 cache, 256KB 

on-chip memory (OCM), DDR memory, interrupt controller 

GIC, clock, etc. In our design, the L2 cache is used by the 

main CPU. The DDR memory is divided according to the size 

of the system on each CPU so that the two systems can only 

identify the fixed size area on the DDR, and a small area is 

divided into shared memory. On-chip memory OCM is used 

by dual cores. 

2) Dual-core boot method: During the dual core boot 

process, the slave processor is booted under the control of the 

master processor. The Remoteproc module of OpenAMP 

provides a software interface to manage the remote processor's 

lifecycle for software applications running on the main 

processor. The boot process is shown in Fig. 4. 

 
Fig. 4 Dual-core boot process under OpenAMP. 

 

3) Dual-core communication method: Shared memory is 

used for communication in the AMP architecture. Dual cores 

have the right to read and write to the same memory area [7]. 

In this design, DDR is used as the shared memory and reading 

and writing interrupts are set as the inter-core communication 

mechanism. The communication method is shown in Fig. 5. 

 
Fig. 5 Dual-core communication method under OpenAMP. 
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C.  AMP Architecture for Linux+FreeRTOS  
The Xilinx development environment supports 

OpenAMP. Petalinux is used to build the AMP architecture of 

Linux and FreeRTOS under the OpenAMP framework. Xilinx 

SDK is used to build communication software. 

In this design, Linux is the host operating system running 

on CPU0 while FreeRTOS is the slave operating system 

running on CPU1. At the same time, in order to verify that the 

two systems can run in parallel and communicate, the 

verification software is needed. The host operating system 

Linux sends data to the slave operating system FreeRTOS. 

After receiving the data, FreeRTOS will send it back. Linux 

checks the sending and receiving data to verify whether the 

communication is valid. The modules provided by OpenAMP 

is used to complete the configuration of the system. 

D.  Software Design in Linux  
The host operating system Linux runs on CPU0. When 

the new application is created in SDK, Linux and CPU0 are 

selected to be the environment and the processor respectively. 

Applications can control devices by reading and writing 

files in Linux. The communication module RPMsg exists in 

the form of files in the Linux system. The communication 

between CPU0 and CPU1 is realized by reading and writing 

the file corresponding to the RPMsg module. 

In this program, the open(rpmsg_dev) function is used to 

get the file identifier of the RPMsg module. The ioctl () 

function is used to make necessary configuration for the IO 

channel, such as the baud rate of the transmission. The 

malloc() function is used to allocate space for the payload of 

the data. The write(fd,i_payload) function and 

read(fd,r_payload) function are used to send and receive data 

respectively. At last, write(fd, shutdown_msg) is used to send 

a shutdown command to CPU1 to shut it down. The running 

flowchart of the software is shown in Fig. 6. 

E.  Software design in FreeRTOS 
The slave operating system FreeRTOS runs on CPU1. 

When the new application is created in SDK, FreeRTOS and 

CPU1 are selected to be the environment and the processor 

respectively. 

After the application is created, the processor 

precompilation constant needs to be added to activate the 

configuration of CPU1 in AMP architecture and the 

OpenAMP library needs to be added. 

The application in FreeRTOS exists in the form of tasks. 

The task scheduler controls all tasks according to the priority 

of each task, and only one task can be run at the same time. In 

this program, the task needs to constantly detect whether 

Linux has passed data and if so, return the data. The 

remoteproc_resource_init() function is used to initialize the 

slave device, including the RPMsg module. The hil_poll() 

function is used to get the data from CPU0. The rpmsg_send() 

function is used to send the data back to CPU0. This task will 

keep running until the data received by FreeRTOS is the 

CPU1 shutdown signal. Then remoteproc_resource_init() 

function is used to release the resource and vTaskDelete() 

function is used to end the running of this task in FreeRTOS. 

The running flowchart of the software is shown in Fig. 7. 

 

open(rpmsg_dev)
Open device and return file identifier fd

ioctl () 
configure IO channel

whether it is shutdown 
information

write(fd,shutdown_msg)
Send shutdown message

Release 
i_payload and r_payload

close(fd)
Close RPMsg device

no

memset()
Set payload for sending data

write(fd,i_payload)
Send message i_payload

Whether slave OS
returns r_payload

no

yes

r_payload = i_payload

yes

Error occurs

no

Malloc()
allocate space for the payload

Yes

 
Fig. 6 Flowchart of communication software in Linux. 

 

vTaskStartScheduler()
Task scheduler startup

Task begins to run

remoteproc_resource_init()
Initialize related resource

hil_poll()
Whether host OS send data

yes

Whether shutdown message

yes

vTaskDelete()
Release resource and shutdown

no rpmsg_send()
Send message back 

no

 
Fig. 7 Flowchart of communication software in FreeRTOS. 

 

The communication software of the two systems is 

developed using the Xilinx SDK and then the operating 

system is configured using the Xilinx Petalinux. 

F. Configuration of The Operating System 
Xilinx Petalinux is used to build the AMP architecture, 

which includes the following steps. 

(1) Establish the petalinux project as the host system 

Linux; 
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(2) Import the communication software, including the 

communication software running in Linux, the system 

firmware of FreeRTOS and its communication software. The 

compilation script needs to be modified accordingly.; 

(3) Configure OpenAMP, including adding function 

modules, memory allocation, kernel boot address, and adding 

shared memory nodes in the device tree. 

At this point, the construction of the dual system 

controller is completed. 

IV.   PERFORMANCE TEST 

A.  CPU Occupancy Test 
In order to verify whether the two CPUs are running in 

the AMP state, the CPU occupancy test is needed. 

Before starting the AMP, enter the cat command in the 

terminal to check the CPU status. Both CPUs are occupied by 

Linux system in SMP state. After starting the AMP, enter the 

command again and only CPU0 is occupied Linux. The results 

are shown in Table I. It can be verified that the CPU can run 

in the AMP state. 
TABLE I 

CPU OCCUPANCY TEST 

Occupation status CPU0 CPU1 

SMP Running Running 

AMP Running None 

B.  Dual-Core Communication Test 
The test performs multiple data exchanges between the 

host and slave processors. If there is no data transfer error in 

the test, it can be verified that the AMP architecture of 

Linux+FreeRTOS is working properly and that there is 

efficient communication between the two processors. Each 

round of communication time is obtained by adding timing 

function to the communication software. The test shows that 

the communication time of each round increases as the size of 

the transmitted data increased. The communication time and 

accuracy curve are shown in Fig. 8. The measurement data is 

shown in Table II. 

 
Fig. 8 Communication time and accuracy curve. 

 

 

TABLE II 

COMMUNICATION TIME 

Maximum time(μs) Minimum time(μs) Average time(μs) 

91.322 665.635 349.169 

Through several repeated experiments, the data 

transmission can run reliably without error. It can be verified 

that the dual system architecture can operate and communicate 

effectively on dual-core processors. 

C.  Response Time Test 
Rhealstone is a standard for testing the real-time 

performance of an operating system [8]. The system is tested 

by this standard below. 

1) Task switching time test: The task switching time is 

the time required for the system to switch between two 

separate tasks that are in the ready state and have the same 

priority. 

The test program creates two tasks with equal priority 

into the previous communication program in FreeRTOS. The 

currently running task will switch back and forth. The 

switching time is obtained by subtracting the previously 

measured pure communication time from the communication 

time including the task switching. 

2) Preemption time test: Preemption time is the time it 

takes for the system to switch from a low priority task to a 

high priority task. 

The test program creates two tasks in FreeRTOS. Task 2 

with the higher priority runs first and then delay. Then task 1 

will begin a counting process until Task 2 wakes up and 

preempts the operation of Task 1.  

In order to obtain the pure preemption time, the 

processing time of the test program without delay is also 

measured. In this program no preemption will occur, so the 

measured time is the time that the rest of the program spends 

except for the preemption process. The preemption time can 

be obtained by subtracting two measured times. 

Since the preemption time also includes the task 

switching time, the task switching time measured before 

should also be subtracted to obtain the pure preemption time. 

3) Semaphore shuffle time test: The semaphore shuffling 

time is the time it takes from when task 1 releases a 

semaphore to task 2 that waits for that semaphore to be 

activated. 

The test program creates two tasks with the same priority 

and a binary semaphore. Each task can either take or give the 

semaphore and then yield after either action. Task 1 starts first 

by getting the semaphore and then yield without giving it. 

Task 2 also needs to take the semaphore, so it blocks to wait. 

Task 1 re-runs and releases the semaphore, then yields again. 

Now task 2 can take the semaphore, then give it and end the 

program [9]. 

In order to obtain the pure semaphore shuffle time, the 

processing time of the test program without taking and giving 

semaphore is also measured. The preemption time can be 

obtained by subtracting two measured times. Additional 

switching time also needs to be subtracted. 
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4) Test results: The response time curve obtained by 

performing 500 tests is shown in Fig. 9. The statistical data is 

shown in Table 3. 

 
Fig. 9 Response time curve. 

 

TABLE III 

STATISTICAL DATA OF RESPONSE TIME 

 Maximum 

time(μs) 

Minimum 

time(μs) 

Average 

time(μs) 

task switching 

time 
3.230 2.125 2.568 

preemption time 14.016 10.352 12.241 

semaphore 

shuffle time 
5.153 3.252 4.055 

By comparing with other RTOS, the response time of the 

dual-system is within the normal range, which can ensure real-

time performance. 

V.   CONCLUSION 

This paper designs a dual-core GPOS-RTOS dual 

operating system controller, which provides a robot controller 

solution that takes both general tasks and real-time tasks from 

the perspective of the embedded operating system. The 

feasibility of the dual-system architecture and the real-time 

performance are verified. In practical applications, GPOS is 

mainly responsible for human-computer interaction, robot 

path planning, and other tasks, while RTOS is responsible for 

real-time tasks such as motion control and emergency 

operations. In the future research, the proposed controller 

could be combined with actual robot to further verify the 

effectiveness of GPOS and RTOS in practical applications. 
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