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Previous functional imaging studies on heroin addicts have focused on abnormal brain
functions based on specific tasks, while few fMRI studies concentrated on the resting-state
abnormalities of heroin-dependent individuals. In the current study, we applied the pattern
classification technique,which employs the feature extractionmethodof non-negativematrix
factorization (NMF) and a support vector machine (SVM) classifier. Its main purpose was to
characterize the discrepancy in activation patterns between heroin-dependent individuals
and healthy subjects during the resting state. The results displayed a high accuracy in the
activation pattern differences of the two groups,which included the orbitofrontal cortex (OFC),
cingulate gyrus, frontal and para-limbic regions such as the anterior cingulate cortex (ACC),
hippocampal/parahippocampal region, amygdala, caudate, putamen, as well as the posterior
insula and thalamus. These findings indicate that significant biomarkers exist among the
network of circuits that are involved in drug abuse. The implications from our studymay help
explain the behavioral and neuropsychological deficits in heroin-dependent individuals and
shed light on the mechanisms underlying heroin addiction.

© 2011 Elsevier B.V. All rights reserved.
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1. Introduction

Drug addiction, is characterized by a compulsive drive to take
drugs despite serious negative consequences and is a disorder
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that involves complex interactions between biological and
environmental variables (Volkow et al., 2003). Over the past
few decades, numerous imaging studies have revealed
neurochemical and functional changes in the brains of drug-
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Fig. 1 – Themeanaccuracy ratebetween theheroin-dependent
individuals and healthy controls in the brain. Abbreviations:
OFC, orbitofrontal cortex; MFC, medial frontal cortex; IFC,
inferior frontal cortex; SFC, superior frontal cortex; HIPP,
hippocampus; ACC, anterior cingulate cortex; CG, cingulate
cortex; PHIPP, parahippocampus.
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addicted subjects (Fu et al., 2008; Lee et al., 2005; Li and Sinha,
2008; Liu et al., 2009; Yuan et al., 2009, 2010a, 2010b). It has
been found that in heroin-dependent individuals there
is increased white matter intensity in the frontal area
and decreased gray matter density in the bilateral prefron-
tal cortices and in the temporal regions compared to healthy
subjects (Lyoo et al., 2004; Yuan et al., 2009). Cognitive
performance impairments in heroin-dependent individuals
have also been verified in a variety of tasks, such as response
inhibition and decision-making (Fu et al., 2008; Lee et al.,
2005). Recent resting-state functional magnetic resonance
imaging (fMRI) studies have also reported abnormal functional
connectivity and topological properties in heroin-dependent
individuals (Liu et al., 2009;Ma et al., 2010; Yuan et al., 2010a,b).
All of these findings provide new insights into the mecha-
nisms underlying addiction.

During a standard fMRI experiment, hundreds of volumes
of brain activations in thousands of locations are acquired.
Thus, a wide range of multivariate statistical methods are
frequently being applied to the analysis of an fMRI time series
(Liu et al., 2010; Zhang et al., 2009a,b). In contrast to the strictly
location-based conventional analysis, previous studies (Cox
and Savoy, 2003; Haxby et al., 2001; Haynes and Rees, 2005b,
2006; Kamitani and Tong, 2005; LaConte et al., 2005; Mitchell
et al., 2003, 2004) showed that the sensitivity of functional
neuroimaging can be dramatically increased by taking into
account the full spatial pattern of brain activations measured
simultaneously at many locations. Given the goal of detecting
the presence of a particular mental representation in the
brain, the primary advantage of pattern-based analyses com-
pared with the conventional univariate approach is increased
sensitivity. The information available at each location can be
accumulated in an efficient way across many spatial loca-
tions. Even if two single brain regions do not individually
carry information about a cognitive state, they might express
brain activation when jointly analyzed (LaConte et al., 2005).
This approach has many other additional advantages as
well. It does not employ unnecessary steps such as spatial
smoothing, which might remove the fine grained spatial
information about perceptual or cognitive states. By avoiding
the loss of information of the functional state in the brain
at any given time point, the MVPA greatly increases the
sensitivity of decoding the critical brain activity related to a
person's perceptual or cognitive state (Haynes and Rees,
2005a; Polyn et al., 2005).

Volkow et al.(2003) proposed a model consisting of four
circuits involved in drug abuse and addiction: (1) reward,
located in the nucleus accumbens (NAc) and ventral pallidum;
(2) motivation/drive, located in the orbitofrontal cortex
(OFC) and subcallosal cortex; (3) memory and learning, located
in the amygdala and hippocampus; and (4) control, located in
the prefrontal cortex and anterior cingulate gyrus (ACC). In
this model, drug addiction was considered as a state initiated
by the qualitative reward value of the drug, which triggers a
series of adaptations and changes in reward,motivation/drive,
memory and control circuits of the brain. These functional
changes result in an enhanced and permanent saliency value
for the drug and loss of inhibitory control, which eventually
leads to the emergence of compulsive drug administration
and relapse. These identifications designate the complexity of
drug addiction and the interactions of multi-neural circuits
(Dackis and Gold, 1985; Gold et al., 2009). Pattern-based
multivariate analyses aim to account for the full spatial pat-
terns of brain activity systematically, as well as for the wide
variety of external influences. Compared to the location-based
conventional univariate method, the pattern based approach
is far more suitable to distinguish the framework of the neural
network between addicts and healthy controls.

We hypothesized that there exist significant biomarkers
among the network of four circuits (reward, motivation/
drive, memory/learning and control) as well as other brain
areas, which are involved in drug abuse and addiction
according to Volkow's model (Volkow et al., 2003). Further-
more, we also hypothesized that pattern classification ana-
lyses could reveal subtle differences in theneural responses. In
view of the advantages of themultivariatemethod, we utilized
the pattern classification technique (multi-voxel pattern
analysis, MVPA) in the current study to analyze the addic-
tion fMRI data sets and to characterize the discrepancies
in activation patterns between heroin-dependent individuals
and healthy subjects during the resting state. With the
goal of decomposing the multivariate data as non-negative
factors, the non-negative matrix factorization (NMF) tech-
nique was employed to extract features and the support
vector machine (SVM) was then utilized to classify the
features, respectively.
2. Results

We trained and tested the classifier to distinguish the patterns
of the neural responses between heroin-dependent individ-
uals and healthy controls. Table 2 and Fig. 1 summarized the
brain areas with significant discriminating accuracies higher
than the threshold of the discriminating level (65%, P<0.01,
which is higher than the chance level of 50%) (Cox and Savoy,
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2003; De Martino et al., 2008). The various brain regions listed
on the horizontal axis are displayed from highest (0.86) to
lowest (0.68) values of accuracy rate as shown on the vertical
axis (Fig. 1). Spatial maps of classifier accuracies are shown
in Fig. 2. Distinct areas of the brain with high accuracies
were found in the orbitofrontal cortex (OFC, Brodmann Area
(BA) 10), cingulate gyrus (CG, BA 32), frontal and para-limbic
regions such as the anterior cingulate cortex (ACC, BA 24),
hippocampal (HIPP)/parahippocampal (PHIPP) regions, amyg-
dala, caudate, putamen, as well as the posterior insula (BA 13)
and thalamus. Among these structures, the OFC is involved in
themotivation/drive circuit; the ACC and CG participate in the
activity of a control network; the MPFC is concerned with the
reward circuit; while the amygdala, HIPP, PHIPP, and putamen
take part in the activity of the memory network.
Fig. 2 – Spatial maps of classifier accuracies for distinguishing the
healthy controls. They are mainly located in the OFC, MPFC, ACC
posterior insula (BA 13) and thalamus. These regions belong to a
control) involved with addiction respectively (Volkow et al., 2003
prefrontal cortex; ACC, anterior cingulate cortex; HIPP, hippocam
3. Discussion

We applied the MVPA to explore the distinct neural response
patterns between heroin-dependent individuals and healthy
controls. The results demonstrated that significant differ-
ences exist in the medial PFC, ACC, OFC, caudate, putamen,
HIPP and prefrontal cortex. These regions are related to the
networks of reward, motivation, memory/learning and
control circuits, respectively. These discoveries are consistent
with the four circuits involved in the model representing drug
abuse and addiction, as proposed by Volkow et al.(2003).
In addition, the thalamus and insula were also identified
since theymay participate in various roles within the network
modeling addiction.
neural response between heroin-dependent individuals and
, HIPP/PHIPP, amygdala, caudate, putamen, as well as the
proposed network of four circuits (reward, drive, memory and
). Abbreviations: OFC, orbitofrontal cortex; MPFC, medial
pus; PHIPP, parahippocampus; BA, Brodmann area.

image of Fig.�2
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Studies in drug-addicted subjects have consistently shown
a long-lasting decrease in the number of dopamine (DA) D2

receptors in drug abusers compared to controls (Volkow et al.,
2002), and heroin addiction and cocaine abusers have also
shown decreased DA cell activity (Dackis and Gold, 1985;
Volkow et al., 1997; Wang et al., 1997). The decrease in the
number of DA D2 receptors coupled with the decrease in DA
cell activity should result in a decreased sensitivity of reward
circuits and lead to decreased interests in ordinary environ-
mental stimuli. Ultimately, many drug addicts seek drug
stimulation as a means to temporarily activate these reward
circuits. Several studies (Oswald et al., 2005, 2007; Pruessner
et al., 2004) investigated the ventral striatum (VS), which
contains the nucleus accumbens (NAc), and these studies
suggested that the VS also plays a role in stress in addiction
due to its involvement in reward processing. Stress has
consistently shown an increase in drug craving and compul-
sive drug seeking in cocaine-addicted individuals, and there
has been a greater sensitivity to stress-induced craving and
arousal in cocaine patients as compared to the corresponding
controls (Fox et al., 2008). In the current study, we found
significant differences in the medial prefrontal cortex (PFC)
and ACC between heroin-dependent individuals and healthy
subjects. Since the medial PFC and ACC play a role in stress
and reward processing, this raises the possibility of an inter-
relationship between the VS and the ACC. There are cortical
inputs from the PFC to the VS, which also interact between the
VS and the amygdala by receiving cortical afferents (Voorn
et al., 2004). A lesion of the medial PFC in laboratory animals
decreases the reinstatement for a response to the drug
with exposure to stress, drug-related cues and the drug itself
(Kalivas and McFarland, 2003). These studies suggested that
the PFCmay exercise some control over instrumental learning
and drug response. We postulated that the PFC may regulate
VS activity particularly under conditions of stress and that
stress contributes to motivation for drug use and abuse.

Another area of the brain that indicated significant dif-
ferences between groups is the OFC. Imaging studies showed
that the OFC appears to be hypoactive in drug-addicted sub-
jects tested during withdrawal (Adinoff et al., 2001), indicating
a lack of stimulation by salient stimuli during detoxification.
In contrast, in active cocaine abusers, the OFC has been shown
to be hypermetabolic in proportion to the intensity of the
craving experienced by the subjects (Volkow et al., 1991).
Thus, exposure to the drug or drug-related stimuli during
the withdrawal state reactivates the OFC and results in com-
pulsive drug intake. Similar activation of the OFC has been
reported during exposure to drug-related cueswhen it has also
elicited craving (Volkow and Fowler, 2000). Since an increased
OFC activation has been associated with compulsive disorders
(Insel, 1992), Volkow et al. (2003) postulated that the activation
of the OFC in addicted subjects contributes to compulsive drug
intake. Preclinical studies have shown that damage to the
OFC results in a behavioral compulsion to procure the reward
even when it is no longer reinforced (Rolls, 2000). Since the
OFC also processes information associated with the prediction
of reward, its activation during cue exposure could signal
reward prediction. Additionally, this OFC activation could
also be experienced as a craving to the addicted subject during
detoxification by consequently reducing the number of DA D2
receptors in the striatum (Volkow et al., 2001). Since DA D2

receptors transmit the reward signal to the OFC, this asso-
ciation could be interpreted as a disruption of the OFC,
secondary to changes in striatal DA activity.

Learning and memory are relevant to addiction in terms of
the recovery process. Often a place, or a person, or an event, or
even a very simple cue can bring back undesirable memories
and trigger an intense desire for the drug, especially when the
addict is trying hard to stay away from it. Among the multiple
memory systems which were proposed to be involved in
drug addiction, our discoveries included two of them: 1) habit
learning, which is mediated in part by the caudate and the
putamen, and 2) declarative memory, which is mediated
partially by the HIPP (White, 1996). Through habit learning,
well-learned sequences of behavior are elicited automatically
by the appropriate stimuli. Declarative memory is related to
the learning of affective states relative to drug intake. Memory
circuits are likely to influence the effects of the drug during
intoxication, since they set the expectations of the drug's
effects in the addicted subject (Kirk et al., 1998). Activation of
regions linked with memory has been reported during drug
intoxication (Breiter et al., 1997) and during craving induced by
drug exposure, video, or recall (Kilts et al., 2001). Cocaine-
dependent patients had increased activity in the caudate and
dorsal striatum compared to controls, and their activities were
associated with drug cue-induced cocaine craving (Volkow
et al., 2006). Greater craving-related activation in the dorsal
striatum was consistent with the hypothesis that this region
plays a key role in the transition from instrumental learning to
habit learning, and it is also involved in driving compulsive
drug seeking in addicts (Everitt and Robbins, 2005). Findings
from human experiments, non-human primates and rats
were consistent with the suggestion that declarative learning
ismediated by a neural system that includes theHIPP andmay
describe complex cognitive learning in humans. Learning in
the hippocampal system occurs very rapidly with relatively
little experience. This property is important for understanding
the development of addictive behavior. The HIPP is a critical
structure within a neural network in the brain that can
quickly acquire general information about all of the situations
experienced. Information stored in this system includes
knowledge of relationships among external events relevant
to the situation in which a drug is obtained. Thus, declarative
learning can contribute to the addictive process at this general
level.

One of the most consistent findings from the current study
is that there exists a distinction between heroin-dependent
individuals and controls in the prefrontal cortex, including the
cingulate gyrus, rostral ACC (rACC, BA 24), and right inferior
and medial frontal gyri (Goldstein and Volkow, 2002). The
prefrontal cortex is involved in decision making and in
inhibitory control (Royall et al., 2002), and thus, its disruption
could lead to inadequate decisions that favor immediate
rewards over delayed but more favorable responses. This
finding could also explain the impaired control over the intake
of the drug even when the addicted subject expresses the
desire to refrain from taking the drug (Goldstein and Volkow,
2002). Employing a go/no-go task, Kaufman et al. (2003) found
cingulate and medial frontal hyperactivation during success-
ful no-go inhibitions and errors of commission in cocaine
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patterns compared to healthy controls, and further suggested
that cocaine addiction is accompanied by disruption of
neural circuitry critical for cognitive control. In particular, by
contrasting successful and unsuccessful inhibitions, Rubia
et al. (2005) identified the right inferior frontal cortex as a
specific mediator for response inhibition. The rACC plays a
control-level and perhaps a cross-modal role in mediating
response inhibition. One study (Li and Sinha, 2008) indicated
that the abstinent patient with cocaine dependence showed
decreased activation in the rACC during stop signal inhibition.
Furthermore, in cocaine-dependent patients the activity of
the rACC was correlated with their subjective rating of
difficulty in impulse control as assessed by the Difficulty in
Emotion Regulation Scale (DERS) (Gratz and Roemer, 2004).
Their finding extends to the previous work of Hester and
colleagues by ascertaining the functional specificity of ACC
hypoactivation in patients with cocaine dependence (Hester
and Garavan, 2004).

In the current study, we analyzed and explained the data
from the perspective of the network in cognitive neuroscience,
instead of elaborating on the role of cortico–striatal pathways
and compulsory drug use behavior. These findings are
consistent with the model proposed by Volkow et al.(2003).
During drug intoxication, the increase in activation of the DA-
regulated reward circuit results in hyperactivation of the
motivational/drive and memory circuits, which deactivate
and remove the control exerted by the frontal cortex (Di
Chiara, 2002). Without the inhibitory control, a positive feed-
back loop is set forth which results in compulsive drug intake.
Because the interactions between the circuits are bidirection-
al, the activation of the network during intoxication serves
to further strengthen the saliency value of the drug.

Although specific brain regions associatedwith each circuit
were identified, we realized that other brain areas (such as the
thalamus and insula) were involved in these circuits. One
region may participate in more than one circuit (CG in both
control and motivation/drive circuits), while the other brain
regions and circuits (attention and emotion circuits) are likely
to be affected in drug addiction. In addition, all of the above
networks as well as the brain areas shown in Fig. 2
illustrate the various distinctions between heroin-dependent
individuals and healthy controls by displaying a 3-dimensional
spatialmap representing the accuracy rate. Hence, the accuracy
ratewasusedasa threshold toevaluate thedifferences between
the two groups; therefore, it could also be recognized as a
biomarker to judge the degree of their differences or even the
degree of heroin-dependent subjects.

There are several potential limitations of our study. One
limitation is the low number of heroin-dependent subjects.
We recruited these subjects from a local methadone replace-
ment therapy center. Most of the heroin addicts were not
willing to take part in the study and we have strict inclusion
and exclusion criteria. All of these factors resulted in a low
number of subjects. The second limitation is that there are
only male heroin-dependent subjects. Because there were
very few female patients in the treatment center, no female
subjects were recruited and the results of our current study
may contain a gender bias. The third limitation of our study is
that we did not consider the influence of cigarette smoking
among the heroin-dependent subjects, especially considering
that the tobacco smoking prevalence in heroin addicted
subjects is currently 99.2% (Pajusco et al., 2011). Thus, future
studies should consider attempting to distinguish the patterns
of brain activation related to cigarette smoking separately
from the effects of heroin dependence.

In this studywe applied the pattern classification approach
of MVPA to analyze the addiction fMRI data sets.With the help
of the feature extraction method of NMF and the SVM
classifier, we characterized the discrepancies in activation
patterns between heroin-dependent individuals and healthy
subjects during the resting state. These results verified our
hypothesis about the networks of the four circuits involved
in drug abuse and addiction according to Volkow's model
(Volkow et al., 2003), and proved that the pattern-based
approach is effective in analyzing them systematically. It
also provided useful information for therapeutic interven-
tions and suggested thatmore attention should be given to the
patterns of information transmission and processing between
these four circuits in heroin-dependent individuals. These
findings may shed light on the mechanism underlying heroin
addiction.
4. Experimental procedures

4.1. Participants

The study was performed on 12 abstinent male (right-handed,
age 37.2±7.3 years, range 25–47 years) heroin-dependent pa-
tients. They were recruited from a local methadone replace-
ment therapy center that had very few female patients.
The experimental protocol was approved by the Institutional
Review Board of The Fourth Military University, China. They
were screened by the Structured Clinical Interview for the
Diagnostic and Statistical Manual of Mental Disorders, Fourth
Edition (DSM-IV) to confirm the diagnosis of opiate depen-
dence. Exclusion criteria included psychiatric, neurological,
and medical disorders requiring immediate treatment or a
current state of any form of addiction with a diagnosis of
substance abuse/dependence. The selected heroin-dependent
individuals had a mean heroin abuse history of 89.5±
55.7 months (range, 19–182 months), a mean daily heroin con-
sumption of 0.6±0.3 g (range, 0.2–1.5 g), and a mean absti-
nence from heroin of 4.9±0.8 months (range, 3–6 months).
They all tested negative for the presence of morphine in the
urinalysis (reagent box product by China Carrie City Interna-
tional Engineering Co.), as shown in Table 1. They all appeared
to be in good physical health and did not display any overt
behavioral signs of heroin intoxication.

Thirteen healthy right-handed male individuals (age-,
education- and gender-matched, P<0.05; age 36.8±7.4 years,
range 26–51 years) were enrolled from the local community to
participate in the control group. None of the subjects were
taking prescription drugs that affected the central nervous
system within 1 week of scanning and none had a history
of neurological illness. All subjects were fully informed of the
nature of the research and had authorized written consent.
Information regarding the demographic and clinical informa-
tion of the heroin-dependent individuals and healthy subjects
is presented in Table 1.



Table 1 – Demographic and clinical characteristics of
heroin-dependent individuals and healthy controls.

Healthy
controls

(mean/SD)

Heroin-dependent
individuals
(mean/SD)

Age (years) 36.8±7.4 37.2±7.3
Education (years) 9.1±3.2 9.8±2.5
Duration of heroin
use (months)

N/A 89.5±55.7

Dosage of heroin use
(g/day)

N/A 0.6±0.3

Duration of abstinence
from heroin (months)

N/A 4.9±0.8

Methadone dose on
the day of scanning (mg)

N/A 34.2±18.7

Abbreviation: SD, standard deviation.
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4.2. fMRI data acquisition

The experiment was carried out in a 3T GE (Medical Signa
EXCITE) scanner. Prior to the functional run, a high-resolution
structural image for each subject was acquired using three-
dimensional MRI sequences with a voxel size of 1 mm3 and
with an axial Fast Spoiled Gradient Recalled (3D-FSGPR) (TR
500 ms, TE 7.7 ms, matrix 256×256, field of view 220 mm×
220 mm, 25 slices, 4 mm thickness, 1 mm inter-slice gap). A
gradient echo T2*-weighted sequencewith in-plane resolution
of 3.75 mm×3.75 mm (TE 30 ms, TR 2 s, matrix 64×64, field of
view 240 mm, and flip angle 90°) was also acquired. One
hundred fifty echo-planar volumes were acquired during the
resting scan and functional image scanning lasted 5 min.
Subjects were instructed to close their eyes but remain awake
during the entire scanning procedure. After scanning, all of
Table 2 – The results displayed high accuracies (65%,
P<0.01, which is higher than the chance level of 50%) in
the OFC (BA 10), CG (BA 24), frontal and para-limbic regions
such as ACC (BA 24), HIPP/PHIPP region, amygdala,
caudate, putamen, as well as the posterior insula (BA 13)
and thalamus.

Position Hem BA Talairach Accuracy
rate

x y z

OFC R 10 39 54 21 0.86
MFG R 9/46 41 48 11 0.84
IFG R 44/45/46/47 42 41 6 0.84
SFG R 9 43 52 15 0.84
ACC R 24 5 29 10 0.72
CG R 32 14 16 20 0.72
Caudate R 15 15 13 0.8
Putamen R 23 13 2 0.72
HIPP R 35 −11 −15 0.84
PHIPP L -15 −3 −25 0.72
Amygdala R 26 −7 −12 0.68
Insula R 13 43 15 3 0.8
Thalamus R 18 −24 11 0.70

Abbreviation: OFC, orbitofrontal cortex; BA, Brodmann Area; CG,
cingulate gyrus; ACC, anterior cingulate cortex; HIPP, hippocampus;
PHIPP, parahippocampus; MFG, medial frontal gyrus; IFG, inferior
frontal gyrus; SFG, superior frontal gyrus.
the subjects reported that they had remained awake during
the full length of the scan.

4.3. Image analysis

Imaging data were preprocessed and analyzed using Statistical
Parametric Mapping 5 (SPM5, http://www.fil.ion.ucl.ac.uk/spm).
Images were first corrected for within scan acquisition time
differences between slices and then realigned to the first
volume to correct for interscan head motions. Upon reviewing
the translation and rotation of the images, head movements
greater than 1 mm or head rotations greater than 1° were dis-
carded (one of the heroin-dependent patients was excluded).
Next, we spatially normalized the realigned images to the
standard EPI template and resampled them to a voxel size of
3 mm×3mm×3mm. Finally, the normalized data sets were
filtered by using a bandpass filter (0.01–0.1 Hz). Spatial smooth-
ing was not applied because this conventional preprocessing
step could have removed fine-grained spatial information
potentially useful for pattern classification analysis of MVPA.

The basic MVPA method is a straightforward application
of pattern classification techniques, where the patterns to be
classified are vectors of voxel activity values (Norman et al.,
2006). The performance ofMVPA analysis typically depends on
three steps: feature selection, feature extraction, and classifier
training and testing. First, feature selection decides which
voxels will be included in the classification analysis. Secondly,
feature extraction reduces the data matrix and extracts the
eigenvector as the feature vector. Lastly, classifier training
involves feeding a subset of these patterns into a multivariate
pattern classification algorithm. In the current study, we used
a novel variant of the “searchlight” approach (Kriegeskorte
et al., 2006) to select an appropriate set of voxels in order
to define multivariate features as the input of the pattern
classification analysis. We defined a spherical multivariate
“searchlight” centered on each voxel to combine the signals
from all of the voxels of the gray matter that were included,
and this “searchlight” was moved through the whole brain
cortex. Therefore, this multivariate feature selection method
can evaluate sets of voxels based on the information from
percentage changes in the blood oxygenation level dependent
(BOLD) signal over those voxels (Norman et al., 2006).
The classification performance of each voxel shows how
well the multivariate signal in the local spherical neighbor-
hood differentiated the distinct patterns.

We first defined a small spherical clusterwith a 6 mmradius
comprised of 33 voxels (according to the “searchlight” with
optimal or near-optimal detection performance) (Kriegeskorte
et al., 2006)with eachgivenvoxel vi spanning awidthof 3 mmin
each dimension. We extracted the unsmoothed data for each
voxel in the fixed local cluster to yield a feature vector for this
central voxel vi, and a single feature was defined by xtj which
was the signal of a voxel j at a given time point t. Therefore, we
acquired a data matrix X=T×V where T was the number of
time points of each run and Vwas the number of voxels in this
spherical cluster. We then applied the NMF technique (Lee and
Seung, 1999), which is characterized by decomposing the
multivariate data set as non-negative factors, to extract its
eigenvectors. This approach is more compatible for analyzing
fMRI data compared to other methods such as principal

http://www.fil.ion.ucl.ac.uk/spm
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component analysis (PCA) and singular value decomposition
(SVD) because it enforces the constraint that the decomposed
factors must be non-negative (must be equal to or greater than
zero). Consequently, this characteristic fulfills the requirement
for the guidelines of image processing.

Numerous classification algorithms have been developed
and applied inMVPA studies. Here, we introduced the SVM (Cox
and Savoy, 2003; Kamitani and Tong, 2005) approach which has
already been successfully used in fMRI studies (Cox and Savoy,
2003). The classification was performed with the LIBSVM
implementation (http://www.csie.ntu.edu.tw/wcjlin/libsvm).
The SVM classifier is trained by providing examples of the
form 〈x, y〉 where x represents a spatial pattern, which in
our case is the final feature vector of each subject, and y is the
category label (y=1 for a heroin-dependent individual and y=−1
for a healthy subject). We evaluated the performance of the
classifier using the leave-one-subject-out cross validation test.
The proposed approach here had k-folds where k (equals 24)
is the number of all of the subjects involved. For each fold, we
assigned the feature of the k−1 subjects obtained from the
“searchlight” centered on voxel vi to a “training” data set that
wasused to train this linear classifier. Then, the category labelof
the central voxel vi belonging to the other subject (test data)
was predicted by classifying it as the feature vector using the
trained classifier. In total, the training and test procedureswere
repeated 24 times. Each test used feature vectors with k−1
different runs/subjects assigned as a training data set and a
feature vector of a different run/subject assigned as the test data
set. The classifier accuracy was measured by the proportion of
runs correctly classified for the central voxel vi. Thus, the
mean classifier accuracy would yield vim by averaging all of
the accuracies calculated for every fold of this k-fold cross-
validation procedure. The same procedure was then repeated
for the next spatial position at vi. The mean for the decoding
accuracy of each voxel was then used to create a 3-dimensional
spatial map representing the decoding accuracy for each
position vi in the whole brain and would thus represent the
statistical differences between the two groups.
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