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Abstract—Scene text recognition has attracted a great many
researches due to its importance to various applications.
Existing methods mainly adopt recurrence or convolution
based networks. Though have obtained good performance,
these methods still suffer from two limitations: slow training
speed due to the internal recurrence of RNNs, and high
complexity due to stacked convolutional layers for long-term
feature extraction. This paper, for the first time, proposes
a no-recurrence sequence-to-sequence text recognizer, named
NRTR, that dispenses with recurrences and convolutions en-
tirely. NRTR follows the encoder-decoder paradigm, where the
encoder uses stacked self-attention to extract image features,
and the decoder applies stacked self-attention to recognize texts
based on encoder output. NRTR relies solely on self-attention
mechanism thus could be trained with more parallelization and
less complexity. Considering scene image has large variation in
text and background, we further design a modality-transform
block to effectively transform 2D input images to 1D sequences,
combined with the encoder to extract more discriminative
features. NRTR achieves state-of-the-art or highly competitive
performance on both regular and irregular benchmarks, while
requires only a small fraction of training time compared to the
best model from the literature (at least 8 times faster).

Keywords-No-Recurrence; Self-attention; Modality-
transform block; Faster and better

I. INTRODUCTION

Scene text recognition has drawn increasing interests as

it could extract rich semantic information relevant to scene

and object. Although extensive studies have been carried out,

recognizing scene texts is still challenging due to its high

complexity, e.g., low quality texts, arbitrary orientations,

cluttered backgrounds and complex deformations, see Fig.1.

Current text recognition methods [1], [2], [3], [4], [5], [6]

mainly follow the sequence-to-sequence (seq2seq) paradigm,

where input images and output texts are separately repre-

sented as patch sequences and character sequences. These

methods could be roughly classified into two branches: the

recurrent neural network (RNN) based recognizers and the

convolutional neural network (CNN) based ones.

RNN based text recognizers [1], [3], [2], [6], [7] have

Figure 1: Qualitative results of NRTR. (left) Correct results with texts in
yellow. (right) Incorrect results with labels in yellow and outputs in red.

show great success as they are superior to learn contextual

information and capture strong correlation among different

characters in each text. However, the inherently sequen-

tial nature of RNN precludes computation parallelization,

which brings heavy time and computational burdens when

input image sequence is long, as memory constraints limit

batching across examples. Besides, the training procedure

of RNN is sometimes tricky due to the problem of gradient

vanishing/exploding [8].

Recently, CNN based recognizers [4], [5] are proposed to

accelerate sequential computation. By leveraging CNN in-

stead of RNN, they enable to compute hidden representation

in parallel. However, the number of operations required to

relate two arbitrary signals grows along with their distances.

CNN based methods are difficult to learn dependencies

among distant positions, unless much more convolutional

layers are stacked, which in turn increases the complexity.

Therefore, CNN based methods suffer from the dilemma of

low complexity and satisfactory performance.

In this paper, we propose, for the first time, a no-

recurrence seq2seq scene text recognizer, named NRTR,

that dispenses with recurrences and convolutions entire-

ly. Motivated by recent success of Transformer [9] in

natural language processing field, NRTR relies solely on
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self-attention mechanism. Specifically, NRTR follows the

encoder-decoder framework, while the encoder uses stacked

self-attention to transform input image sequence to hidden

feature representation, and the decoder applies stacked self-

attention to output sequence of characters based on the

encoder output. NRTR draws global dependencies between

different input and output positions at once rather than one

by one in RNN, and reduces the whole operation to a

constant number unlike that in CNN. It therefore allows for

more computation parallelization with higher performance.

Besides, unlike [9] that uses 1D sentence as input, scene

text recognizer receives 2D images with large variation in

scales/aspect ratios and backgrounds. We further proposes

a novel modality-transform block as a preprocessing step

before the encoder, to effectively convert 2D image to cor-

responding 1D sequence. Experiments demonstrate that the

specially designed modality-transform block could greatly

influence the whole recognizer performance.

We conduct extensive experiments on standard bench-

marks, including both regular (IIIT5K, SVT, ICDAR2003

and ICDAR2013) and irregular datasets (SVT-P, CUTE80,

ICDAR2015). Without the bells and whistles, NRTR

achieves state-of-the-art or highly competitive performance

in both lexicon-free and lexicon-based cases without any

rectification module, while accompanies with a 8 times faster

training speed than the existing best recognizer.

Our contributions are summarized as follows:

• We analysis, for the first time, the deficiency of current

RNN and CNN based recognizers and propose a no-

recurrence seq2seq model based solely on self-attention

mechanism. Our model could be trained with more

computation parallelization and less complexity.

• We design a modality-transform block to efficiently

map input image to corresponding sequence, combined

with encoder, to extract more discriminative features.

• Our model achieves state-of-the-art performance on

various benchmarks and significantly surpasses compet-

itive recognizers on both accuracy and training speed.

II. RELATED WORK

A. Scene Text Recognition

Traditional text recognizers mainly adopt bottom-up

scheme by first detecting individual characters using slid-

ing window [10], then integrating characters into texts by

dynamic programming or lexicon search [10]. Others adopt

top-down scheme by directly recognizing texts from images.

Recent methods regard text recognition as a sequence

recognition problem where images and texts are represented

as patch and character sequences separately. Shi et al.

[3] combine CNN and RNN to learn spatial dependencies

and applies CTC to translate per-slice prediction into a

label sequence. They also develop an attention-based spatial

transformer network to rectify irregular texts [6]. Besides,

Lee et al. [11] and Cheng et al. [2] both construct attention-

based recurrent network to decode feature sequence and

predict labels recurrently. Instead of RNNs, Gao et al. [4]

and Yin et al. [5] leverage stacked CNN for the pursuit of

greater computational parallelism.

B. Our Method Versus Some Related Works

The most related work to NRTR is Transformer, a recent

development in NLP field. Inspired by Transformer, we uses

solely self-attention mechanism as the fundamental module

but has distinct differences indeed. First, Transformer aims

for machine-based English-to-French translation task but

fails to read texts in natural images. As input text images

generally convey much more information than sentences

in machine translation, text recognizers tend to be more

complicated. Our model relies on the specifically designed

encoder/decoder to efficiently solve this problem. Second,

unlike Transformer that receives 1D sentences as input, we

use 2D images with large variation in scales/aspect ratios

and backgrounds. The locations and geometric features of

scene texts lying in images play a more complex role than

the word location in an 1D sentence. To obtain the most

useful sequence for the encoder, we design a novel modality-

transform block to transform each input image effectively.

III. METHODOLOGY

The architecture of NRTR is depicted in Fig.2. NRTR

consists of three sub-networks: the encoder, the decoder and

the modality-transform block served as the preprocessing.

As the encoder and the decoder are both based on the self-

attention mechanism, we first review it and then describe the

three main sub-networks.

A. Self-Attention Mechanism

Self-attention extracts correlation information between

different input and output positions. Here, we use Scaled

Dot-Product Attention, an effective self-attention module

proposed in [9]. It has three inputs: queries and keys of

dimension dk, and values of dimension dv . Dot product

is performed between the query and all keys to obtain

their similarity. A softmax function is applied to obtain the

weights on the values. Given a query q, all keys (packed into

matrices K) and values (packed into V), the output value is

weighted average over input values:

vout = softmax

(
qKt

√
dk

)
V (1)

where t means element numbers of corresponding inputs and

scalar 1√
dk

is used to prevent softmax into regions where

it has extremely small gradients. Therefore, self-attention

could connect all positions with a constant number and allow

parallelization. More details please refer to [9].
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Figure 2: The overall architecture of NRTR.

B. Modality-Transform Block

Modality-transform block consists of several convolution-

al layers. For each layer, the stride is set to 2 and channel

number is increased progressively by 2×. The product of

the height and channel number of each layer therefore

remains constant and equal to dmodel, the dimension used

in our encoder-decoder model. More specifically, for each

image with (w0, h0), at the n-th layer, we get (w, h, c) =(
w0/2n,

h0/2n,
(
dmodel/h0

)
× 2n

)
, where c means channel

number. After the final layer, a concatenate operation is

applied to reshape features from different channels into an

input sequence (input step, dim) =
(w0/2n, dmodel

)
, each

element of which has dmodel dimensions. We design various

block architectures to observe their influences on the whole

model. More information is detailed in the experiment part.

Additionally, as NRTR contains no recurrences, we use

positional encoding to indicate each position in sequence:

PE(pos,i) =

{
sin(pos/100002i/dmodel) 0 ≤ i ≤ dmodel/2

cos(pos/100002i/dmodel) dmodel/2 ≤ i ≤ dmodel

(2)

where pos indicates the position in input image sequence and

i indicates the i-th dimension. We choose this function since

for arbitrary fixed offset k, PEpos+k can be represented as a

linear function of PEpos. We get the final input sequence by

adding the positional encoding to the above input sequence.

C. Encoder

The encoder consists of Ne number of connected identi-

cal encoder-blocks (green block in Fig.2), each of which

contains two sub-layers: a multi-head scaled dot-product

attention and a position-wise fully connected network.

The multi-head scaled dot-product attention allows the

encoder to jointly attend to information from different

representation subspaces at different positions. Similar to a

convolutional layer that applies a set of filters to extract var-

ious features, multi-head attention stacks h times scaled dot-

product attention, where h is called the head number. The

entire process of the multi-head scaled dot-product attention

includes three operations. Firstly, each scaled dot-product

attention goes through three different linear projections to

project the queries, keys, and values from the input sequence

to more discriminative representations. Then, the stacked h
times scaled dot-product attentions are performed in parallel,

and finally, their outputs are concatenated and undergo a

linear layer to get the final dmodel-dimensional outputs:

MultiHead (Q,K,V) = Concat (head1, . . . , headh)W
O

(3)

where, headi = Attention
(
QWQ

i ,KWK
i ,VWV

i

)
(4)

Since Q,K,V have the same dimension of dmodel, the pre-

dictions are parameter matrices WQ
i ∈ �dmodel×dq , WK

i ∈
�dmodel×dk , WV

i ∈ �dmodel×dv and WO
i ∈ �dc×dmodel ,

where dc = h× dv , and we set dq = dk = dv = dmodel.

The position-wise fully connected network consists of two

linear transformations with a RELU activation in between.

FFN (x) = max (0, xW1 + b1)W2 + b2 (5)

where the weights are W1 ∈ �dmodel×dff and W2 ∈
�dff×dmodel , and the bias are b1 ∈ �dff and b2 ∈ �dmodel .

The linear transformations are the same across different

positions, but use different parameters from layer to layer.

Meanwhile, layer normalization and residual connection

are introduced into each sub-layer for effective training.

Given each sub-layer x, the corresponding outputs are:

LayerNorm (x+ Sublayer (x)) (6)

D. Decoder

The decoder generate text sequence based on encoder

outputs and input labels. For each input label, we apply a

learnable character-level embedding to convert per character

to a dmodel-dimensional vector. The resulted vectors com-

bines with the positional encoding to form the decoder input.

The decoder consists of Nd number of connected iden-

tical decoder-blocks (orange block in Fig.2). Similar to the

encoder, the decoder-block is based on the multi-head scaled

dot-product attention and the position-wise fully connected

network, but has two differences. Firstly, due to the auto-

regressive property, a masked multi-head attention is added

to each decoder-block to ensure that the predictions for

position j can only depend on the known outputs prior to
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j. We implement this by masking out (setting to −∞) all

values in the input of the softmax which correspond to illegal

connections. Second, the multi-head attention has keys and

values coming from the encoder outputs, and queries coming

from the previous decoder block outputs.

The outputs are transformed to the probabilities for char-

acter classes by a linear projection and a softmax function.

IV. EXPERIMENT

In this section, we describe the standard benchmarks, the

detailed experimental settings and results with comparisons.

A. Benchmark Datasets

IIIT5K [12] contains 3000 text images in test set. Each is

accompanied with a 50-word and a 1k-word lexicons.

SVT [10] is collected from Google Street View and most

images are severely corrupted by noise and blur. It contains

647 text images, each of which has a 50-word lexicon.

ICDAR 2003 (IC03) [13] contains 1065 cropped text im-

ages after data filtering as in [10]. Each image is associated

with a 50-word and a full lexicon as defined in [10].

ICDAR 2013 (IC13) [14] includes texts on sign boards and

objects with large variations. After filtered as done in IC03,

it finally contains 1015 cropped text images in test set.

ICDAR 2015 (IC15) [15] is taken from Google Glasses and

contains plenty of irregular texts. For fair comparison, we

discard the images that contain non-alphanumeric characters

and finally obtain 1922 ones. No lexicon is specified.

SVT-P [16] contains 645 cropped text images captured from

the side-view angles in Google Street View. Each image is

specified with a 50 words lexicon and a full lexicon.

CUTE80 [17] is specially collected for evaluating the per-

formance of curved text recognition. It contains 287 cropped

text images in test set. No lexicon is provided.

B. Implementation Details

NRTR is trained purely on Synth90k [18] and evaluated

on standard benchmarks without any finetuning. In both

training and inference, heights of input images are set to 32
and widths are proportionally scaled. The output consists

of 38 classes, including 26 lowercase letters, 10 digital

numbers, 1 space and 1 end-of-sequence token.

At training, samples are batched together by approximate

image widths. We use Adam with β1 = 0.9, β2 = 0.98,

ε = 10−9, and vary learning rate according to the formula:

lrate = d−0.5
model ·min

(
n−0.5, n · warmup n−1.5

)
(7)

where n represents current step and warmup n (set to

16000) controls over the learning rate first increase then

decrease. In order to prevent over-fitting, we set residual

dropout to 0.1. We train NRTR for about 6 epochs before

convergence and average the last 10 checkpoints for infer-

ence. All the experiments are implemented in Tensorflow

with one Titan X GPU.

Model Ne Nd dff IIIT5K SVT IC03 IC13

6enc6dec (base) 6 6 1024 85.4 86.8 93.5 92.8
12enc6dec-4096 (big) 12 6 4096 86.5 88.3 95.4 94.7

8enc4dec 8 4 1024 85.7 86.6 93.7 93.9
4enc8dec 4 8 1024 85.2 86.5 93.0 93.2
10enc5dec 10 5 1024 85.9 87.2 93.9 94.2
12enc6dec 12 6 1024 86.2 87.7 94.5 94.2

6enc6dec-2048 6 6 2048 85.9 87.4 94.2 93.9
6enc6dec-4096 6 6 4096 86.3 87.5 95.1 93.9

base model with 2Conv 6 6 1024 85.4 86.8 93.5 92.8
base model with 3Conv 6 6 1024 84.2 86.6 93.7 92.8
base model with 7Conv 6 6 1024 77.4 80.7 89.1 89.5
base model with 2CNNLSTM 6 6 1024 85.5 86.1 94.4 94.9

big model with 2Conv 6 6 1024 86.5 88.3 95.4 94.7
big model with 2CNNLSTM 6 6 1024 84.7 84.8 94.1 93.4

Table I: Exploration of the encoder, the decoder and the modality-transform
blocks on lexicon-free benchmarks.

Figure 3: Examples of the proposed modality-transform block. (left) The
general CNN block. (right) The CNNLSTM block.

C. Ablation Study

We first investigate the configuration of three sub-

networks in NRTR. All experiments are executed with same

training strategy and evaluated under the lexicon-free case.

1) Exploration of the encoder and the decoder: We

explore the encoder-block number Ne, the decoder-block

number Nd and the fully connected inner dimension dff . We

set dmodel = 512, h = 8 and the modality-transform block

with two convolutional layers during these experiments. As

listed in Tab.I, we take the 6enc6dec model as our baseline.

We first keep total block number identical and find that

more encoder blocks achieve better accuracy (8enc4dec vs

6enc6dec, 4enc8dec). Then, we add more blocks and see

that deeper model obtains higher accuracy (12enc6dec vs

8enc4dec, 10enc5dec). We no longer increase Ne and Nd

considering time and memory costs. These two compar-

isons indicate that deeper encoder/decoder could extract

more representation, while image information is tend to be

more complex than target ones (8enc4dec vs 4enc8dec).

We further test different dff and observe that wider inner

dimension is more beneficial to NRTR (6enc6dec-4096 vs

6enc6dec-2048,6enc6dec). Based on the above analysis, we

take the 12enc6dec-4096 as our big model.

2) Exploration of the modality-transform block: We in-

vestigate various architectures and depict two examples in

Fig.3. As listed in Tab.I, more convolutional layers (2Conv

vs 3Conv, 7Conv) lead to a decline in performance, even

a seven-layer convnet used in CRNN [3] and RARE [6].
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Methods
Regular Text Training Time

IIIT5K SVT IC03 IC13
h/GPU

50 1k None 50 None 50 Full None None

ABBYY[10] 24.3 - - 35.0 - 56.0 55.0 - - -
Wang et al.[10] - - - 57.0 - 76.0 62.0 - - -
Mishra et al.[12] 64.1 57.5 - 73.2 - 81.8 67.8 - - -
Goel et al.[21] - - - 77.3 - 89.7 - - - -
Bissacco et al.[22] - - - 90.4 78.0 - - - 87.6 -
Alsharif et al.[23] - - - 74.3 - 93.1 88.6 - - -
Almázan et al.[24] 91.2 82.1 - 89.2 - - - - - -
Yao et al.[25] 80.2 69.3 - 75.9 - 88.5 80.3 - - -
Jaderberg et al.[26] - - - 86.1 - 96.2 91.5 - - -
Su and Lu et al.[27] - - - 83.0 - 92.0 82.0 - - -
Jaderberg et al.[28] 97.1 92.7 - 95.4 80.7 98.7 98.6 93.1 90.8 -
Lee et al.[11] 96.8 94.4 - 96.3 80.7 97.9 97.0 88.7 90.0 -
Shi et al.[6] 96.2 93.8 81.9 95.5 81.9 98.3 96.2 90.1 88.6 16/Titan X
Shi et al.[3] 97.6 94.4 78.2 96.4 80.8 98.7 97.6 89.4 86.7 -
Ghosh et al.[29] - - - 95.2 80.4 95.7 94.1 92.6 - -
Yin et al.[5] 98.9 96.7 81.6 95.1 76.5 97.7 96.4 84.5 85.2 -
Gao et al.[4] 99.1 97.9 - 97.4 82.7 98.7 96.7 89.2 88.0 -
Cheng et al.∗[2] 99.3 97.5 87.4 97.1 85.9 99.2 97.3 94.2 93.3 40/M40
Bai et al.∗[1] 99.5 97.9 88.3 96.6 87.5 98.7 97.9 94.6 94.4 41/P40

Our proposed NRTR 99.2 98.4 86.5 98.0 88.3 98.9 97.9 95.4 94.7 2.8/Titan X
Our proposed NRTR∗ 99.2 98.8 90.1 98.1 91.5 98.9 98.0 94.7 95.8 5.0/Titan X

Table II: Accuracies (%) on regular benchmarks. ”50”, ”1k” and ”Full”
are lexicon sizes. ”None” means the lexicon-free case. ’h/GPU’ indicates
training time cost per epoch on their GPUs. Note that the FLOPS is P40 >
M40 ≈ T itanX . ∗ means training with both Synth90k and SynthText.

We conjecture that the loss of detailed information due

to resolution subsampling outweighs the gain of high-level

semantics. Since the encoder itself has strong feature extrac-

tion ability, we prefer to apply a two-layer convolution in

the block and combine it with the encoder to draw more

discriminative features. Besides, as the newly CNNLSTM

[19] could captures more temporal information by recurrent

connections, we replace CNN with it. Results show an

accuracy boost in our base model, but a little reduction

in our big model. The reason we guess is the redundant

extraction of image information when associates CNNLSTM

with excessive encoder components.

D. Comparisons with the State-of-the-arts

Based on the above analysis, we construct the final NRTR

by setting Ne = 12, Nd = 6, dff = 4096 and the modality-

transform block with two convolutional layers. Since recent

methods are trained with both Synth90k [18] and SynthText

[20], for fair comparison, we further train NRTR on two

synthetic datasets. Quantitative results are listed in Tab.II.

1) Accuracy: For regular benchmarks, NRTR shows an

accuracy boost and averagely beats previous best recognizers

[2], [1] in both lexicon-free and lexicon-based cases. Specifi-

cally, NRTR obtains 0.9% on IIIT5K with 1k lexicon, 1.5%

on SVT and 0.2% on IC03 with Full lexicon, only litter

decline on IIIT5K (0.3%) with50 lexicons. In the lexicon-

free case, NRTR surpasses [1] on all benchmarks.

Moreover, we test NRTR on irregular benchmarks and

show results in Tab.III. Note that comparative models are

all designed specially for irregular texts. NRTR does not

perform any special operation but still shows great tolerance

on handling irregular texts, which further illustrates its strong

ability in text feature extraction.

2) Speed: We give training speed of these approaches in

Tab.II. Only a few methods report their training time. For

each epoch, Shi et al.[6] costs 16 hours/Titan X and Cheng

et al.[2] needs 40 hours/Tesla M40. Both need 3 epochs

Methods
Irregular Text

IC15 SVT-P CUTE80

None 50 None None

AON∗[30] 68.2 94.0 73.0 76.8
Aster∗[31] 76.1 - 78.5 79.5
Liao et al.∗[32] - - - 79.9
SAR[33] 78.8 95.8 86.4 89.6

Our proposed NRTR∗ 79.4 94.9 86.6 80.9

Table III: Accuracies (%) on irregular benchmarks. ∗ means training with
both Synth90k and SynthText.

before converging. The best previous method Bai et al.[1]

takes more time (41 hours per epoch on P40). NRTR takes

merely 5.0 hours per epoch and therefore is at least 8 times

faster than the existing best recognizer. The inference speed

of NRTR is approximately 0.03s per image, compared to

0.11s in [1] and 0.2s in [6].

3) Visualization: We show both correct and incorrect

examples of NRTR in Fig.1. As can be seen, NRTR could

recognize extremely challenging scene images, e.g., low

resolution, complex geometric deformations and cluttered

background. Some are even hard to human. We carefully

analyze incorrect results and split them into three types

according to caused reasons. First, texts are severely oc-

cluded by other objects, e.g., tree or barrier in example of

’redwood’. Second, characters that look similar are mixed,

like ’i’ in image of ’valerie’ and its fault result ’l’. Third, text

orientation are seriously curved, e.g, nearly ninety degrees

to the horizontal plane. These failed examples also highlight

future research directions of the proposed NRTR.

V. CONCLUSIONS

This paper points out two problems lying in current

RNN/CNN-based scene text recognizers and proposes a no-

recurrence model aiming at increasing computation par-

allelization and performance. Experiments demonstrate its

superiority on accuracy and training speed. We intend to

extend the idea to end-to-end text spotting system.

ACKNOWLEDGMENT

This work is supported by the Strategic Priority Re-

search Program of the Chinese Academy of Sciences (XDB-

S01070101).

REFERENCES

[1] F. Bai, Z. Cheng, Y. Niu, S. Pu, and S. Zhou, “Edit probability
for scene text recognition,” arXiv preprint:1805.03384, 2018.

[2] Z. Cheng, F. Bai, Y. Xu, G. Zheng, S. Pu, and S. Zhou,
“Focusing attention: Towards accurate text recognition in
natural images,” in 2017 IEEE International Conference on
Computer Vision (ICCV). IEEE, 2017, pp. 5086–5094.

[3] B. Shi, X. Bai, and C. Yao, “An end-to-end trainable neu-
ral network for image-based sequence recognition and its
application to scene text recognition,” IEEE transactions on
pattern analysis and machine intelligence.

785



[4] Y. Gao, Y. Chen, J. Wang, and H. Lu, “Reading scene
text with attention convolutional sequence modeling,” arXiv
preprint arXiv:1709.04303, 2017.

[5] F. Yin, Y.-C. Wu, X.-Y. Zhang, and C.-L. Liu, “Scene
text recognition with sliding convolutional character models,”
arXiv preprint arXiv:1709.01727, 2017.

[6] B. Shi, X. Wang, P. Lyu, C. Yao, and X. Bai, “Robust scene
text recognition with automatic rectification,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 4168–4176.

[7] P. He, W. Huang, Y. Qiao, C. C. Loy, and X. Tang, “Reading
scene text in deep convolutional sequences.” in AAAI.

[8] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-
term dependencies with gradient descent is difficult,” IEEE
transactions on neural networks.

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is
all you need,” in Advances in Neural Information Processing
Systems, 2017, pp. 6000–6010.

[10] K. Wang, B. Babenko, and S. Belongie, “End-to-end scene
text recognition,” in Computer Vision (ICCV), 2011 IEEE
International Conference on. IEEE, 2011, pp. 1457–1464.

[11] C.-Y. Lee and S. Osindero, “Recursive recurrent nets with
attention modeling for ocr in the wild,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 2231–2239.

[12] A. Mishra, K. Alahari, and C. Jawahar, “Scene text recogni-
tion using higher order language priors,” in BMVC 2012-23rd
British Machine Vision Conference. BMVA, 2012.

[13] S. M. Lucas, A. Panaretos, L. Sosa, A. Tang, S. Wong,
R. Young, K. Ashida, H. Nagai, M. Okamoto, H. Yamamoto
et al., “Icdar 2003 robust reading competitions: entries, result-
s, and future directions,” International Journal of Document
Analysis and Recognition (IJDAR).

[14] D. Karatzas, F. Shafait, S. Uchida, M. Iwamura, L. G. i Big-
orda, S. R. Mestre, J. Mas, D. F. Mota, J. A. Almazan, and
L. P. De Las Heras, “Icdar 2013 robust reading competition,”
in ICDAR, 2013 12th International Conference. IEEE, 2013,
pp. 1484–1493.

[15] D. Karatzas, L. Gomez-Bigorda et al., “Icdar 2015 competi-
tion on robust reading,” in ICDAR, 2015 13th International
Conference.

[16] T. Quy Phan, P. Shivakumara, S. Tian, and C. Lim Tan, “Rec-
ognizing text with perspective distortion in natural scenes,”
in Proceedings of the IEEE International Conference on
Computer Vision.

[17] A. Risnumawan, P. Shivakumara, C. S. Chan, and C. L. Tan,
“A robust arbitrary text detection system for natural scene
images,” Expert Systems with Applications.

[18] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman,
“Synthetic data and artificial neural networks for natural scene
text recognition,” arXiv preprint arXiv:1406.2227, 2014.

[19] Y. Zhang, W. Chan, and N. Jaitly, “Very deep convolutional
networks for end-to-end speech recognition,” in Acoustics,
Speech and Signal Processing (ICASSP), 2017 IEEE Inter-
national Conference on. IEEE, 2017, pp. 4845–4849.

[20] A. Gupta, A. Vedaldi, and A. Zisserman, “Synthetic data for
text localisation in natural images,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition, 2016, pp. 2315–2324.

[21] V. Goel, A. Mishra, K. Alahari, and C. Jawahar, “Whole is
greater than sum of parts: Recognizing scene text words,”
in Document Analysis and Recognition (ICDAR), 2013 12th
International Conference on. IEEE, 2013, pp. 398–402.

[22] A. Bissacco, M. Cummins, Y. Netzer, and H. Neven, “Pho-
toocr: Reading text in uncontrolled conditions,” in Comput-
er Vision (ICCV), 2013 IEEE International Conference on.
IEEE, 2013, pp. 785–792.

[23] O. Alsharif and J. Pineau, “End-to-end text recognition
with hybrid hmm maxout models,” arXiv preprint arX-
iv:1310.1811, 2013.

[24] J. Almazán, A. Gordo, A. Fornés, and E. Valveny, “Word
spotting and recognition with embedded attributes,” IEEE
transactions on pattern analysis and machine intelligence.

[25] C. Yao, X. Bai, B. Shi, and W. Liu, “Strokelets: A learned
multi-scale representation for scene text recognition,” in Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2014, pp. 4042–4049.

[26] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Deep features
for text spotting,” in European conference on computer vision.

[27] B. Su and S. Lu, “Accurate scene text recognition based on
recurrent neural network,” in Asian Conference on Computer
Vision. Springer, 2014, pp. 35–48.

[28] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman,
“Reading text in the wild with convolutional neural networks,”
International Journal of Computer Vision.

[29] S. K. Ghosh, E. Valveny, and A. D. Bagdanov, “Visual
attention models for scene text recognition,” arXiv preprint
arXiv:1706.01487, 2017.

[30] Z. Cheng, Y. Xu, F. Bai, Y. Niu, S. Pu, and S. Zhou, “Aon:
Towards arbitrarily-oriented text recognition,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 5571–5579.

[31] B. Shi, M. Yang, X. Wang, P. Lyu, C. Yao, and X. Bai,
“Aster: An attentional scene text recognizer with flexible
rectification,” IEEE transactions on pattern analysis and
machine intelligence, 2018.

[32] M. Liao, J. Zhang, Z. Wan, F. Xie, J. Liang, P. Lyu, C. Yao,
and X. Bai, “Scene text recognition from two-dimensional
perspective,” arXiv preprint arXiv:1809.06508, 2018.

[33] H. Li, P. Wang, C. Shen, and G. Zhang, “Show, attend
and read: A simple and strong baseline for irregular text
recognition,” arXiv preprint arXiv:1811.00751, 2018.

786


