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Abstract—Monitoring the influence of fault towards the 

product quality is of great importance to modern 

manufacturing enterprise. Traditional projection to latent 

structures (PLS) method as well as its variants still face many 

problems. In this paper, a new improved weighted PLS 

(IWPLS) is proposed to utilize the local information of the 

process data, handle noises and build regression models with 

better generalization capability. The objective function of 

IWPLS is weighted through calculating the similarity between 

the target inner matrix (IM) and the other inner matrices (IMs). 

Two types of weight matrices are given for different process 

data set. The IWPLS-based monitoring scheme is developed 

with additional restrains and decomposition operation. A 

designed numerical experiments and Tennessee Eastman 

Process (TEP) are employed to evaluate the validity of the 

proposed method. 

I. INTRODUCTION 

The rigorous standards of product quality in complex 
industrial process have prompted the advancement of 
quality-relevant fault monitoring technique[1]. Multivariate 
statistical process monitoring (MSPM) methods are deeply 
delved and widely used in chemical, steel, metallurgy, etc. 
process due to their low computation complexity and less 
dependence on process knowledge[2]–[5]. One basic method, 
partial least squares or projection to latent structures(PLS), 

with two basic statistics, Hoteling’s 
2

T  and squared 
prediction error(SPE), are used to detect and differentiate the 
quality-relevant and irrelevant faults. PLS decomposes the 
process variable space into the residual subspace and the 
principle subspace, which reflects the underlying relationship 
between process and quality variables. Unfortunately, the 
performed decomposition is oblique and thus leads to 
inaccurate monitoring results[6]. Total projection to latent 
structures (TPLS) proposed by Zhou[1] solves this problem by 
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further decomposing the principle and residual subspace into 
two orthogonal parts each. However, TPLS suffers in heavy 
computation and redundant subspaces[7]. To overcome these 
drawbacks, Yin[6] presented a simplified algorithm called 
improved projection to latent structures(IPLS), which 
performs orthogonal decomposition on process variable set 
directly with projection matrices obtained from the coefficient 
matrix of the PLS regression model. 

Same problem exists in all above PLS-based methods, 
namely, while the global structures of the data set are wildly 
researched, the local structures are receiving little attention. 
Fortunately, the development of manifold learning offer new 
ideas for us to take local structures into account. Methods like 
Laplacian eigenmaps(LE)[8] and locally preserving projection 
(LPP)[9] perform dimensionality reduction while maintaining 
the local structures of the original data set. In simple terms, 
LPP is the linear version of LE. It utilizes the similarity 
information between every two samples to optimally preserve 
neighborhood structures by solving a generalized eigenvalue 
problem. As pointed out by He[9], LPP is capable to reduce 
the influence of noise and outliers effectively. It is deemed an 
alternative method to principle component analysis (PCA), 
therefore can be employed for process monitoring. 
Researchers proposed LGPCA[10], GLPP[11], QGLPLS[12], 
LPPLS[13] etc. in recent years, trying to find a way to 
integrate the merits of PCA/LPP or PLS/LPP. For the purpose 
of quality-relevant fault monitoring, QGLPLS reaches a 
compromise between maximizing the covariance of 
projections in PLS and preserving the local structures of 
process and quality data set in LPP; LPPLS merges LPP with 
PLS, which gives the model better properties of preserving 
local structure and dealing with nonlinear systems, by 
substituting LPP for the role of PCA.  

In this paper, we present a novel PLS-based method called 
improved weighted PLS (IWPLS) inspired by both PLS and 
LPP. Different from QGLPLS and LPPLS, IWPLS uses the 
local similarity information between every two inner matrices 
instead of every two measurements to form the weight matrix 
for the objective function. This trick utilizes the local 
structures in both process and quality variable space. To 
improve the performance of IWPLS-based fault monitoring 

method, 
1

l -norm sparseness constraints are added in to 

enhance the robustness of the IWPLS regression model. The 
coefficient matrix of the model is then used to implement 
orthogonal decomposition on process variable space. 
Numerical experiments and data from Tennessee Eastman 
chemical process simulations prove that the proposed method 
can prevent the negative influences of inaccurate 
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measurements on process modelling, thus results in more 
accurate quality-relevant fault monitoring. 

The reminder of this paper is organized as follow: Section 
2, a brief introduction of PLS and LPP. Section 3, the key idea 
and the complete implementation of IWPLS. Section 4, a 
constructed numerical experiment for IWPLS evaluation. 
Section 6, a case study on Tennessee Eastman Process. 
Section 7, conclusion. 

 

II. PLS AND LPP BASICS 

For a typical industrial process with the input process 

variable set 
N n

X


   and the output quality variable set 
N m

Y


 , where N  refers to the number of samples and 

n , m  refer to the number of input and output variables, PLS 

decomposes the scaled and mean-centered X  and Y  into 

two subspaces separately in terms of A  latent variables: 

 

ˆ

ˆ

T

T

X X X TP E

Y Y Y TQ F

   

   

  (1) 

where  1 2
, , ...,

N A

A
T t t t


   is the score matrix, 

 1 2
, , ...,

n A

A
P p p p


  and E  are the loading matrix 

and residual of X ,  1 2
, , ...,

m A

A
Q q q q


   and F  

are the loading matrix and residual of Y . In the original 

NIPALS algorithm[14], a pair of weight vectors 
i

w  and 
i

v  

are calculated iteratively to maximize to following object 
function: 

 
t =

. . 1

T T T

PLS i i i i i i

i i

J u w X Y v

s t w v



 
 

 (2) 

where 
i i i

t X w , 
i

X  and 
i

Y  are deflated after each 

iteration. The loading matrices P  and Q  are calculated by 

original least squares(OLS) with  
-1

T T

i i i i i
p t t X t  and 

 
-1

T T

i i i i i
q t t Y t . To bridge the gap between T  and the 

original X , a new weight matrix  1 2
, , ...,

n A

A
R r r r


   

is introduced to establish the relation T XR  with : 

  
1

1

=

i

T

i n j j i

j

r I w p w





   (3) 

Take X  as an example, LPP finds a optimal projection 

matrix 
n A

p
T


  by minimizing the following object 

function: 

 
2

, 1

1

2

N

LPP ij i p j p

i j

J W x T x T



 
 

 (4) 

where 
N N

W


   is a weight matrix with 
2

/i jx x t

ij
W e

 

 . W  gives the similar |
i j

x x  pair a large 

weight and the dissimilar pair a small weight to preserve the 

original local structures of X . This optimization problem is 
reduced into the following form to avoid the degenerate 
solution: 

 

m in

. . 1

T T

p p

T T

p p

t X LX t

s t t X D X t 
 

(5) 

where L D W   and D  is a diagonal matrix with 

1

N

ii ij

j

D x



  . 
p

t  is given by the eigenvectors of the A  

smallest eigenvalue of the equivalent generalized eigenvalue 

problem 
T T

p p
X LXt X DXt . 

III. IMPROVED WEIGHTED PLS 

A new quality-relevant fault monitoring method with a 
name of improved weighted PLS(IWPLS) is proposed to 
make use of the local structures of both process and quality 
data. In this section, the key idea of IWPLS is illustrated 
firstly, then the complete implementation of the method for 
quality-relevant fault monitoring is discussed in details. 

A.  Key ideas 

Essentially, IWPLS is a weighted version of traditional 

PLS. Similar to PLS, the weight vector pair in IWPLS, 
i

w  

and 
i

v , is optimally selected to maximize the weighted 

covariance of projections between X  and Y . The object 
function is given as follow: 

 
t =

. . 1

T T T

IWPLS i i i i i i

i i

J Su w X SY v

s t w v



 
 

(6) 

N N
S


  is the weight matrix. Obviously, PLS is a 

simplified IWPLS, namely, S  is an identity matrix in PLS. 

Inspired by the weight matrix W  in LPP, S  is designed to 

utilize the local structures of the original X  and Y .  

To make this statement more explanatory, we consider the 

vector form of the matrix 
T

X SY  (the subscription i  is 

ignored here) in the object function. For =
N N

S I


, 

1

=

N

T T T

i i

i

X SY X Y x y



  . It is easy to observe that the 

T
X Y  can be represented as the sum of a series of 

T

i i
x y . 

Therefore, 
T

i i
x y  is named inner matrix(IM for short). For a 

more common S , we have 

1 1

=

N N

T T

i ij j

i j

X SY x S y

 

 , where 

T
X SY  is the sum of weighted inner matrices(IMs).  
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It is meaningful to do research on IM because it carries 
local information of both process and quality measurements 
simultaneously. Evidently, IWPLS not only considers the IM 

formulated by the original corresponding |
i i

x y  pair, but also 

the IM by | ( )
i j

x y i j  from different measurements. In 

real industry process, data are usually contaminated by 
disturbance, noise and measurement error. The uncertainty of 

|
i i

x y  pair might impose huge negative effects on the 

developed model. However, although 
i

x  and 
j

y  seem 

irrelevant, with proper weighting and average operation, the 

variety of |
i j

x y  pair could reduce the influence of uncertain 

data. Accordingly, we present two variations of the weight 

matrix S : 

 

2

(1)
, 1, 2... , 1, 2...

i j i ix y x y

t

ij
S e i N j N

 

  

 

 (7) 

or 

 

2

( 2 )
, 1, 2... , 1, 2...

i jx y

t

ij
S e i N j N



  

 

 (8) 

The 
(1)

S  in equation (7) gives large weight to |
i j

x y  pair 

which is similar to |
i i

x y  while the 
( 2 )

S  in equation (8) 

gives large weight to |
i j

x y  pair which is similar to 0 | 0 .If 

the process works on the stable condition and the 

measurements are relatively accurate, 
(1)

S  should be selected 

to maintain the characteristics of the process and quality data; 

otherwise, if the signal-to-noise ratio (SNR) is low, 
( 2 )

S  is 

the optimal choice to improve the modelling precision. 

The constrained optimization problem in equation (6) is 
transformed into unconstrained problem using Lagrange 
multiplier method: 

  
   1 2

1 1

T T

i i i i

T T

i i i i

L w X SY v

w w v v 



   
 

 (9) 

where 
1

  and 
2

  are Lagrange multipliers. Let 

=0

i i

L L

w v

 


 
, we have: 

 
1 1

2 2

2 2

2 2

T T T

i i i i i i i i

T T T T T

i i i i i i i i

X SY v w w X SY v

Y S X w v v Y S X w

 

 

  

  
  (10) 

since 
T T T T T

i i i i i i i i
w X SY v v Y S X w , it is easy to deduce 

that 
1 2
=  . Let 

T

i i i
C X SY , the optimal solutions of  

i
w  

and 
i

v  are obtained by calculating the following two 

equations (11) recursively until convergences are realized: 

 
i i i

T

i i i

C v w

C w v




 

(11) 

Next, same as PLS, 
i

p  and 
i

q  are computed by OLS. 

i
X  and 

i
Y  are deflated with 

1
=

T

i i i i
X X t p


  and 

1
=

T

i i i i
Y Y t q


 . 

B.  IWPLS-based quality-relevant fault monitoring scheme 

In order to make the process model more interpretable and 
robust, further achieve effective IWPLS-based 
quality-relevant fault monitoring. Two more procedures are 
added in to complete the IWPLS-based quality-relevant 
monitoring scheme. 

Firstly, 
1

l -norm sparseness constraints are imposed on 
i

w  

and 
i

v  to realize sparse decomposition of X . The objection 

function (6) is rewritten as[15]: 

  
2 2

2 2

1 1

t =

. . 1 1

T T T

IW P LS i i i i i i

i i

i w i v

J Su w X SY v

s t w v

w c v c



 

 

，  ，

，  

 (12) 

where 
w

c  and 
v

c  are hyper-parameters that control the 

tightness of the sparsity. Lower 
w

c  and 
v

c  impose tighter 

constraints on X  and Y  respectively. These two parameters 

are set in the range of 1
u

c n   and 1
v

c m  , 

which enable all four constraints in (12). The solution of this 
constrained optimization problem is given by Witten[15]. 

Next, the coefficient matrix C  of the constructed 

regression model is extracted to implement additional 
orthogonal decomposition. The structures of the subspaces in 

IWPLS are identical with PLS. We have T XR  and 

ˆ T
Y TQ , thus ˆ T

Y XRQ XC  . Assume C  is with 

full column rank(generally, m n ), we then perform 

singular value decomposition (SVD) on C [16]: 

 
0

ˆ

0 0

cT T

c c

D
C UDV U U V

 
     

   

(13) 

Since U  is a orthogonal matrix, the following equation 

holds: 

 

ˆ
ˆ ˆ ˆ

ˆ ˆ ˆ= =

T

T Tc

c c c c c cT

c

T T

c c c c

U
X X U U XU U X U U

U

T U T U X X

 
     

 

 
 

(14) 

where ˆ
c

T  and 
c

T  are the score matrices of X̂  and X . 

X̂  makes full contributions to Y  with ˆ=
T

c
Y XD V Y  

while X  makes no contributions. 
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Given a new sample 
new

x , the score vectors are computed 

with 
_

ˆˆ =U
c new c new

t x  and
_

=U
c new c new

t x . The statistics 
2ˆ

c
T  

and 
2

c
T  are employed for quality-relevant and irrelevant fault 

detection with their control limits ˆ
c

J  and 
c

J [6]: 

 

1

2

_ _

ˆ ˆ
ˆ ˆ ˆ=

1

T

c c

c c new c new

T T
T t t

n



 
 

   

 
(15) 

 

1

2

_ _
=

1

T

c c
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T T
T t t

n



 
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(16) 

 
 

 

2

,

1
ˆ

c m n m

m n
J F

n n m






 

 
(17) 

 
   

 

2

,

1

c A m n A m

A m n
J F

n n A m
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 


 
 (18) 

The implementation of the fault monitoring scheme is 
based on the following rules: 

If 
2ˆ ˆ

c c
T J , then quality-relevant fault occurs. 

If 
2

c c
T J  and 

2ˆ ˆ
c c

T J , then quality-irrelevant fault 

occurs. 

If 
2

c c
T J  and 

2ˆ ˆ
c c

T J , then no fault occurs. 

IV. NUMERICAL EXPERIMENTS 

The numerical example we adopted is based on Zhou[1] 
and Yin[6]: 

 
A

Cx

k k k

k k k

x z e

y v

 


   

 (19) 

where 

 

1 3 4 4 0

A= 3 0 1 4 1

1 1 3 0 0

T

 
 

 
 
   , 

 C= 1 2 3 1 0
 , 

  ,
U 0,1 , 1, 2, 3

k i
z i  means 

k
z follows uniform 

distribution in the interval  0,1 ,  2
N 0, 0.1

k
v  

 
 and 

 2

,
N 0, 0.05 , 1, .., 5

k j
e j  

 
 means 

k
v  and 

k
e  follow 

normal distribution with zero means and the variances of 
2

0.1 , 
2

0.05 . 

Fault is added in 
k

x  in the form of: 

 
f

k k
x x f 

 
(20) 

where 
5 1




  and 1 1
f


  denote the direction and 

amplitude of the fault. For quality-relevant and irrelevant 

faults, f  is set to   1
1 1 1 1 0

T

f   and 

 2
0 0 0 0 1

T

f   respectively. Fault with 
1

f  has both 

quality-relevant and irrelevant influences, so it should be 
detected in both two statistics, which means the statistics 

should exceed the control limit. Fault with 
2

f has 

quality-irrelevant influence and should be only detected in the 
corresponding quality-irrelevant statistic. The amplitude   

varies between 0 and 20 to test the performance of existing and 
proposed models. 

TABLE I.  FARS (%) AND FDRS (%) FOR DIFFERENT FAULTS 

Fault Type Amplitude IPLS IWPLS 

2

û
T  

2

u
T  

2ˆ
c

T  
2

c
T  

Normal - 0 0.2 0 0.2 

Quality- 
irrelevant 

0.1 0 7.6 0 7.8 

0.2 0 71 0 72.4 

0.5 0 100 0 100 

1 0 100 0 100 

10 2.2 100 0 100 

20 11.2 100 0 100 

Quality- 
relevant 

1 2.2 85.4 2.2 90.2 

2 22.2 100 22.4 100 

3 49.6 100 50.2 100 

5 98 100 98.4 100 

10 100 100 100 100 

According to Yin[6], IPLS outperforms PLS and TPLS in 
both detecting faults and differentiating whether the given 
fault has quality-relevant impact. Therefore, it is chosen for 

performance comparison. The number of latent variables A  
is set to 4 for both IPLS and IWPLS. The sparseness 

hyper-parameters are set to =2.0
w

c  and =0
v

c  in IWPLS to 

minimize the fitting error of the modelling data set. 

Meanwhile, 
(1)

S  is selected as the weight matrix for IMs in 

IWPLS. 

The fault alarm rates (FARs) and fault detection rates 
(FDRs) of the two methods for two fault types with different 
amplitude are shown in table I. 

Both two methods achieve good FARs(%). For 
quality-irrelevant fault, IWPLS show slightly better FDRs(%) 
when fault amplitude is low(  is between 0.1 to 1). However, 

when fault amplitude is high (  is 10 and 20), IPLS reports 

misleading quality-relevant faulty information, IWPLS 
nevertheless keeps excellent stability. The fault monitoring 

charts with 20   are shown in figure 1. In the figure, the 
2

û
T  in IPLS exceeds the control limit while the 

2ˆ
c

T  in 

IWPLS stays below the control limit perfectly, which 
represents that the fault do not influence the product quality. 
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Figure 1.  Quality-irrelevant Fault monitoring charts( 20  ) 

For quality-relevant fault, IWPLS gives better FDRs(%) in 
both two statistics. The fault is completely detected after   

increases beyond 10. The fault monitoring charts with 1   

are shown in figure 2. Although both two methods detect the 
quality-irrelevant impact of the fault correctly, IWPLS gives 
relatively higher FDR(5% higher). 

 

Figure 2.  Qualtiy-relevant Fault monitoring charts( =1) 

V. A CASE STUDY ON TENNESSEE EASTMAN PROCESS 

The Tennessee Eastman Process(TEP) is a widely used 
chemical process simulation for evaluating the performance of 
process monitoring methods[17]. There are 5 units(stripper, 
separator, reactor, compressor and condenser) and 8 
components(A, B, C, D, E, F and G) in this process. Among 
them, A, C, D and E are the reactants; G and H are the target 
products; B is the non-reactive inertial component and F is the 
by-product. Reactants A, B and C are fed to the stripper firstly. 
Reactants A, D, E, the vapor from the compressor and the 
remaining reactants from the stripper are fed to the reactor. 
The output stream goes through the condenser and enters the 
vapor-liquid separator. The vapor is sent back to the reactor by 
the compressor and the liquid flows into the stripper. The 
target product(G,H) mixture remains the base of the stripper. 

 

Figure 3.  The flow chart of TEP 

In the process, 11 manipulated variables(XMV(1-11)) and 
41 measured variables(XMEAS(1-41)) are acquired from 21 
designed faulty conditions(IDV(1-21)) and 1 normal 
condition(IDV(0)) at an interval of 3 minutes. Each condition 
contains 480 measurements for training and 960 
measurements for testing. The description of designed faults 
are listed in table II[18].  

TABLE II.  DESIGNED FAULTS IN TEP 

No. Cause Type 
1 A/C feed ratio, B composition constant Step 

2 B composition, A/C ratio constant Step 

3 D feed temperature Step 

4 Reactor cooling water inlet temperature Step 

5 Condenser cooling water inlet temperature Step 

6 A feed loss Step 

7 C header pressure loss – reduced availability Random  

8 A, B, C feed composition Random  

9 D feed temperature Random  

10 C feed temperature Random  

11 Reactor cooling water inlet temperature Random  

12 Condenser cooling water inlet temperature Random  

13 Reaction kinetics Slow drift 

14 Reactor cooling water valve Sticking 

15 Condenser cooling water valve Sticking 

16 Unknown Unknown 

17 Unknown Unknown 

18 Unknown Unknown 

19 Unknown Unknown 

20 Unknown Unknown 

21 C feed valve Sticking 

In this paper, XMEAS(1-22) and XMV(1-11) are selected 
as process variables. XMEAS(35) and XMEAS(36), which 
correspond to the percentage composition of G and H, are 
selected as quality variables. Models are constructed in the 
basis of the testing data set of IDV(0) and are evaluated  with 
the testing data set collected from faulty conditions. 

In this case, the number of latent variables A  is set to 6. 

The sparseness hyper-parameters are set to =3.91
w

c  and 

=1.40
v

c  and 
( 2 )

S  is selected as the weight matrix for IMs. 

Firstly, in order to evaluate the modelling ability of 
IWPLS, the mean square error(MSE) is taken as the 
evaluation indicator. MSE is defined as 

 
2

ˆ /M SE Y Y N  , where Y  and Ŷ  are actual data 

and predicted data. N  still represents the number of samples. 

For some typical faults, the comparison is listed in table III. 
XMEAS(35) and XMEAS(36) are abbreviated as X35 and 
X36 in this table. 

TABLE III.  MSE FOR DIFFERENT FAULTY CONDITIONS 

Fault No. PLS IWPLS 

X35 X36 X35 X36 

IDV(2) 13.050 2.181 1.092 1.078 

IDV(6) 6.443 16.657 4.626 2.110 

IDV(7) 1.128 2.803 1.492 1.444 

IDV(11) 0.981 1.097 0.924 1.055 

IDV(17) 2.980 1.895 1.235 1.249 

From table 3, under the same condition, we have reasons to 
believe that IWPLS performs better in predicting the value of 
both two quality variables. The contrasts are especially sharp 
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for IDV(2) and IDV(6). In figure 4, the red, green and blue 
curves represent the original data, PLS predicted data and 
IWPLS predicted data. Model built by Traditional PLS cannot 
predict output data accurately because it only considers the 
corresponding input and output measurements under the 
normal condition. The modelling data is imprecise and lacking 
of variety, therefore the model is slightly overfitting. When 
input data change dramatically, the PLS model is unable to 
catch up with the changes of output data. To solve this 
problem, IWPLS takes IM into account. Intuitively, IWPLS 
increases the diversity of the original data and reduces the 
dependence of the model on them. Thus, IWPLS shows better 
performance. 

 

Figure 4.  Prediction results of IDV(2) and IDV(6) 

Next, the FDRs obtained from different statistics are 
shown in table IV and table V. In table II, it is clear that 
IDV(4,11,14) are quality-irrelevant faults. Both methods 
detect these faults successfully. However, in contrast with 

IPLS, the 
2ˆ

c
T  statistic of IWPLS gives significantly lower 

FDRs for IDV(4,14) and well-matched FDR for IDV(11). 

Moreover, the 
2

c
T  statistic gives higher FDRs for IDV(11). 

The monitoring charts of IDV(14) with quality variable 
XMEAS(35) is shown in Figure 5. Fault occurs in 161th 
measurement, after that, IPLS reports quality-relevant fault 
successively while IWPLS makes correct judgment during 
almost the whole period. 

TABLE IV.  FDRS(%) FOR DIFFERENT FAULTS WITH XMEAS(35) 

Fault Type Fault No. IPLS IWPLS 

2

û
T  

2

u
T  

2ˆ
c

T  
2

c
T  

Quality- 

irrelevant 

IDV(4) 2.13 100 0.88 100 

IDV(11) 4.25 78.63 4.75 78.88 

IDV(14) 9.25 100 0.75 100 

Quality- 
relevant 

IDV(2) 20.50 98.40 86.88 98.38 

IDV(6) 97.63 100 97.13 100 

IDV(7) 28.00 100 27.13 100 

IDV(2,6,7) are all quality-relevant faults but belong to 
different type. IDV(2,6) influence both two quality variables 
during the whole sampling period while IDV(7) only 
influence them for a specific period of time. IPLS can detect 
IDV(7) precisely but makes mistake in detecting IDV(2) due 
to its inaccurate modelling. Same problem exists in detecting 

IDV(6). Luckily, the predicted data still exceed the control 
limit, thus the monitoring results are correct. With regard to 
IWPLS, its predictive capability ensures the validity of 
monitoring. The monitoring charts in figure 6 prove this 
statement. 

 

Figure 5.  Monitoring charts of  IDV(14) with XMEAS(35) 

 

Figure 6.  Monitoring charts of  IDV(2) with XMEAS(35) 

Table 5 shows the FDRs with XMEAS(36). For two 
quality variables, through analysis, 6 selected faults are 
classified into quality-relevant and irrelevant faults 
identically.  

TABLE V.  FDRS(%) FOR DIFFERENT FAULTS WITH XMEAS(36) 

Fault Type Fault No. IPLS IWPLS 

2

û
T  

2

u
T  

2ˆ
c

T  
2

c
T  

Quality- 
irrelevant 

IDV(4) 13.00 100 3.38 100 

IDV(11) 9.25 78.38 4.63 79.00 

IDV(14) 14.38 100 9.13 100 

Quality- 

relevant 

IDV(2) 89.63 98.25 89.88 98.38 

IDV(6) 97.38 100 96.75 100 

IDV(7) 88.63 100 33.50 100 

For IDV(4,11,14), IWPLS reduces the FDR of 
quality-relevant statistic effectively. For IDV(7), the 
variations real XMEAS(36) values as well as its predicted 
values are shown in figure 7. Obviously, the quality-relevant 
impacts of IDV(7) is eliminated after about 400th 
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measurements. In figure 8, we can see that the quality-relevant 
monitoring chart of IWPLS detects this fault accurately. 

 

Figure 7.  Variations of the original and predicted XMEAS(36) 

 

Figure 8.  Monitoring charts of  IDV(7) with XMEAS(36) 

VI. CONCLUSION 

A new IWPLS method for quality-relevant fault 

monitoring is developed. Inspired by LPP, IWPLS focuses on 

the ignored IM and build a weighted object function to obtain 

the weight vector according to the similarity among IMs. 

Compared to traditional PLS, IWPLS makes use of the local 

structures of both process and quality variable space. The 

constructed model is more robust and owns better 

generalization capability. With sparseness restraints and 

additional orthogonal decomposition, the proposed 

IWPLS-based monitoring scheme shows excellent prediction 

and monitoring accuracy in both numerical experiments and 

TEP. 
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