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Abstract
Deep convolutional neural networks have achieved great suc-
cess on various image recognition tasks. However, it is non-
trivial to transfer the existing networks to video due to the fact
that most of them are developed for static image. Frame-by-
frame processing is suboptimal because temporal information
that is vital for video understanding is totally abandoned. Fur-
thermore, frame-by-frame processing is slow and inefficient,
which can hinder the practical usage. In this paper, we pro-
pose LWDN (Locally-Weighted Deformable Neighbors) for
video object detection without utilizing time-consuming op-
tical flow extraction networks. LWDN can latently align the
high-level features between keyframes and keyframes or non-
keyframes. Inspired by (Zhu et al. 2017a) and (Hetang et al.
2017) who propose to aggregate features between keyframes
and keyframes, we adopt brain-inspired memory mechanism
to propagate and update the memory feature from keyframes
to keyframes. We call this process Memory-Guided Prop-
agation. With such a memory mechanism, the discrimina-
tive ability of features in keyframes and non-keyframes are
both enhanced, which helps to improve the detection accu-
racy. Extensive experiments on VID dataset demonstrate that
our method achieves superior performance in a speed and ac-
curacy trade-off, i.e., 76.3% on the challenging VID dataset
while maintaining 20fps in speed on Titan X GPU.

Introduction
Recently, deep convolutional networks (Gao et al. 2018)
have achieved significant success in many computer vision
tasks, including image classification (Krizhevsky, Sutskever,
and Hinton 2012; Feng et al. 2018), image object detection
(He et al. 2017) and image semantic segmentation (Chen et
al. 2017; Hu et al. 2018). Unlike static image, video con-
tains redundancy and temporal information cue which could
be utilized to boost detection accuracy and speed.

Extending object detection from the static image to video
(Gupta et al. 2014) is highly valuable in a vast number of
scenarios, such as video surveillance and autonomous driv-
ing. Static image detectors are unable to handle motion blur,
video defocus, unusual poses or object occasion as shown in
Figure 1. Furthermore, frame-by-frame deep feature extrac-
tion on a heavy feature network like ResNet-101 (He et al.
2016) is time-consuming even on high-speed GPUs. Despite
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these challenges, videos provide rich temporal and motion
information. Effective usage of temporal information is the
key component for video object detection.
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Figure 1: Typical deteriorated object appearance in videos

A few works have been proposed to exploit such tem-
poral information in videos by means of various post-
processing steps (Kang et al. 2016) on top of frame-level
detectors, which aims at making object detections coher-
ent across time. However, since temporal coherence is en-
forced in a second stage, typically these methods cannot
be trained end-to-end. To overcome this limitation, recent
work have introduced the flow-based aggregation networks
(Zhu et al. 2017b) that is trained end-to-end. It exploits op-
tical flow (Dosovitskiy et al. 2015) to find correspondences
across time and aggregate features across temporal corre-
spondences to smooth object detection over adjacent frames.
However, one of the shortcomings of this method is that in
addition to performing object detection, it also needs time-
consuming optical flow extraction. This is disadvantageous
due to the following reasons: (1) optical flow extraction is
time-consuming which may reduce the detection speed; (2)
training such a model requires large amounts of flow data to
get a pretrained flow extraction network, etc.

To address these shortcomings, inspired by the flow warp
operation and non-local networks (Wang et al. 2018), we use
spatially variant weights to combine corresponding neigh-
bors. To use the temporal information, we use the difference
of the two frames as inputs to predict the weights. Further-
more, we also predict offsets to adaptivly combine the neigh-
bors. Our methods don’t need the time-consuming flow ex-
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traction network, which can boost video detection speed.
In this work, we propose an effective LWDN (Locally-

Weighted Deformable Neighbors) module that uses feature-
weighting way to leverage temporal information for video
object detection. Our LWDN learns to predict position-
sensitive weights, which are used to propagate the keyframe
features to keyframes or non-keyframes. Unlike the flow-
based feature propagation which needs time-consuming flow
extraction, our LWDN needs less computation. Furthermore,
to use temporal consistency information, we also adopt
brain-inspired memory mechanism to propagate and update
the memory feature between keyframes and keyframes. With
such a memory mechanism, the discriminative ability of the
features in keyframes and non-keyframes are both enhanced,
which help to improve the detection accuracy.

In short, we propose an effective LWDN module to adap-
tively learn the feature propagation conditioned on the low-
level features between two consecutive frames. Our end-to-
end trained models are superior than state-of-the-art meth-
ods with faster speed and smaller model size. Without uti-
lizing optical flow for feature propagation, the whole object
detection pipeline is easier to train and test in practice. The
main contributions of this work are summarized below:
• We propose a flow-free end-to-end framework for fast

video object detection which can achieve a better trade-
off between speed and accuracy.

• Our light-weight LWDN can effectively align features be-
tween consecutive frames which is vital for temporal fea-
ture propagation.

• Experiments on VID dataset demonstrate that our method
achieves competitive performance with remarkable speed
and fewer model parameters compared with other state-
of-the-art methods.

• The proposed LWDN together with the end-to-end frame-
work can also benefit other video tasks.

Related Work
Image Object Detection
State-of-the-art methods for general object detection are
mainly based on deep convolutional neural networks (Lin
et al. 2014), most of which follow two paradigms, two-stage
and single-stage. A two-stage pipeline firstly generates re-
gion proposals, which are then classified and refined. To
speedup R-CNN (Girshick et al. 2014), ROI pooling was in-
troduced to the feature maps shared on the whole image in
SPP-Net (He et al. 2014) and Fast R-CNN (Girshick 2015).
To replace Selective Search (Uijlings et al. 2013), in Faster
R-CNN (Ren et al. 2015), the region proposals are generated
by the Region Proposal Networks, and features are shared
between RPN and Fast R-CNN. R-FCN (Dai et al. 2016)
replaces ROI pooling operation on the intermediate feature
maps with position-sensitivity ROI pooling operation on the
final score maps. Mask-RCNN (He et al. 2017) is proposed
to simultaneously do detection and segmentation. Compared
with two-stage pipelines, a single stage method is often more
efficient but less accurate. SSD (Liu et al. 2016) was an early
attempt of this paradigm. It generates outputs from default

boxes on a pyramid of feature maps. YOLO (Redmon et al.
2016) designed specific feature networks for fast object de-
tection. RetinaNet (Lin et al. 2018) was proposed to tackle
the imbalance between foreground and background classes.

Video Object Detection
Compared with object detection in images, video (Ballas et
al. 2015) object detection was less studied typically, until
the new VID challenge was introduced to ImageNet. Kang
et al. (Kang et al. 2016) proposed a framework that inte-
grated per-frame proposal generation, bounding box track-
ing and tubelet re-scoring. It is very time-consuming due to
the per-frame feature computation by deep networks. Mnih
et al. (Mnih et al. 2014) introduced recurrent models for
visual attention. Zhu et al. (Zhu et al. 2017c) proposed an
efficient framework which run expensive CNNs on sparse
and regularly selected keyframes. Features are propagated
to non-keyframes with optical flow. The method achieves
10X speedup than per-frame detection. Zhu et al. (Zhu et al.
2017b) proposed to aggregate nearby features along motion
path, improving the feature quality. However, this method
runs slowly at around 3 fps due to dense prediction and
flow computation. D T (Feichtenhofer et al. 2017) was pro-
posed to learn object detection and cross-frame tracking
with multi-task objective and link frame-level detection (Ba,
Mnih, and Kavukcuoglu 2014) to tubes. However, Most
of them are either flow-based methods which need time-
consuming flow extraction or in slow speed.

Optical Flow
Temporal information in videos requires correspondence in
raw pixels or features to build the relationship between con-
secutive frames. Optical Flow (Dosovitskiy et al. 2015) is
widely used in many video applications. Variational ap-
proaches have dominated optical flow estimation which
mainly address small displacement (Brox and Malik 2011).
DFF is the first work to combine flow network with video
object detection, achieving perfect performance and speed-
ing up video detection, which shows the information redun-
dancy in video. However, flow extraction is very slow, re-
sulting in difficulty to further speed up video detection.

Exploiting Temporal Information in Video
Applying state-of-the-art still image detectors frame by
frame to videos does not provide optimal results. This is
mainly due to the low-quality images in videos. Single im-
age detectors can’t handle deteriorated images in videos
(Han et al. 2016). Temporal feature aggregation provides an
effective way to utilize such information (Han et al. 2016).
Zhu et al. (Zhu et al. 2017a) adopted sparsely recursive fea-
ture propagation and partially update features for non-key
frames for better performance. Xiao et al. (Xiao and Lee
2017) proposed Flow-guided GRU to feature aggregation
which can get better feature representation for current frame.
However, They are all flow-based methods. It’s still time-
consuming for flow extraction, although flownet is light for
boosting detection.
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Proposed Method
In this section, we firstly clarify that the LWDN (Locally-
Weighted Deformable Neighbors) is the key module of our
proposed method. Then, we introduce the inference and
training process of the overall pipeline, called memory-
guided propagation networks. It is developed with LWDN
module, which is embedded in the overall pipeline for fea-
ture propagation. Finally, three import modules inside the
pipeline, including weight predictor network, feature corre-
lation and aggregation unit, are presented in detail.

Locally-Weighted Deformable Neighbors
Conveniently, we divide the feature of the individual video
frame into low-level feature (the lower-part of CNN), high-
level feature (the higher-part of CNN) ,task feature which
is responsible for the final detection, as well as the memory
feature which is used to propagate memory feature between
keyframes and keyframes.

As in Figure 2, motivated by Non-Local Operator (Wang
et al. 2018) which computes the response at a position as a
weighted sum of features at all positions, we propose a local
weighted neighbors operator using convolution to express
linear combination of neighbors , with the kernel weights
varying across sites. It’s used to propagate keyframe task
feature to the non-keyframes.

Let the position-sensitive weights be W , then the propa-
gation from the previous keyframe task feature (T k

h ) to the
non-keyframe (T t

h) can be expressed as:

T t
h(c, i, j) =

h∑
u=−h

w∑
v=−w

W
(k,t)
ij (u, v) · T k

h (c, i′, j′) (1)

i′ = i− u (2)
j′ = j − v (3)

{i, j} is the location in the feature map, {2h+ 1, 2w + 1} is
the local neighbor kernel weight size in the position {i, j},
{u, v} is the local neighbor index around the location. c is
the channel index of feature map.

Furthermore, inspired by deformable convolution (Dai et
al. 2017), we also use the corresponding position sensitive
offsets to adaptively combine neighbors’ feature. It’s used to
propagate the memory feature from keyframes to keyframes.
Then the propagation from the previous keyframe (T k

h ) to
the new keyframe (T k′

h ) is as following:

T k′

h (c, i, j) =

h∑
u=−h

w∑
v=−w

W
(k,k′)
ij (u, v) · T k

h (c, i′, j′) (4)

i′ = i− u + ∆pu (5)
j′ = j − v + ∆pv (6)

Notice that the regular grid T k
h (c, i − u, j − v) is aug-

mented with offsets {∆pu,∆pv}. Now, the sampling is on
the irregular and offset location T k

h (c, i′, j′). As the offset
{∆pu,∆pv} is typically fractional, T k

h (c, i′, j′) is imple-
mented via bilinear interpolation as:

T k
h (c, i′, j′) =

∑
(i,j)

G((i, j), (i′, j′)) · T k
h (c, i, j) (7)

W
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Figure 2: Locally-Weighted Deformable Neighbors Process.
We call it adaptively position-sensitive feature propagation.
Let k refers to the previous keyframe. T k

n is the previous
keyframe task feature. When the low-level feature Lk

l is
computed, the Weight Predictor Network will take both Lk

l

and Lk+i
l as inputs, yielding a series of position-sensitive

kernel weights and corresponding kernel offsets. Then the
task feature of previous keyframe T k

n will be propagated to
the current time step via spatially variant deformable convo-
lution using predicted kernel weights and offsets.

Where (i′, j′) denotes an arbitrary (fractional) location,
(i, j) enumerates all integral spatial locations in the feature
map T k

h , and G(·, ·) is the bilinear interpolation kernel.

G((i, j), (i′, j′)) = g(i, i′) · g(j, j′) (8)

where g(a, b) = max(0, 1− |a− b|).

Video Object Detection Methods
Inspired by (Hetang et al. 2017) and (Zhu et al. 2017a),
who propose to aggregate feature between keyframes and
keyframes. We follow them to propagate the memory fea-
ture from keyframes to keyframes, then aggregate with the
new keyframe feature through a quality-aware network re-
cursively. As mentioned before, we call it Memory-Guided
Propagation Networks.

Memory-Guided Propagation Networks Inference
The inference of Memory-Guided Propagation Networks is
illustrated in Figure 3 and expressed in Algorithm 1. The
proposed method is built on standard still image detector
which consists of feature extractor Nfeat, the region pro-
posal network Nrpn and the region-based detector Nrfcn.
We call both Nrpn and Nrfcn as Ntask.

First, we divide the video frames into keyframes such as
{k0, k1} and non-keyframes such as {k1 + i} as in Fig-
ure 3. The key idea of the proposed method has the follow-
ing two points. One is to propagate the keyframe task feature
to non-keyframes through a light Weight Predictor Network
and Locally-Weighted Deformable Neighbors Operation for
higher speed. Another one is to aggregate memory feature
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Figure 3: Memory-Guided Propagation Networks inference pipeline. There are main two inference processes, keyframe to
keyframe inference for updating memory feature and keyframe to non-keyframe inference for propagating task feature. k0 and
k1 are keyframes, where, more specifically, k0 is the first keyframe in a video. k1 + i is the non-keyframe corresponding k1.⊕

is Aggregation Unit and
⊗

is LWDN Operation.

between keyframes and keyframes to enhance the feature for
more accurate detection.

There are mainly two inference processes, keyframe to
keyframe and keyframe to non-keyframe. For keyframe to
non-keyframe process, the keyframe task feature is prop-
agated to the non-keyframe through the LWDN (Locally-
Weighted Deformable Neighbors) Operation, with weights
predicted by the Weight Predictor Network. And the low-
level features of corresponding two frames are fed into
the Weight Predictor Network to produce the weights. For
keyframe to keyframe process, first of all, the keyframe low-
level feature pairs are fed into Weight Predictor Network
to produce position sensitive weights and offsets. Then the
aligned feature is generated by LWDN operation using the
old keyframe memory feature together with the weights and
the offsets. Lastly, the aligned feature together with the new
keyframe high-level feature are aggregated to the task fea-
ture and the new memory which will be propagated to next
keyframe recursively.

More specifically, at each time step, first, the low-level
feature Ll and high-level feature Fh are computed by the
lower-part of CNN NetL and the higher-part of CNN
NetH , respectively. In the process of keyframe to keyframe
propagation, the low-level feature of the two neighboring
keyframes are fed into Weight Predictor Network (W0) to
produce position-sensitive weights and offsets. Then the
weights and offsets along with the first keyframe mem-

ory F k0

memory (both memory feature and task feature of the
first keyframe equal the high-level feature F k0

h ) are fed into
LWDN operation to generate the aligned feature F k1

align for
the keyframe k1. Next the aligned feature as well as the
high-level feature F k1

h aggregate to generate the task fea-
ture T k1

h and the memory F k1

memory which is propagated
to the next keyframe recursively. For the keyframe to the
non-keyframe propagation process, the low-level features of
the non-keyframe and the corresponding keyframe pairs are
fed into Weight Predictor Network (W1) to only produce
position-sensitive weights. Next the weights and the corre-
sponding keyframe task feature T k1

h are as inputs to LWDN
operation to produce estimated task feature T k1+i

h which is
used to generate final detection results.

Memory-Guided Propagation Networks Training
The training process of Memory-Guided Propagation Net-
works is as in Figure 4. With video provided, a standard
single-image object detection pipeline can be transferred to
video object detection task with little modifications.

During training, each data batch contains three images
{Ik+d0

, Ik, Ik+d1
} from a same video sequence. d0 and d1

are random offsets whose ranges are controlled by segment
length l. Specifically, d0 lies in [−l,−0.5l], while d1 lies in
[−0.5l, 0.5l]. This setting is coherent with inference phase as
Ik represents any non-keyframe in current segment, Ik+d1
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Figure 4: Memory-Guided Propagation Networks Training.

represents keyframe of current segment, and Ik+d0 repre-
sents old keyframe of last segment. For simplicity, the three
images are dubbed as {Ikeyold , Icur, Ikeynew}. The ground-truth
at Icur is provided as label.

In each iteration, first, Nfeat is applied on {Ikeyold , Ikeynew}
to get their high-level features {F key

old , F key
new} and low-level

features {Lkey
old , L

key
new}. Then low-level feature pairs are

fed into Weight Predictor Network (W0), yielding posi-
tion sensitive weights Wold→new and position sensitive off-
sets Oold→new, respectively. The low-level feature pairs
{Lkey

new, L
cur} are also fed into Weight Predictor Network

(W1), only yielding position sensitive weights Wnew→cur.
Then Wold→new and Oold→new together with F key

old are
fed into LWDN operation to generate F key′

old . The fused
feature Ffuse is generated by the aggregation unit using
{F key′

old , F key
new}. Finally, Wnew→cur and Ffuse are also fed

into LWDN operation to produce the task feature Ttask,
which is responsible for current non-keyframe detection. We
use the current non-keyframe detection loss to train the end-
to-end system.

Weight Predictor Network

Weight Predictor Network is used to generate spatially vari-
ant weights and offsets. With the two pairs low-level features
as inputs, we first concat them along axis 0 to generate the
concated feature. After that, we reduce the concated feature
to 256 channel using convolution layer with 3 × 3 kernel.
Then we slice the reduced features along axis 0 to get re-
duced low-level features, respectively. After that, we corre-
late the reduced low-level features. Last is 3× 3 kernel with
256 channels convolution and k×k channels following soft-
max operation to generate position sensitive weights. Specif-
ically, for W1 between keyframes and keyframes, there is
also the 1 × 1 kernel with 2 × k × k channels to generate
position sensitive offsets.

Algorithm 1: Inference algorithm of Memory-Guided
Propagation Networks

Input: video frames {I}, segment length l
Output: detection results of the whole video
for k = 0; k ≤ N do

F key
k = Nfeat(I

key
k )

if k=0 then
Fmemory
k = F key

k

F task
k = F key

k

else
1− ωk, ωk =

softmax(Nq(Fmemory
k−1 ),Nq(F key

k ))
F task
k = (1− ωk) ∗ Fmemory

k−1 + ωk ∗ F key
k

Fmemory
k = (1− g) ∗ Fmemory

k−1 + g ∗ F task
k

end
for j = 0; j ≤ l − 1 do

F task
j =W(F task

k ,WIj
k,I

key
k

)

Detkj = Ntask(F task
j )

end

Feature Correlation
We use correlation which performs multiplicative path com-
parisons between two neighbor low-level feature maps as the
input of Weight Predictor Network. Given two level feature
map f1, f2, with w,h and c being their width, height and
number of channels. Our correlation layer lets the network
compare each patch from f1 with each path from p2 which
can help to get better difference descriptor about two frames.
Specially now we consider only a single comparison of two
patches. The correlation of two patches centered as x1 on
the first map and x2 in the second map is then defined as

c(x1, x2) =
∑

o∈[−k,k]×[−k,k]

〈f1(x1 + o), f2(x2 + o)〉 (9)

For a square patch of size K := 2k + 1, obviously, it only
convolves data with another data. Therefor, it has no train-
able weights. We use correlation to capture the difference
between two consecutive frames.

Aggregation Unit
The aggregation weights of the features are generated by a
quality estimation networkNq . It has three randomly initial-
ized layers: a 3×3×256 convolution, a 1×1×16 convolution
and a 1×1×1 convolutions. The output is position-wise raw
score map which will be applied on each channel of corre-
sponding features. Raw score maps of different features are
normalized by the score map with features and sum them up
to obtain the fused features as in Algorithm 1.

Experiments
Datasets and Evaluation Metrics
We evaluate the proposed method on the ImageNet VID
dataset which has been treated as a benchmark for video
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Table 1: Performance comparison with the state-of-the-art systems on ImageNet VID validation set. The mean average precision
(mAP %) over all classes are provided. Our LWDN outperforms the most of them considering both accuracy and speed. Besides,
our model has fewer parameters than the existing flow-based models. With the ResNet-101 backbone, we can achieve 76.3%
mAP while maintaining 20 fps in TITAN X GPU. Furthermore, our LWDN outperforms the corresponding static-image detector
by a large margin 2.7%.

Methods Base Network Base Detector mAP (%) FPS Params (M)

TPN+LSTM (Kang et al. 2016) - - 68.4 < 7 -
Winner ILSVRC’15 VID Winner - 73.8 - -
Winner ILSVRC’16 VID Winner - 76.2 - -
D (&T loss) (Feichtenhofer et al. 2017) Resnet-101 R-FCN 75.8 < 7 -
R-FCN (Dai et al. 2016) Resnet-101 R-FCN 73.6 7 -
DFF (Zhu et al. 2017c) Resnet-101 R-FCN 73.0 29 97.8
FGFA (Zhu et al. 2017b) Resnet-101 R-FCN 76.3 < 2 100.5
LWDN(ours) Resnet-101 R-FCN 76.3 20 77.5

object detection (Russakovsky et al. 2015). VID dataset is
split into 3862 training videos and 555 validation videos.
All snippets are fully annotated with object bounding box
and tracking IDs. Totally, there are 30 object categories in
VID dataset which are a subset of ImageNet DET dataset.
We report results on the validation set and use mean aver-
age precision (mAP) as the evaluation metric following the
previous methods (Zhu et al. 2017c).

Although there are more than 112,000 frames in VID
training set, the redundancy among video frames makes the
training procedure less efficient. Moreover, the quality of
frames in video is much poorer than the still images in DET
dataset. Thus we follow previous approaches and train our
model on an intersection of ImageNet VID and DET dataset.

Implementation Details
Our training set consists of the full ImageNet (Deng et al.
2009) VID training set together with images from the Ima-
geNet DET training set. Only the same 30 classes categories
are used. Usually, images from ImageNet DET have better
quality, which is vital for video object detection training. As
mentioned before, each training batch contains three images.
If sampled from DET, all images within the same mini-batch
will be the same. In our experiment, one GPU will hold only
one mini-batch.

In both training and testing stage, images are resized to
have the shorter side of 600 pixels (Ren et al. 2015). We
choose conv4 3 as the split point between the lower and
higher parts of the network. We use the R-FCN detector
(Dai et al. 2016) with ResNet-101 (He et al. 2016) as the
backbone network which is the same with most previous
video detection methods. We also adopt the OHEM (Shri-
vastava, Gupta, and Girshick 2016) during the training stage
following DFF (Zhu et al. 2017c). For training, 4 epochs
with SGD optimization method are performed on 8 GPUs
with each GPU holding one mini-batch. Learning rate be-
gins with 2.5e-4 and divides by 10 after 2.5 epochs. We also
employ standard left-right flipping augmentation.

Our proposed LWDN will propagate information from
keyframes to keyframes by predicting position-sensitive off-
sets and weights. For keyframes to non-keyframes, locally

weighted attention (Li, Shi, and Lin 2018) is enough for cap-
turing information propagation. For test stage, our method
will first detect the keyframe then propagate feature maps
according Weight Predictor Network and LWDN operation.

Comparison to the state-of-the-art
We compare our proposed LWDN with the existing state-
of-the-art image and video object detectors. Without using
optical flow information, our method outperforms previous
methods heavily relying on optical flow network for feature
propagation. The results consolidate that LWDN can latently
learn the feature correspondence between consecutive video
frames. As can be seen from table1, most methods are un-
able to balance between speed and performance. Our method
achieves better performance with fast speed and reasonable
model parameters, which can boost the superiority of our
methods. Furthermore, without flow extraction network, the
training process is easier compared with other methods. Si-
multaneously, the LWDN we proposed can also be used in
other video task such as video semantic segmentation.

To sum up, first, our detector outperforms static image-
based R-FCN detector with large margin (+2.7%) while
maintaining high speed (20fps). Second, our model param
size is smallest compared with other video object detectors
using optical flow network, e.g. , 77.5M VS around 100M.

Ablation Experiments
In this section, we conduct extensive ablation studies to val-
idate the effectiveness of the proposed LWDN. We follow
the previous evaluation protocols. R-FCN and ResNet-101
are used as the base detector and the backbone network, re-
spectively. All experiments adopt left-right flip augmenta-
tion during training stage for the ablation study.

We study the influence of sparse feature, memory prop-
agation, quality-aware memory aggregation and end-to-end
training on the final performance. We use DFF (Zhu et al.
2017c) as our baseline. DFF achieves 73.0% mAP and runs
at 34 ms. Sparse feature will extract exact deep features at
the keyframe while propagate information from keyframes
to non-keyframes by LWDN. When applying memory prop-
agation, features between keyframes will be latently aligned
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Table 2: Accuracy and runtime of different approaches
Methods (a) (b) (c)

sparse feature
√ √ √

memory
√ √

quality-aware
√

end-to-end
√ √ √

mAP(%) 73.0% 75.5% 76.3%
runtime(ms) 38 48 48

Table 3: The influence of different kernel size of LWDN
kernel size 3 5 7 9 11
mAP(%) 74.7 75.5 75.8 76.3 75.7

and naively combined (feature add) to capture the long-
range video information. By naive memory propagation,
performance can be boosted to 75.5% mAP. Motivated by
the gating mechanism, we train a quality networks which
can adaptively combine current keyframe feature with pre-
vious memory feature. Sharing with the same aim with
GRU (Nilsson and Sminchisescu 2016). Quality network
will strengthen and suppress memory features accordingly.
By adding quality aware memory aggregation, we further
boost the performance to 76.3% mAP while running 48 ms.
All networks are trained end-to-end.

LWDN Kernel Size
We conduct an ablation experiment to study the influence of
the kernel size on the final performance. The keyframe inter-
val in training stage is 10 frames and the keyframe interval is
also 10 frames during testing stage in default. Our proposed
LWDN (Locally-Weighted Deformable Neighbors) module
will align feature from keyframes to keyframes or keyframes
to non-keyframes. The kernel size represents the local neigh-
bors for feature propagation among different frames within
one video snippet. When the kernel size equals 9, we achieve
best results 76.3% mAP for video object detection as in
table3. Apparently, the smaller kernel size is, the less run-
time will be. For larger kernel size, it will be is difficult to
learn the robust feature correspondence.

Train Keyframe Interval
We conduct an ablation experiment to study the influence of
the training keyframe interval. Table4 shows the results of
training in different keyframe intervals. We achieve the best
results of LWDN networks when the keyframe interval is set
to 10 frames. And when the interval is too long or too short,
the mAP will both be poor due to the difficulty in capturing
motion information.

Table 4: The influence of different training keyframe interval
keyframe interval 4 6 8 10 12

mAP(%) 74.7 75.5 75.3 76.3 75.4

Table 5: The influence of different testing keyframe interval
keyframe interval 6 8 10 12 14

mAP(%) 76.7 76.5 76.3 75.6 75.2
runtime(ms) 60 53 48 45 44

Table 6: The influence of different memory gate
memory gate g 0.0 0.2 0.4 0.8 1.0

mAP(%) 75.2 75.3 75.6 76.0 76.3

Test Keyframe Interval
In this section, we conduct an ablation experiment to study
the influence of the testing keyframe interval. The results are
in table5. Apparently, larger interval benefits runtime. When
the testing keyframe interval is 10 frames, we achieve 76.3%
mAP, while maintaining 48 ms runtime. Specially, when the
testing keyframe interval is 14 frames, the speed achieves
23fps while attaining 75.2% mAP.

Memory Gate
The memory gate g controls the component of memory fea-
ture as in Algorithm 1. The keyframe interval in training
stage is 10 frames while 10 frames during testing stage in
default. From the algorithm 1, it can be seen that g controls
the available range of temporal information. When the g is
set to 0.0, the memory feature consists solely of the previ-
ous keyframe feature; while g to 1.0 leads in more temporal
information. Table 6 shows the mAP of different g setting.
Apparently, larger g benefits performance, The involvement
of long-range (Donahue et al. 2015) feature aggregation can
help detection in longer series of low-quality frames as the
conclusion in (Hetang et al. 2017).

Conclusion
We propose LWDN (Locally-Weighted Deformable Neigh-
bors) for video object detection without utilizing time-
consuming optical flow extraction. LWDN is conceptu-
ally motivated by Deformable CNN (Dai et al. 2017) and
Non-local networks (Wang et al. 2018). And LWDN can
latently align the high-level features from keyframes to
non-keyframe or keyframes. Our end-to-end pipeline con-
tains recursively updated memory feature for keyframes
to keyframes message passing and a LWDN module for
keyframes to non-keyframes or keyframes message passing.
Extensive ablation experiments on VID dataset demonstrate
the effective of our method over previous methods while
achieving a better speed and accuracy trade-off.
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