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ABSTRACT

Current regression based text detectors mainly use fixed an-

chors, where scales and positions can not be changed during

network training. As scene texts tend to have large variation

in orientations, aspect ratios and sizes, fixed anchors are in-

sufficient to cover all varieties. This paper proposes a nov-

el text detector with learnable anchors, named LATD. LATD

contains two prediction branches. One aims to refine scales

and locations of anchors according to the characteristics of

scene texts. The other one receives refined anchors as defaults

and regresses their offsets to text regions. These two branch-

es are optimized jointly without sacrifices much speed. Mean-

while, we explore the class-imbalance issue between texts and

backgrounds, and replace softmax loss with focal loss. Exten-

sive experiments on both oriented and horizontal benchmarks

demonstrate the effectiveness of LATD with new state-of-the-

art performance. By visualizing qualitative results, as expect-

ed, LATD provides more accurate locations and lower rate of

missed detections.

Index Terms— oriented scene text detection, learnable

anchors, class-imbalance issue

1. INTRODUCTION

Scene text detection, which aims to locate texts in natural im-

ages, has drawn increasing interests from both artificial intel-

ligence and computer vision. Extensive studies have been car-

ried out in the past few years, but this task is still challenging

due to several difficulties, e.g., low visual quality, cluttered

background, complex deformation and arbitrary orientations.

Nowadays single-shot regression based detectors are pop-

ularized owing to their accuracy and efficiency [1, 2, 3].

These detectors can be divided into two classes by different

regression algorithms [3]. One is based on indirect regression

[1, 3], which first creates a set of default anchors then locates

texts by regressing matched anchors to ground truths. The

other one is based on direct regression [2, 4], which outputs

locations from a given point directly but often suffers from

low accuracy especially for long texts [5]. Indirect regres-

sion based methods have achieved remarkable performance

(a) (b)

Fig. 1: (a) An illustration of fixed anchors, where horizontal

instead oriented anchors are shown for a better visualization.

Blue dashed and red solid lines indicate anchors and ground

truths respectively. (b) An illustration of a scene text image

with ground truths (red solid lines). Best viewed in color.

but still face two constraints. Firstly, scales of anchors are

fixed and limited. Anchor mechanism is deemed as rectan-

gular proposals with different sizes and aspect ratios defined

before network training. Once has been created, their scales

are unchangeable, let alone adjusted to scene texts. Secondly,

positions of anchors are sparse and fixed. Considering speed,

anchors are usually generated from higher layers with smal-

l resolution, instead from lower layers or even input images.

Besides, anchors are placed on images at equally spaced in-

tervals and their positions could not be shifted neither.

As scene texts have large variation in scales, locations and

orientations (see Figure 1 (b)), fixed anchors cause inaccurate

detections in the form of missing certain text parts or con-

taining undesired backgrounds. As depicted in Figure 1 (a),

after regression process, text 1 would miss its right part due

to long length, while text 2 is not even detected as no anchor

has sufficient overlap with it. Although TextBoxes [6] adds

more aspect ratios and vertical offsets to enrich anchors, it

is still insufficient to cover all diverse text patterns but costs

more running time. Therefore, fixed anchors have become the

bottleneck of indirect regression based detectors.

The goal of this paper is to detect scene texts with learn-

able anchors. To achieve this goal, we propose a novel indi-

rect regression based model, named LATD, that involves an

SSD-based [7] backbone and two prediction branches. One
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Fig. 2: (left) Network architecture of LATD. (right) Architecture of the feature enhancement block.

branch, named learnable anchor branch (LAB), aims to ad-

just the positions and scales of predefined anchors accord-

ing to the characteristic of scene texts. LAB outputs a set

of refined anchors with better initialization. The other one,

named text detection branch (TDB), aims to predict quadri-

lateral or horizontal text locations by regressing anchors from

LAB rather than fixed ones as previous detectors do. Based on

LAB and TDB, LATD shows significant superiority in local-

izing scene texts with closer bounding boxes. To our knowl-

edge, LATD is the first one to explore learnable anchors for

oriented/horizontal text detection.

Additionally, indirect regression based detectors usually

generate thousands of anchors per image. After regression

process, only a few anchors are matched with text regions and

a large proportion are backgrounds. Take ICDAR2013 dataset

for example, each image merely contains four texts on aver-

age. Therefore, there is an extreme class imbalance between

texts and backgrounds. Though some sampling heuristics are

adopted, e.g. online hard example mining, easy background-

s still overwhelm training and lead to degenerate models. In

this paper, we modify softmax loss to focal loss [8] by adding

two factors to down weight the contribution of easy examples

and focusing more on hard examples.

We conduct extensive experiments on both oriented (IC-

DAR2015 Incidental Scene Text and COCO-Text) and hor-

izontal (ICDAR2013 Focused Scene Text) benchmarks. E-

valuations demonstrate that LATD achieves state-of-the-art or

highly competitive performance compared to the best model

in the literature. By analyzing qualitative results, LATD ex-

hibits more accurate location and reduces the rate of missed

detection. Our contributions are summarized as follows:

(I) We analysis the deficiency of fixed anchors used in cur-

rent detectors, and propose a novel LATD that con-

sists of two prediction branches for anchors refinement

and texts detection respectively. LATD could generate

more appropriate anchors with refined scales and posi-

tions according to the characteristic of scene texts.

(II) We describe the class-imbalance issue between texts

and backgrounds, and replace softmax loss with focal

loss to relief this problem.

(III) LATD achieves the new state-of-the-art performance

and surpasses competitive detectors on both oriented

and horizontal text benchmarks.

2. RELATED WORK

One of related works to LATD is RefineDet [9], a recent de-

velopment in generic object detection. Indeed, LATD is in-

spired by RefineDet but has distinct differences. First, Re-

fineDet aims to detect general objects but fails on texts with

extreme aspect ratios, e.g., too long. LATD relies on specifi-

cally designed prediction layers to efficiently solve this prob-

lem. Second, RefineDet only generates horizontal rectangles,

while LATD could generate arbitrarily oriented quadrangles.

Furthermore, RefineDet applies default softmax loss for clas-

sification. We argue that it introduces class imbalance issue

especially for scene texts with large variation in appearances,

and replace it with focal loss to boost performance.

Another related work is TextBoxes++, which is also based

on indirect regression but uses fixed anchors. TextBoxes++

applies more aspect ratios and vertical offsets for anchors.

Though effective, it is not enough to enumerate arbitrary-

oriented texts. LATD explores learnable anchors to refine s-

cales and positions during network training, and accordingly

achieves better performance compared to TextBoxes++.

3. METHODOLOGY

The architecture of LATD is depicted in Figure 2. The w-

hole network consists of three main components: the VGG-

16 based backbone, two prediction branches (LAB and TDB),

and a feature enhancement block (FEB).

Following SSD, LATD inherits VGG-16 network by

keeping layers from conv1 1 to conv5 3, converting last two

fully-connected layers into convolutional layers (conv6 and

conv7), truncating the classification layers (fc-1000 and soft-

max), and adding a series of convolutional layers (conv8 to

conv11) to the end with size decreased progressively. We

leverage multiple layers with different receptive fields (con-

v4 3, conv7 to conv11) as prediction layers. Each of them
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flows into two prediction branches. LAB predefines anchors

and predicts their corresponding offsets, while TDB receives

refined anchors from LAB and regresses matched anchors to

output text locations. Note that there is a feature enhance-

ment block (FEB) operated on prediction layers before fed

into TDB. TDB is leveraged in pursuit of high-level seman-

tics. Finally, detections from different prediction layers are

aggregated together and undergo an efficient non-maximum

suppression (NMS) to filter out redundant outputs. In the fol-

lowing sections, we will give details of these components.

3.1. Learnable Anchor Branch (LAB)

LAB refines the scales and positions of default anchors to pro-

vides better initialization for TDB. LATD only uses horizon-

tal rectangles instead of quadrangles as default anchors for

a simpler matching strategy. Anchors tile each feature map

with various sizes and aspect ratios. Considering scene texts

tend to have a large variation in aspect ratios, e.g., short and

long texts, we use 6 aspect ratios including {1,2,3,5,7,10} for

each anchor to better cover scene texts, as TextBoxes++ do.

For each horizontal anchor b0 = (x0, y0, w0, h0),
where (x0, y0) means center point, w0 and h0 are

width and height, LAB simultaneously predicts its offset

(Δx0,Δy0,Δw0,Δh0) and text presence confidence c0 from

background. b0 is adjusted into the refined anchor br =
(xr, yr, wr, hr), where

xr = x0 + w0Δx0, wr = w0 exp (Δw0) ,

yr = y0 + h0Δy0, hr = h0 exp (Δh0) .
(1)

In training phase, LAB follows rectangle matching scheme as

in SSD to match anchors to rectangle ground-truths according

to boxes overlaps. Anchor shapes, including positions and s-

cales, are learned by back propagation. These refined anchors

are then passed to the corresponding feature maps in TDB.

3.2. Text Detection Branch (TDB)

TDB receives the refined anchors from LAB as default ones,

then regresses locations for oriented/horizontal texts. Each

refined horizonal anchor could be written as a quadrangle

qr = (xq
r1, y

q
r1, x

q
r2, y

q
r2, x

q
r3, y

q
r3, x

q
r4, y

q
r4). The relationship

between br and qr is formulated in Eq. 2, where br is the cor-

responding minimum enclosing horizontal rectangle of qr.

xq
r1 = xr − wr/2, yqr1 = yr − hr/2,

xq
r2 = xr + wr/2, yqr2 = yr − hr/2,

xq
r3 = xr + wr/2, yqr3 = yr + hr/2,

xq
r4 = xr − wr/2, yqr4 = yr + hr/2.

(2)

TDB exploits the same prediction layers used in LAB and

outputs text presence confidence cr and offsets to each as-

sociated anchor. The predicted horizontal and quadrilat-

eral offsets are formatted as (Δxr,Δyr,Δwr,Δhr) and

(Δxq
r1,Δyqr1,Δxq

r2,Δyqr2,Δxq
r3,Δyqr3,Δxq

r4,Δyqr4). Thus,

a horizontal rectangle b = (x, y, w, h) and a quadrangle

q = (xq
1, y

q
1, x

q
2, y

q
2, x

q
3, y

q
3, x

q
4, y

q
4) text boundaries are detect-

ed with confidence cr:

x = xr + wrΔxr, w = wr exp (Δwr) ,

y = yr + hrΔyr, h = hr exp (Δhr) ,

xq
n = xq

rn + wrΔxq
rn, n = 1, 2, 3, 4,

yqn = yqrn + hrΔyqrn, n = 1, 2, 3, 4.

(3)

During network training, given all detected boxes, we calcu-

late overlaps between the minimum enclosing horizontal rect-

angles of quadrangles and that of ground truths, and match

them when overlap exceeds given threshold. The predicted

quadrangles are not used for matching due to inefficiency.

3.3. Feature Enhancement Block (FEB)

FEB is designed and operated on prediction layers before fed

into TDB. As indicated in Figure 2, each prediction layer first

undergoes a convolutional layer with same channels, then up-

samples its resolution via a deconvolution operation (excep-

t the lowest layer), finally is merged with previous layer by

element-wise sum. We append a convolutional layer on each

merged map to reduce aliasing effect.

3.4. Label Generation

For each image with ground truths (quadrangles or hori-

zontal rectangles), we generate both quadrangular and rect-

angular ground truths if it has only one. For a quadran-

gle Gq = (q1, q2, q3, q4) = (x̃q
1, ỹ

q
1, x̃

q
2, ỹ

q
2, x̃

q
3, ỹ

q
3, x̃

q
4, ỹ

q
4),

where (q1, q2, q3, q4) are the four vertices in clockwise or-

der with q1 the top-left one, its horizontal form, i.e., the

minimum horizontal rectangle enclosing Gq , is formatted

as Gh =
(
x̃h
0 , ỹ

h
0 , w̃

h
0 , h̃

h
0

)
, where

(
x̃h
0 , ỹ

h
0

)
is the cen-

ter, w̃h
0 and h̃h

0 are the width and height. Similarly, for

each horizontal rectangle Gh =
(
x̃h
0 , ỹ

h
0 , w̃

h
0 , h̃

h
0

)
, its cor-

responding quadrangle is obtained as Gq = (q1, q2, q3, q4) =
(x̃q

1, ỹ
q
1, x̃

q
2, ỹ

q
2, x̃

q
3, ỹ

q
3, x̃

q
4, ỹ

q
4) by following Eq. 2.

3.5. Multi-task Loss Function

We define multi-task loss as follows:

L (x, c, l, g) =
1

NLAB
(Lconf L (x, c0) + αLloc L (x, l, g))

+
1

NTDB
(Lconf T (x, cr) + αLloc T (x, l, g))

(4)

For LAB, Lloc L is smooth L1 loss operated on matched hor-

izontal ground truths and horizontal refined anchors, while

Lconf L is 2-class softmax loss. For TDB, Lloc T is smooth
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Methods Recall Precision F-measure Time/s

SegLink [10] 0.731 0.768 0.75 0.05
WordSup [11] 0.77 0.793 0.782 0.52

RRPN [12] 0.73 0.82 0.77 0.30

RRD [13] 0.79 0.856 0.822 0.10

Lyu [14] 0.707 0.941 0.807 0.28

DMPNet [15] 0.682 0.732 0.706 -

SSTD [3] 0.73 0.80 0.77 0.13

EAST [2] 0.735 0.836 0.782 0.06

TextBoxes++ [1] 0.767 0.872 0.817 0.09

Our Proposed: LATD 0.781 0.878 0.827 0.10

R2CNN [16] ∗ 0.797 0.856 0.825 2.25

PixelLink+VGG16 2s [17] ∗ 0.82 0.855 0.837 0.33

RRPN [12] ∗ 0.77 0.84 0.80 0.30

RRD [13] ∗ 0.8 0.88 0.838 -

Lyu [14] ∗ 0.797 0.895 0.843 1.00

TextSnake [18] ∗ 0.804 0.849 0.826 0.91

Mask TextSpotter [19] ∗ 0.812 0.858 0.834 0.21

DDR [4] ∗ 0.800 0.820 0.810 0.90

EAST [2] ∗ 0.783 0.833 0.807 0.08
TextBoxes++ [1] ∗ 0.785 0.878 0.829 0.43

Our Proposed: LATD ∗ 0.804 0.899 0.849 0.46

Table 1: Performance comparison on IC15. ∗ means multi-scale test.

Methods Recall Precision F-measure

Baseline A [20] 0.233 0.838 0.365

Baseline B [20] 0.107 0.897 0.191

Baseline C [20] 0.047 0.186 0.075

RRD [13] ∗ 0.57 0.64 0.61

Yao [21] ∗ 0.271 0.432 0.333

SSTD [3] ∗ 0.31 0.46 0.37

EAST [2] ∗ 0.324 0.504 0.395

TextBoxes++ [1] 0.560 0.558 0.559

TextBoxes++ [1] ∗ 0.567 0.609 0.587

Our Proposed: LATD 0.50 0.69 0.58

Our Proposed: LATD ∗ 0.51 0.74 0.61

Table 2: Performance comparison on COCO-Text. ∗ means multi-scale test.

L1 loss applied on matched quadrilateral ground truths and

regressed quadrangles. Lconf T is the focal loss, where

Lconf T (x, cr) = −β(1− cr)
γ
log (cr) (5)

Focal loss is used to alleviate the side effect where network

training is dominated by easily classified backgrounds. Intu-

itively, β balances the importance of positive/negative exam-

ples, and (1− cr)
γ

automatically down-weights the contribu-

tion of easy examples during training and focuses the model

on hard examples. More details please refer to [8]. In our

experiments, α is set to 0.2 for quick convergence. β and γ
are set to 0.25 and 2.0 respectively according to [8].

4. EXPERIMENTS

To evaluate LATD, we give detailed description of standard

datasets, model training and inference, experimental imple-

mentation, and results with comparisons respectively.

4.1. Benchmark Datasets

SynthText [22]: SynthText contains 800,000 synthetic im-

ages. Each image has multiple texts overlaid on appropri-

ate background regions sampled from natural images. These

Methods Recall Precision F-measure

SSD [7] 0.74 0.88 0.81

TextBoxes [6] 0.74 0.88 0.81

TextBoxes++ [1] 0.74 0.88 0.81

RefineDet [9] 0.75 0.79 0.77

Our Proposed: LATD 0.77 0.91 0.83

SegLink [10] ∗ 0.83 0.88 0.85

DDR[4] ∗ 0.81 0.92 0.86

SSTD[3] ∗ 0.86 0.89 0.88

WordSup[11] ∗ 0.88 0.93 0.90

TextBoxes [6] ∗ 0.83 0.89 0.86

TextBoxes++ [1] ∗ 0.86 0.92 0.89

RefineDet [9] ∗ 0.79 0.87 0.83

Our Proposed: LATD ∗ 0.86 0.93 0.90

Table 3: Performance comparison on IC13. ∗ means multi-scale test.

Component Proposed Model

Focal loss � �

The Learnable Anchor Branch (LAB) � �

F-measure 0.827 0.823 0.818

Table 4: Effects of various components on IC15 dataset.

texts look realistic as the overlaying follows carefully set up

configuration and a well-set learning algorithm.

ICDAR 2015 Incidental Text (IC15) [23]: IC15 contain-

s 1, 000 training and 500 test images captured by wearable

cameras with low resolutions. Each image includes several

oriented texts annotated by four vertices of quadrangle.

ICDAR 2013 Focused Scene Text (IC13) [24]: IC13 con-

tains 229 training and 233 test images. Texts in these im-

ages are from sign boards, posters and other objects with axis-

aligned bounding box annotations.

COCO-Text [20]: COCO-Text is the largest text detection

dataset which comes from the MS COCO dataset. It contains

63, 686 images, where 43, 686 images are used for training,

10, 000 for validation, and 10, 000 for test. Although texts

in this dataset are in arbitrary orientations, text regions are

annotated in the form of axis-aligned bounding boxes.

4.2. Implementation Details

4.2.1. Training

LATD is optimized by Adam. Following TextBoxes++, all

training images are augmented online with random crop and

deformation. LATD is pre-trained on SynthText and fine-

tuned on the standard benchmarks. During pre-training stage,

images are resized to 384×384 and trained with learning rate

10−3 for 60k iterations. At fine-tune stage, images are firstly

resized to 384 × 384 with learning rate 10−3, then scaled up

to 768 × 768 with learning rate decreased to 10−4. A larger

image size is used to achieve better detections for multi-scale

texts. The number of iterations at finetune is decided by the

sizes of benchmark datasets. All implementations are carried

out on a PC with Titan Xp GPUs.
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Fig. 3: Qualitative results of LATD on IC15 (row 1), COCO-Text (row 2) and IC13 (row 3) respectively. Best viewed in color.

4.2.2. Inference

In testing, images are resized to 768 × 768. Following

[14, 2, 4], we evaluate our model with multi-scale inputs, i.e.,

{512 × 512, 768 × 768, 768 × 1280, 1280 × 1280}. TDB

simultaneously outputs scores, quadrilateral and correspond-

ing horizontal boundaries of texts. The outputs then undergo

a two-step NMS to filter out redundant boxes. Since NMS

operating on quadrilaterals is more time-consuming than that

on horizontal rectangles, we firstly apply NMS on minimum

horizontal rectangles with a higher IOU threshold, e.g., 0.5.

This step is much less time-consuming and removes many ir-

relevant boxes. Then NMS on quadrangles is applied with a

lower IOU threshold, e.g., 0.2. The two-step NMS is much

faster than one-step NMS directly operated on quadrangles.

After that, we get the final text detections.

4.3. Results on Oriented Text Benchmarks

We compare LATD with existing methods on two oriented

text benchmarks, to verify its effectiveness to oriented texts.

4.3.1. ICDAR 2015 Incidental Text (IC15).

Quantitative results are given in Table 1. LATD outperform-

s all state-of-the-art results by a large margin in both single

(0.827) and multi-scale (0.849) tests. To explore the gain be-

tween LATD and other regression based detectors, e.g., di-

rect and indirect regression, we compare results among DDR,

EAST and TextBoxes++. From Table 1, it is obvious that in-

direct regression based models (TextBoxes++ and ours) get

better performance than direct regression based ones (DDR

and EAST). As TextBoxes++ is the most related work to us,

LATD improves TextBoxes++ by 2.0 percent (0.829 vs 0.849)

with similar detection speed. The significant improvements

demonstrate the effectiveness of the proposed learnable an-

chors for oriented scene text detection. From qualitative re-

sults shown in Figure 3, LATD exhibits more accurate loca-

tion and lower rate of missed detections, which is consistent

with the above analysis.

4.3.2. COCO-Text.

Performances of LATD and other competitive methods are

listed in Table 2. Considering that COCO-Text is the largest

and most challenging benchmark to date, LATD achieves the

best performance with 0.61 in F-measure. Specifically, LAT-

D improves TextBoxes++ by 2.1 percent at single-scale test,

and 3 percent are further boosted at multi-scale test. Some

qualitative detection results are shown in Figure 3.

4.4. Results on Horizontal Text Benchmarks

We further evaluate LATD on ICDAR 2013 Focused Scene

Text (IC13) to assess its versatility for horizontal text detec-

tion. Experimental results are depicted in Table 3. LATD

achieves highly competitive performance in both precision

and recall among existing methods. In particular, we train Re-

fineDet with same training procedure for fair comparison. As

reported in Table 3, a straightforward adaption of RefineDet

for text detection does not perform well as ours. LATD per-

forms much better owing to the specially designed prediction

layers, and the modified classification loss for text detection.

Some qualitative detection results are shown in Figure 3.

4.5. Ablation Study

To better understand LATD, we execute controlled experi-

ments on IC15. All experiments are under the same setting,

except for specified changes in different comparisons.
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4.5.1. Focal loss.

To demonstrate the effectiveness of focal loss, we apply stan-

dard softmax loss in TDB. Results in Table 4 indicates that

focal loss boosts performance by 0.4 percent. We attribute it

to the fact that focal loss discounts effect of easy backgrounds

and focuses more attention on hard ones, therefore leads to a

more robust scene text detector.

4.5.2. The Refining Anchor Branch (LAB).

To validate LAB, we redesign LATD by directly using fixed

anchors instead of refined ones from LAB. Results in Table 4

show that F-measure is reduced to 0.818. This sharp decline

(0.9 percent) demonstrates the deficiency of fixed anchors and

the superiority of refined anchors for scene text detection.

5. CONCLUSION AND FUTURE WORK

We have presented LATD for oriented scene text detection.

The proposed learnable anchors as well as focal loss obtain

state-of-the-art performance, while still runs fast due to its

single-shot nature. Extensive experiments basically validate

our proposal. Our future work includes extending LATD to

curved text detection and an end-to-end text spotting system.
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