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ABSTRACT

Recurrent sequence-to-sequence models using encoder-decoder ar-
chitecture have made great progress in speech recognition task.
However, they suffer from the drawback of slow training speed
because the internal recurrence limits the training parallelization.
In this paper, we present the Speech-Transformer, a no-recurrence
sequence-to-sequence model entirely relies on attention mechanism-
s to learn the positional dependencies, which can be trained faster
with more efficiency. We also propose a 2D-Attention mechanis-
m, which can jointly attend to the time and frequency axes of the
2-dimensional speech inputs, thus providing more expressive repre-
sentations for the Speech-Transformer. Evaluated on the Wall Street
Journal (WSJ) speech recognition dataset, our best model achieves
competitive word error rate (WER) of 10.9%, while the whole train-
ing process only takes 1.2 days on 1 GPU, significantly faster than
the published results of recurrent sequence-to-sequence models.

Index Terms— Speech Recognition, Sequence-to-Sequence,
Attention, Transformer

1. INTRODUCTION

In speech recognition field, sequence-to-sequence (seq2seq) mod-
els have made great strides forward recently [1, 2, 3, 4, 5, 6, 7,
8]. They remove the unreasonable frame-independence assumption
made by Hidden Markov Model (HMM) [9] and Connectionist Tem-
poral Classification (CTC) [10] models, enabling themselves to learn
an implicit language model and optimize WER more directly [11].
In recent years, seq2seq models have achieved significant WER re-
duction benefiting from building deeper encoder [5], the effective
label smoothing schemes [4] and the latent sequence decomposition
methods [6]. In addition, some monotonic attention models [8, 12]
have also been explored and developed. These efforts are jointly
driving seq2seq model closer to practical application.

Although the seq2seq models have shown success in speech
recognition task, they still suffer from a drawback: slow training
speed [13]. In most of the proposed seq2seq models, recurrent neu-
ral networks (RNNs) [14, 15, 16] play an essential role when gen-
erating sequential hidden representations (encoding) and emitting
character according to soft alignment at different time (decoding).
Unfortunately, the sequential nature of RNNs limits the computation
parallelization of training. This dilemma becomes especially severe
for speech recognition task since speech sequences are commonly
long and it is rather time-consuming when processing recurrence.
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Program of China under No.2017YFB1002102 and Beijing Digital Content
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Recently, Vaswani et al. [17] proposed a no-recurrence sequence-
to-sequence model, called the Transformer, which achieved state-
of-the-art performance on WMT 2014 English-to-French translation
task with markedly less training cost. Its fundamental module is self-
attention, a mechanism relates all the position-pairs of a sequence
to extract a more expressive sequence representation. Since the
self-attention can draw the dependencies between different positions
through the position-pair computation rather than the position-chain
computation of RNNs, it just needs to be calculated once to obtain
the transformed representation, rather than be computed one by
one in RNNs. Therefore, the Transformer relying solely on atten-
tion mechanisms can be trained faster with more parallelization,
which is exactly needed by the seq2seq models in automatic speech
recognition (ASR).

In this paper, we successfully introduce the Transformer to ASR
task and we term our model the Speech-Transformer, a new seq2seq
model that transforms speech feature sequences to the correspond-
ing character sequences. Additionally, we propose a 2D-Attention
mechanism, which is inspired by the time-frequency LSTM in [18]
but replaces the time-frequency recurrence with both the temporal
and spectral dependencies captured by attention. By deploying the
WSJ speech recognition dataset, we find our proposed 2D-Attention
mechanism achieves better performance than the convolutional net-
works in [5], thus providing a more discriminated representation for
the Speech-Transformer. Moreover, our best model obtains 10.92%
WER after training 1.2 days on 1 NVIDIA K80, which is a com-
parable performance with a considerable reduction of training cost
compared with most recurrent seq2seq models.

2. MODEL DESCRIPTION

Similarly to previous seq2seq models, the Speech-Transformer is
based on the encoder-decoder architecture: the encoder transform-
s a speech feature sequence (x1, . . . , xT ) to a hidden representation
h = (h1, . . . , hL). Given h, the decoder then generates an out-
put sequence (y1, . . . , yS) one character at a time. At each step, the
decoder consumes the previously emitted characters as additional in-
puts when emitting the next character.

However, as a no-recurrence seq2seq model, the Speech-
Transformer differs from recurrent seq2seq models mainly on two
aspects: Firstly, both the encoder and decoder are composed of
multi-head attention and position-wise feed-forward networks as
described in section 2.1, rather than RNNs. Secondly, the encoder
outputs h are attended by each decoder block respectively, as shown
in Figure 2, replacing the one-step intermediary attention of re-
current seq2seq models. Next, we will describe the details of the
Speech-Transformer in the rest of this section:

5884978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



tq tv

dq

tk

dk dv

KQ V

Transpose

MatMul

Scale

Softmax

MatMul

Scaled Dot-Product Attention

Linear

QK V

Linear Linear

Scaled Dot-Product Attention

Linear Linear Linear

Concatenate

Linear

head 1
head 2

head h
Mask (opt)

Fig. 1. (left) Scaled Dot-Product Attention with a simple illustra-
tion of its running process. (right) Multi-Head Attention consists of
multiple Scaled Dot-Product Attention performing in parallel.

2.1. Core Module of the Speech-Transformer

2.1.1. Scaled Dot-Product Attention

Self-attention, a mechanism that relates different positions of input
sequences to compute representations for the inputs. Concretely, it
has three inputs: queries, keys and values. One query’s output is
computed as a weighted sum of the values, where each weight of
the value is computed by a designed function of the query with the
corresponding key. Here, we use Scaled Dot-Product Attention, an
effective self-attention mechanism demonstrated in [17]. As shown
in the left half of Figure 1 , Let Q ∈ Rtq×dq be the queries, K ∈
Rtk×dk be the keys and V ∈ Rtv×dv be the values, where t∗ are the
element numbers in different inputs and d∗ are the corresponding
element dimensions. Normally, tk = tv , dq = dk. The outputs of
self-attention are computed as:

Attention(Q,K,V) = softmax(
QKT

√
dk

)V (1)

where the scalar 1 /
√
dk is used to prevent softmax function into

regions that has very small gradients.

2.1.2. Multi-Head Attention

Multi-head attention, a core module of the Speech-Transformer, is
applied to leverage different attending representations jointly. As the
right half of Figure 1 shows, multi-head attention calculates h times
Scaled Dot-Product Attention, where h means the head number. Be-
fore performing each attention, there are three linear projections to
transform the queries, keys and values to more discriminated repre-
sentations respectively. Then, each Scaled Dot-Product Attention is
calculated independently, and their outputs are concatenated and fed
into another linear projection to obtain the final dmodel-dimensional
outputs:

MultiHead(Q,K,V) = Concat(head1, . . . , headh)W
O (2)

where headi = Attention(QWQ
i ,KWK

i ,VWV
i ) (3)

In the above equation, since Q, K and V in the Speech-Transformer
have the same dimension of dmodel, the projection matrices WQ

i ∈
Rdmodel×dq , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv , WO ∈

Rhdv×dmodel . dq = dk = dv = dmodel/h throughout the paper.
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Fig. 2. Model architecture of the Speech-Transformer.

2.1.3. Position-wise Feed-Forward Network

Position-wise feed-forward network is another core module of the
Speech-Transformer. It consists of two linear transformations with a
ReLU activation in between. The dimensionality of input and output
is dmodel, and the inner layer has dimensionality dff . Specifically,

FFN(x) = max(0,xW1 + b1)W2 + b2 (4)

where the weights W1 ∈ Rdmodel×dff , W2 ∈ Rdff×dmodel and
the biases b1 ∈ Rdff , b2 ∈ Rdmodel . The linear transformations
are the same across different positions.

2.2. Model Architecture

The Speech-Transformer aims at transforming the speech feature se-
quence to the corresponding character sequence. The feature se-
quence, commonly a few times longer than the character sequence,
can be depicted as 2-dimensional spectrograms with time and fre-
quency axes. Therefore, we choose the convolutional networks to
exploit the structure locality of spectrograms and mitigate the length
mismatch by striding along time. Based on above, we present the
model architecture of the Speech-Transformer, and the details of its
encoder and decoder are as follows:

The encoder is shown in the left half of Figure 2. We firstly s-
tack two 3×3 CNN layers with stride 2 for both time and frequency
dimensions to prevent the GPU memory overflow and produce the
approximate hidden representation length with the character length.
Then, we can optionally stack M additional modules which are ap-
plied to extracting more expressive representations for our Speech-
Transformer, which will be detailed in section 4.2. Next, we perform
a linear transformation on the flattened feature map outputs to ob-
tain the vectors of dimension dmodel, which is called input encoding
here. Afterwards, in order to enable the model to attend by relative
positions, the dmodel-dimensional positional encoding is added to
the input encoding:
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PE(pos,i) =

{
sin(pos/100002i/dmodel) 0 ≤ i < dmodel/2

cos(pos/100002i/dmodel) dmodel/2 ≤ i < dmodel

(5)
Where pos represents the position in sequence, i represents the i-
th dimension. The positional encoding works because for arbitrary
fixed offset k, PEpos+k can be represented as a linear function
of PEpos. We can obtain the final encoded outputs by inputting
the sum of input encoding and positional encoding to a stack of
Ne encoder-blocks, each of them has two sub-blocks: The first is
a multi-head attention whose queries, keys and values come from
the outputs of the previous block. And the second is position-wise
feed-forward networks. Meanwhile, layer normalization and residu-
al connection are introduced to each sub-block for effective training.
Given sub-block inputs x, the corresponding outputs are:

x+ SubBlock(LayerNorm(x)) (6)

The decoder is shown in the right half of Figure 2. We firstly
employ a learned character-level embedding to convert the charac-
ter sequence to the output encoding of dimension dmodel, which is
added with the positional encoding. Then, the sum of them are in-
putted to a stack of Nd decoder-blocks to obtain the final decoder
outputs. Differently from the encoder-block, each decoder-block has
three sub-blocks: The first is a masked multi-head attention which
has the same queries, keys and values. And the masking is utilized to
ensure the predictions for position j can depend only on the known
outputs at positions less than j. The second is a multi-head attention
whose keys and values come from the encoder outputs and queries
come from the previous sub-block outputs. The third is also position-
wise feed-forward networks. Like the encoder, layer normalization
and residual connection are also performed to each sub-block of the
decoder. Finally, the outputs of decoder are transformed to the prob-
abilities of output classes by a linear projection and a subsequent
softmax function.

3. PROPOSAL: 2D-ATTENTION MECHANISM

The attention mechanism used in the encoder-block of the Speech-
Transformer relates positions on time axis to build the temporal de-
pendencies. Here we call it 1D-Attention. However, speech feature
sequence is often transformed to 2-dimensional spectrograms with
both time and frequency axes. When reading a spectrogram, a hu-
man predicts its pronunciation relying on the varying correlation-
s between different frequencies with time. Therefore, attending to
both time and frequency axes may be beneficial to the modeling of
the temporal and spectral dynamics in a spectrogram.

Motivated by the analysis above, we propose a 2D-Attention
block which is illustrated in Figure 3. Firstly, it performs three con-
volutional networks on the n-channels spectrograms to extract the
representations of queries, keys and values independently, where the
output channels of each convolution network are c. Then, it intro-
duces two types of attention to capturing temporal and spectral de-
pendencies respectively: As Figure 3 shows, the bottom one attends
to the time axis using c Scaled Dot Product Attentions, each atten-
tion handles the queries, keys and values from the corresponding
channel. The top one applies c Scaled Dot Product Attentions to the
transposed queries, keys, values in order to attend to the frequency
axis, and its outputs are then transposed to original size. Finally,
the outputs of 2D-Attention are concatenated and fed into another

Conv Conv Conv

Scaled Dot-Product Attention (to frequency)

Conv

Scaled Dot-Product Attention (to time)

T T T

T

Concatenate

Fig. 3. Illustration of the Proposed 2D-Attention mechanism. The
colored rectangles represent spectrograms, and the circle with T in-
side represents the transposition operation.

convolution network to obtain the final n-channels outputs:

2D-Attention(I) = WO ∗ Concat(channelt1, . . . , channeltc,

channelf1 , . . . , channelfc )
(7)

where channelti = Attention((WQ
i ∗I), (W

K
i ∗I), (WV

i ∗I)) (8)

channelfi = Attention((WQ
i ∗I)

T , (WK
i ∗I)T , (WV

i ∗I)T )T (9)

Where, I is the n-channels inputs, * represents the convolutional op-
eration, WQ

i , WK
i and WV

i represent the filters applied on I to
obtain the queries, keys, values of channel i, respectively. WO rep-
resents the filters applied on the 2c concatenated channels to obtain
the final n-channels outputs.

4. EXPERIMENTS

4.1. Experimental Setups

We experimented with the Wall Street Journal (WSJ) dataset, train-
ing on si284, validating on dev93 and evaluating on eval92 set. The
input acoustic features were 80-dimensional filterbanks extracted
with a hop size of 10ms and a window size of 25ms, extended with
temporal first and second order differences and per-speaker mean
subtraction and variance normalization. The output alphabet of tar-
get text consisted of 31 classes, 26 lowercase letters, apostrophe,
period, space, noise marker and end-of-sequence tokens.

In the training stage, the samples were batched together by ap-
proximate feature sequence length and each training batch contained
20000-frames features. We trained the model on 1 NVIDIA K80 G-
PU for a total of 100k steps. We used the Adam optimizer [19] with
β1 = 0.9, β2 = 0.98, ε = 10−9 and varied the learning rate over
the course of training, according to the formula:

lrate = k · d−0.5
model ·min(n−0.5, n · warmup n−1.5) (10)
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where n is the step number, k is a tunable scalar, and the learning
rate increases linearly for the first warmup n training steps and de-
creases thereafter proportionally to the inverse square root of the step
number. We used warmup n = 25000, k = 10 and decreased k
to 1 when the model converged. In order to prevent over-fitting, we
used the neighborhood smoothing scheme proposed in [4], and the
probability of correct label was set to 0.8. Meanwhile, we set both
of residual dropout and attention dropout to 0.1, where the residual
dropout is applied to each sub-block before adding the residual infor-
mation, the attention dropout is performed on the softmax activations
in each attention. In addition, we encouraged the model attending to
closer positions by adding bigger penalty on the attention weights of
more distant position-pairs. All the convolutional networks in our
model used 64 output channels and each of them was followed by a
batch normalization layer for faster convergence.

After training, we averaged the last 10 checkpoints, which were
written at 10-minute intervals in TensorFlow framework [20]. Then,
we performed decoding using beam search with a beam size of 10
and length penalty α = 1.0 [21]. Last but not least, all our WER
results in section 4.2 were averaged over two runs.

4.2. Results

We first explore different hyper-parameter combinations for the
Speech-Transformer, including the encoder block number Ne, the
decoder block number Nd and the feed-forward inner dimension
dff . The model dimension dmodel = 256 and the head number
h = 4 are kept unchanged during comparison.

Table 1. The performance comparisons of different super-parameter
combinations for the Speech-Transformer.

Model Ne Nd dff WER
6Enc6Dec (base model) 6 6 1024 12.20
12Enc6Dec-wide (big model) 12 6 2048 10.92
4Enc8Dec 4 8 1024 13.26
8Enc4Dec 8 4 1024 11.95
8Enc4Dec-wide 8 4 2048 11.56
10Enc5Dec-wide 10 5 2048 11.01

As Table 1 shows, when the total block numbers of encoder
and decoder are kept identical (6Enc6Dec, 4Enc8Dec, 8Enc4Dec),
the model with more encoder blocks achieves better performance.
We conjecture this is because deeper encoder can extract a more
discriminated representation of acoustic information, which is pre-
sumably more important than more character spelling knowledge
to speech recognition accuracy. In addition, using wider inner di-
mension (8Enc4Dec, 8Enc4Dec-wide) and adding the model depth
(8Enc4Dec-wide, 10Enc5Dec-wide, 12Enc6Dec-wide) are also ben-
eficial to the WER performance. Then, we establish our base model
and big model for further investigation.
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Fig. 4. (left) The ResCNN module. (medium) The ResCNNLSTM
module. (right) Our designed 2D-Attention module.

Then, we investigate the performance of adding different addi-
tional modules to our base model, including ResCNN, ResCNNLST-
M and our designed 2D-Attention module. Their structures are illus-
trated in Figure 4. Additionally, we set a comparison of adding extra
encoder-blocks to our base model and denote it as 1D-Attention. The
WER results are listed in Table 2.

Table 2. Results of adding different additional modules to the
Speech-Transformer.

Model WER
base model 12.20
base model + 4×ResCNN 11.90
base model + 4×ResCNNLSTM 12.01
base model + 2×1D-Attention 11.69
base model + 2×2D-Attention 11.43
big model 10.92
big model + 2×2D-Attention 11.01

It can be observed that the 2D-Attention module obtains the best
performance when applied to our base model, even better than the
ResCNNLSTM module which performs effectively in recurrent se-
q2seq models [5]. This can be explained by the fact that the 2D-
Attention module can jointly capture the temporal and spectral rela-
tions, which is in line with the human spectrogram reading habits.
In contrast, although the ResCNNLSTM captures temporal infor-
mation by recurrent connections and maintains the spectral locality
by convolutional networks, it doesn’t take advantage of the spec-
tral correlations and provides limited error reduction, neither does
the ResCNN. However, when we apply 2D-Attention module to our
big model, it shows a little performance reduction. We analyze this
is probably due to the redundant extraction of acoustic information
caused by excessive encoder components.

We gather the published character-based WSJ results without
extra language models in Table 3. Our big model achieves the WER
of 10.92% and converges after training 1.2 days on 1 NVIDIA K80,
which is a comparable performance with most of the published mod-
els while consuming a significantly small fraction of training costs.

Table 3. Character-based results without language model on WSJ.
Model Training time eval92
CTC[22] - 27.3
seq2seq[2] - 18.6
seq2seq + deep convolutional[5] 5 days on 10 GPUs 1 10.5
seq2seq + Unigram LS[4] - 10.6
Speech-Transformer (big) 1.2 days on 1 K80 10.9

5. CONCLUSION

In this work, we presented a no-recurrence seq2seq model, the
Speech-Transformer, aiming at mitigating the heavy training costs
among most recurrent seq2seq models. We also explored various
additional modules and found the best performance was obtained
by our proposed 2D-Attention module, which is in line with the
human spectrogram reading habits and extracts discriminated rep-
resentations for the upper encoder-blocks. On the WSJ dataset,
our big model converged with considerably small training costs and
achieved competitive WER performance, which shows the efficiency
and effectiveness of the Speech-Transformer.

1Their work didn’t mention specific GPU products used for training.
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