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ABSTRACT 
Fluorescence molecular tomography (FMT) is a promising multimodality-fused medical imaging technique, aiming at 

noninvasively and dynamically visualizing the interaction processes at the cellular and molecular level. However, due to 

the intricate correlation among columns in system matrix, the inverse problem of FMT faces high ill-posedness. In this 

work, we propose a novel regularized doubly orthogonal matching pursuit (RDOMP) method through synergistically 

integrating Gram-Schmidt (GS) orthogonalization with regularized orthogonal matching pursuit (ROMP) to decorrelate 

the elements in support set against remaining elements. Experiments based on the numerical mouse with double tumors 

and in vivo mouse were conducted to validate the enhancement of RDOMP with comparison to orthogonal matching 

pursuit (OMP), sparsity adaptive subspace pursuit (SASP), and ROMP contrast methods. The simulated experimental 

results demonstrated a better performance of RDOMP in terms of location accuracy, fluorescent yield reconstruction, 

relative sparsity, and morphological similarity, which highlighted the pruning capability of the introduced GS 

orthogonalization. And in vivo experimental results demonstrated the practical application of RDOMP on FMT 

reconstruction.  

Keywords: fluorescence molecular tomography, regularized doubly orthogonal matching pursuit, inverse problem, 

compressed sensing. 

 

I. INTRODUCTION 
As an extension of Fluorescence Molecular Imaging (FMI), Fluorescence Molecular Tomography (FMT) is a more 

promising imaging technology that fuses the tumor-specific information from FMI with anatomical information from 

Computed Tomography (CT), to comprehensively and objectively assess the diseased areas through three-dimensional 

visualization [1, 2]. However, the FMT inverse problem, which is based on the measurement data on the surface of the 

imaged object to reconstruct the tumor distribution in the whole spatial domain, commonly faces high ill-posedness [3].  

Typically, we reformulate the FMT inverse equation for numerical treatment to alleviate the high ill-posedness by 

including additional assumption known as regularization [4]. Tikhonov regularization, regarded as the typical standard 

optimization method with the merits of easy to solve and mitigating overfitting, is widely used in FMT inverse problem 

but presents the drawback of over-smoothness [5]. Although Gao et al have attempted to enhance the Tikhonov 

regularization effect by fusing the Gaussian weighted Laplacian prior, and have improved the reconstruction 

performance to some extent, over-smoothness is still inevitable [6]. In addition, some researchers proposed other 

regularization term based on the L1-norm, to reconstruct the tumor distribution, according to the prior that tumors 

sparsely distribute in the biological tissue [7]. Notably, all L1-norm based FMT solving methods can be approximately 

divided into two parts, viz., proximal gradient method and greedy algorithm. Proximal gradient method is used for non-

differentiable optimal problem through variable splitting and proximity operator to solve the inverse problem, including 

fast iterated shrinkage method [8], split Bregman method [9], joint L1-norm and L2-norm regularization [10], and joint L1 

and total variation regularization [11]. However, proximal gradient methods generally face high computational problems 

and time-consuming, since the scale of FMT inverse problem commonly reaches tens of thousands of dimensions, which 
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is greatly restricted in practical application. It is worth mentioning that greedy algorithm based on compressed sensing 

theory as an alternative can achieve highly accurate reconstruction with low computational complexity, due to the 

concept of selecting most correlated atom and avoiding differential [12]. Orthogonal matching pursuit (OMP) is a typical 

greedy algorithm based on compressed sensing, and achieves approximate tumor reconstruction in FMT inverse problem 
[13]. Apart from OMP, some researchers subsequently proposed regularized orthogonal matching pursuit (ROMP) to 

accelerate the atom selection procedure and enhance the rightness of atom selection [14]. Moreover, sparsity adaptive 

subspace pursuit (SASP) was proposed to adaptively adjust the sparsity and check the validness of the support set by 

backtracking [15]. However, greedy based algorithm commonly faces incorrectness of atom selection due to the high 

correlation of columns of system matrix, which greatly affects the reconstruction accuracy.  

In this work, we propose a novel regularized doubly orthogonal matching pursuit (RDOMP) method for FMT inverse 

problem by introducing the Gram-Schmidt (GS) orthogonalization into the regularized orthogonal matching pursuit 

(ROMP) at each iteration to decorrelate the correlation among support set and the remaining elements. To test the 

applicability of RDOMP in terms of its ability to improve the correctness of atom selection, we conducted numerical 

simulation experiments based on digital mouse and in vivo experiments on tumor bearing mouse.  
 

II. METHODS 
FMT inverse problem: the inverse problem of FMT reconstruction can be formulated by a low-order approximated and 

simplified model from the complex integral-differential radiative transfer equation, known as diffusion equation (DE) 

and as shown in Eq. 1.  
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Considering the irregular properties of biological tissue, tetrahedronal finite element discretization of each organ is 

utilized for calculating the approximate solutions of Eq.1. Hence, the complicated differential equation of Eq. 1 can be 

simply formulated in Eq. 2. 
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Where Km is symmetrical and positive definite, Eq.2 can be reformulated into following matrix-form equation, as 

shown in Eq. 3.  

=AX  ,                                                                                  (3) 

Where n is the measurement vector, 
1[ ,..., ] n d

dA f f   (n<d) is the matrix of the feature vector n

if  , and 

X is the coefficients vector. Owing to the high ill-posedness of Eq. 3, directly solving the Eq. 3 will result in poor 

reconstruction performance. Based on the prior that tumors sparsely distribute in the imaged object when compared with 

the whole imaging domain, we utilized the L1-norm as regularization term to guide the solution processes. The sparsity 

constraint based L1-norm regularization can be presented as following Eq. 4. 

2

2 1

1
min ( )

2X
E X AX X                                                                     (4) 

Where λ is the hyper parameter governing the regularization effect of L1-norm. Here, the columns of system matrix A 

can be treated as a set of basis vectors or atoms, while x forms the coefficients corresponding to each atom. Thus, the 

sparse constraint optimal problem can be transformed to a dictionary-learning problem on the concept that choosing 

atoms as little as possible with non-zero value to restore x. And the atom selection procedures commonly based on the 

greedy idea that choosing the atom with maximal correlation to residual error vector of present iteration. After iteratively 

processing the atom selection and updating support set, we finally get the candidate set corresponding to non-zero value 

in x. RDOMP adopts the greedy algorithms aiming at recovering the fluorescent yield through an iterative approach as 

shown in Eq. 5. 

1
min subject to X AX                                                                        (5) 

RDOMP algorithm: after defining the objective function and restrictions, we propose the RDOMP reconstruction 

method based on the idea to select a better group of proper basis vector through GS orthogonal decorrelation of system 

matrix columns, and synergistically embed GS orthogonalization into ROMP to solve the L1-norm problem. The 

processes and details of RDOMP are shown in Algorithm. 1. 

Proc. of SPIE Vol. 11313  113131Q-2
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 29 May 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

Algorithm 1: regularized doubly orthogonal matching pursuit (RDOMP) 

INPUT: system matrix
m nA  , measurement vector Φ 

Initialization: support set 
0S  , residual error vector 

0 =r  , 
0 =AZ ,  sparsity K， 

precision 0  ，iteration number k = 0， threshold  . 

Iteration:  

while 
2

kr  or k K do: 

(1) k = k + 1; 

(2) normalization: 1 1 1 1

{ } { } { } 2
= /  where k k k t

i i iZ Z Z i S    ; 

(3) calculate residual error correlation: 
1 1

{ }

Tt t

iu Z r  ; 

(4) regularize selected elements:   max{ , , }regJ i u i u i J    ; 

(5) Update support set: 
1=k k

regS S J
; 

(6) GS orthogonalization: 
1 1
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Tk k k

ip Z Z 
, 1 1

{ }=  ( )k k k k

i regZ Z p Z i J    ; 

(7) Calculate temporary solution: kS
x A  ; 

(8) Compute residual error vector:  , k k kS S S
r proj A A A        ; 

End while 

OUTPUT: the reconstructed results x of FMT inverse problems.  

 

The novelty of RDOMP is the additional GS orthogonalization module, which inputs a set of finite, linearly 

independent vectors and outputs an orthogonal set that spans the same dimensional subspace [16]. Through synergistically 

integrating GS orthogonalization into ROMP, which greatly eliminates the impact of candidates in support set on system 

matrix to decorrelate the basis vectors of system matrix, and thus to alleviate the ill-posedness of system matrix and 

enhance the correctness of atom selection. It is noteworthy that GS orthogonalization operated on each newly added 

atom in support set. The details of GS orthogonalization are given in Eq. 6.  
1 1 1 1

{ } { }= =     ( )
Tk k k k k k k

i i regp Z Z Z Z p Z i J     ，                                                    (6) 

Where 
np C is the projection vector of selected vector on each column of system matrix, and the operator   is the 

Kronecker product resulting in a block matrix in order to match the system matrix size. After each column of system 

matrix subtracts the projected vector, it is orthogonal to the remaining basis set from the selected components to reduce 

the impact of selected components in Jreg on remaining candidates. 

Evaluation index: in this work, we use position error (PE), reconstructed fluorescent yield (RFY), percentage of non-

zero components (PNZ), and the Dice coefficient to quantitatively assess the reconstruction performance [17]. 
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Where Pr and P0 represent the reconstructed tumor centers and ground truth center respectively, NOI indicates the 

nodes of interests, XNOI represents fluorescent yield of each node in NOI, NNOI is the number of nodes in NOI, X is the 

reconstructed region and Y is the ground truth region. All indicators except PE are the greater, the better the 

reconstruction performance, with one as the upper limitation; while the PE is the smaller, the better locating 

performance, with the zero as thelower limitation . 

 

III. EXPERIMENTS AND RESULTS 
In order to comprehensively evaluate the reconstruction performance of RDOMP in terms of accuracy, and 

practicability, numerical simulation experiments and in vivo mouse experiment were implemented in this section. 

Contrast methods including OMP, SASP, and ROMP were utilized for comparison. All the computational processes were 

conducted on a desktop computer equipped with a 3.4GHz i7-6700 CPU, a Nvidia 1080Ti GPU, and 16GB RAM.  

As for the configuration of FMT forward problem in numerical experiment, we implemented homogeneous truncated 

digital mouse atlas with artificially added tumors inside liver to form numerical simulation [18]. And based on the finite-

element theory, we discretized the segmented biological tissues viz., bone, heart, liver, kidney, lung, and muscle into 
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meshes. Subsequently, we utilized the optical parameters as same excitation and emission light wavelength as in vivo 

experiment to formulate the system matrix, which was shown in Table. I. To collect as much information as possible, the 

excitation and emission processes were repeated at four different angles around the imaged object. Finally, we calculated 

the forward problem of FMT to get the measurement data and assembled the four angles measurement data with its 

corresponding system matrix based on forward mesh with 15639 nodes and 84507 elements, as shown in Fig. 1. 

TABLE I 

OPTICAL ABSORPTION AND SCATTERING COEFFICIENTS OF BIOLOGICAL TISSUES IN NUMERICAL AND IN VIVO EXPERIMENTS 

Tissue μax μam μ'sx μ'sm  G 

Bone 0.0521 0.0326 2.4415 2.114 0.93 

Heart 0.0504 0.0331 0.9437 0.8203 0.9 

Liver 0.3016 0.1921 0.6676 0.6023 0.93 

Kidney 0.0566 0.0377 2.2032 1.9002 0.9 

Lung 0.1681 0.1045 2.1569 2.0477 0.93 

Muscle 0.0745 0.0474 0.4115 0.3122  0.97 

    Units of μa and μ’s : mm−1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 The visualization of homogeneous truncated digital mouse. (a) Distribution of biological tissues; (b) orthogonal slice view; (c) 

discretized mesh; (d) surface spotlight. 

 

Because photon propagation in real conditions does not depend on discretized forward mesh, which only used to 

approximate measurement data through light transmission among biological tissue, thus, we adopted another mesh with 

15175 nodes, 82857 elements in inverse problem. In simulation experiments, we set up two spherical tumors inside liver 

with center coordinates of (6.5, 12.7, 7.5) and (6.5, 21.7, 7.5). Both radii were set to 0.8 mm and fluorescent yield were 

set to 1 mm−1. The hyper parameters of RDOMP K, ε, η were emperically set to 10, 0.05norm(Φ), 0.5 respectively. And 

OMP, SASP, and ROMP were implememted as contrast experiments with same hyperparameters K and ε. 

The qualitative analysis is shown in Fig. 2 (a-d) consisting of 3D view of the whole imaged object and slice view of 

tumor located plane. It was worth noting that though all methods can approximately reconstruct the tumor region, 

RDOMP still achieved higher morphological similarity and lower location error, since more overlapped area between 

ground truth and reconstructed region. Besides, comparison methods such as SASP and ROMP faced reconstruction 

problems that small discontinuous tumors located near ground truth region, while RDOMP was not troubled by this 

problem. Furthermore, a series of evaluating indexes were utilized to quantitatively assess the reconstruction 

performance. As shown in Fig. 2 (e), it can be seen that RDOMP achieved lower PE, much higher Dice and PNZ, while 

RFY was almost at the similar level, when compared to OMP, SASP, and ROMP. Thus, quantitative analysis 

demonstrated the better performance of RDOMP in locating tumors, sparsely reconstruction, and morphological 

similarity. It can be concluded from numerical experiments that the addition of GS module plays a critical role through 

enabling the selection of a better set of components by decorrelating the highly correlated columns of system matrix. 

HeartLung
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Fig. 2 The qualitative and quantitative analysis of OMP, SASP, ROMP, and RDOMP reconstruction performance. The red dotted 

circles in (a)-(d) represent the real fluorescent sources. It is assumed that the green polygons clustered around the red spheres in the 

3D view are reconstructed tumors; (e) quantitative analysis results.  

 

Furthermore, we implemented the in vivo liver tumor-bearing mouse experiments to validate reconstruction 

performance on real condition based on multimodality-fused imaging system to acquire FMI, CT, and MRI images [19]. 

The hybrid system was equipped with a continuous wave laser for excitation, an ultrasensitive EMCCD camera with a 

160°field of view (FOV) to acquire the fluorescent information, a micro-CT consisting of X-ray tube and detector to 

collect structural information, and a MRI device. It was worth noting that MRI images were used as ground truth due to 

the high contrast imaging ability of soft tissues to detect the tumor region. Different from numerical experiments, the in 

vivo experiments are more complex which required the procedures of data acquisition, signal denoising, organ 

segmentation and integration, imaged object discretizing and meshing, and 3D-2D mapping, step by step.  

The reconstructed results in Fig. 3 demonstrated the better performance of RDOMP on locating the tumor center and 

reconstructing the tumor region without region splitting or false negative regions. However, contrast methods suffer 

those problems and have difficulties in identifying tumor number and region. Those improvements demonstrated the 

utilization of GS orthogonalization contributed to more correctly select residual error related atom, and thus enhanced 

the reconstruction performance. In general, in vivo experiment potentially highlighted the pre-clinical application of 

RDOMP on FMT reconstruction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 in vivo reconstruction result in 3D view and sectional view by the proposed and comparison method. Pink region in (a) 

represents the tumor region.   

 

IV. CONCLUSION 
In this work, a novel FMT reconstruction method, RDOMP, was proposed by incorporating the GS orthogonalization 

with the ROMP. The motivation behind the proposed method is that the GS orthogonalization can decorrelate the 

complicated correlation among columns of system matrix by eliminating the impact of candidates in support set on 

system matrix, which enables the selection of a better set of components, and hence alleviate the ill-posedness of the 
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FMT inverse problem. Simulation experiments demonstrated the enhanced performance on reconstruction accuracy, 

morphological similarity, restored fluorescent yield, and relative sparsity of RDOMP than OMP, SASP and ROMP. And 

in vivo experiments also demonstrated the better reconstruction performance, which potentially addressed the practical 

application of RDOMP on FMT reconstruction. In general, RDOMP provides a new idea for the improvement of FMT 

reconstruction that alleviation of the ill-posedness by decorrelating the columns of system matrix is also a feasible and 

effective approach to enhance the performance other than adding regularization terms. 
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