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Abstract. Named entity recognition (NER) is a foundational technol-
ogy for information extraction. This paper presents a flexible NER frame-
work (https://github.com/bke-casia/FLEXNER) compatible with differ-
ent languages and domains. Inspired by the idea of distant supervision
(DS), this paper enhances the representation by increasing the entity-
context diversity without relying on external resources. We choose dif-
ferent layer stacks and sub-network combinations to construct the bilat-
eral networks. This strategy can generally improve model performance
on different datasets. We conduct experiments on five languages, such
as English, German, Spanish, Dutch and Chinese, and biomedical fields,
such as identifying the chemicals and gene/protein terms from scientific
works. Experimental results demonstrate the good performance of this
framework.

Keywords: Named entity recognition · Data augmentation ·
LSTM-CNN

1 Introduction

The NER task aims to automatically identify the atomic entity mentions in tex-
tual inputs. This technology is widely used in many natural language processing
pipelines, such as entity linking, relation extraction, question answering, etc.
This paper describes a portable framework that can use different layer stacks
and sub-network combinations to form different models. This framework does
not rely on language/domain-specific external resources so it can reduce cou-
pling.
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While state-of-the-art deep learning models [3,14,15] resolve this problem
in the sequence labeling manner, their models are usually trained on a fixed
training set where the combination of entity and context is invariant, so the
relationship between entity and context information is not fully exploited. Intu-
itively, adding diverse training samples [11,28] is helpful to train a better model,
but expanding the existing training data is expensive. The Wikipedia entity type
mappings [17] or the distant supervision [16] provide a way to augment the data,
but these methods rely heavily on outside knowledge resources. The DS-based
entity set expansion might introduce noisy instances, which potentially leads to
the semantic drift problem [23]. Ideally, we would wish to overcome these two
problems, increasing the diversity of training data without external resources,
and adapting our approach to any datasets. We solve the first problem by data
transformation operations inside the dataset. Our method only uses the ground
truth entities in the training set, which naturally reduces the influence of noisy
instances. For the second problem, we use a bilateral network to enhance the
learning representation, which can achieve better results on different datasets.

The context pattern provides semantics for inferring the entity slot, i.e., from
“Germany imported 47000 sheep from Britain” we got a context pattern “A
imported 47000 sheep from B” which implies that A and B are locations. If this
sentence becomes “America imported 47000 sheep from Britain”, the appearance
of America is also reasonable, but a person cannot appear in these placeholders.
We refer to these rules as context pattern entailment, which can be emphasized
and generalized by increasing entity-context diversity during model training.
The data augmentation technique [5] aims to apply a wide array of transforma-
tions to synthetically expand a training set. This paper proposes two innovative
data augmentation methods on the input stage. Compared with the distant
supervision, our approach does not rely on additional knowledge bases since our
approach can inherently and proactively enhance low resource datasets.

We conduct experiments on five languages, including the English, German,
Spanish, Dutch and Chinese, and biomedical domain. Our bilateral network
achieves good performance. The main contributions of this paper can be sum-
marized below.

(i) We augment the learning representation by increasing entity-context diver-
sity. Our method can be applied to any datasets almost without any domain-
specific modification.

(ii) To improve the versatility of our approach, we present the bilateral net-
work to integrate the baseline and augmented representations of two sub-
networks.

2 Related Work

The CNN based [3], LSTM based [14] and hybrid (i.e., LSTM-CNNs [1,15])
models resolve this task in the sequence labeling manner. Yang et al. [26] build
a neural sequence labeling framework1 to reproduce the state-of-the-art models,
1 https://github.com/jiesutd/NCRFpp.

https://github.com/jiesutd/NCRFpp
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while we build a portable framework and also conduct experiments in different
languages and domains. Yang et al. [27] use cross-domain data and transfer
learning to improve model performance.

ELMo [18] and BERT [4] enhance the representations by pre-training lan-
guage models. BERT randomly masks some words to train a masked language
model, while our data augmentation is a constrained entity-context expansion.
Our approach aims to retain more entity type information in the context rep-
resentation. CVT [2] proposes a semi-supervised learning algorithm that uses
the labeled and unlabeled data to improve the representation of the Bi-LSTM
encoder.

The data augmentation method can be carried out on two stages, the raw
input stage [21] and the feature space [5]. Data augmentation paradigm has been
well addressed in computer vision research, but receives less attention in NLP.
Shi et al. [23] propose a probabilistic Co-Bootstrapping method to better define
the expansion boundary for the web-based entity set expansion. Our approach
is designed to enhance the entity-context diversity of the training data with-
out changing the entity boundary, which naturally reduces the impact of noisy
instances.

The proposed framework is flexible and easy to expand. We can further con-
sider the structural information [7] and build the model in a paradigm of con-
tinual learning [8].

3 Methods

3.1 Model Overview

An NER pipeline usually contains two stages, predicting label sequence and
extracting entities. Firstly, this model converts the textual input into the most
likely label sequence y∗ = arg max

y∈Y (z)
p(y|z), where z and Y (z) denote the textual

sequence and all possible label sequences. Secondly, the post-processing module
converts the label sequence into human-readable entities. The sequence label-
ing neural network usually contains three components for word representations,
contextual representations and sequence labeling respectively.

Word Representations. This component projects each token to a
d-dimensional vector which is composed of the word embedding and charac-
ter level representation. The word embedding can be a pre-trained [9] or ran-
domly initialized fixed-length vector. The character level representation can be
calculated by a CNN or RNN [26], and the character embeddings are randomly
initialized and jointly trained.

Contextual Representations. This component can generate contextual rep-
resentations using CNN or RNN. Besides, our model can use different stack
components to extract features, as shown in the left part of Fig. 2. The major
difference between these stack components is the way they extract local features.
In the LSTM-CNN stack, the CNN extracts the local contextual features from
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the hidden state of Bi-LSTM, while in the CNN-LSTM stack the CNN extracts
the local features from the word vectors and the Bi-LSTM uses the context of
local features.

Sequence Labeling. This component outputs the probability of each token
and selects the most likely label sequence as the final result. This paper adopts
the conditional random field (CRF) [13] to consider the transition probability
between labels.

p(y|z;W, b) =

n∏

i=1

exp(WT
yi−1yi

zi + byi−1yi
)

∑

y′∈Y (z)

n∏

i=1

exp(WT
y′
i−1y

′
i
zi + by′

i−1y
′
i
)

(1)

where {[zi, yi]}, i = 1, 2...n represents the i-th word zi and the i-th label yi in the
input sequence respectively. Y (z) denotes all the possible label sequences for the
input sequence z. W and b are weight matrix and bias vector, in which Wyi−1,yi

and byi−1,yi
are the weight vector and bias corresponding to the successive labels

(yi−1, yi). p(y|z;W, b) is the probability of generating this tag sequence over all
possible tag sequences.

During the training process, the model parameters are updated to maxi-
mize the log-likelihood L(W, b). For prediction, the decoder will find the optimal
label sequence that can maximize the log-likelihood L(W, b) through the Viterbi
algorithm.

L(W, b) =
∑

j

log p(yj |zj ;W, b) (2)

y∗ = arg max
y∈Y (z)

p(y|z;W, b) (3)

3.2 Data Augmentation

Sentence-Centric Augmentation (SCA). As shown in Fig. 1(a), this method
enhances the context representation by increasing entity diversity. This opera-
tion augments the entity distribution of any sample. We generate augmented
sentences as follows:

1. Extract the categorical entity glossary E = {E1, E2, ..., Ec} based on the
original corpus S, where c is class number. An entity may be composed of
multiple words, so we needs to convert label sequence into complete entities.

2. Resample the sentence si ∼ Uniform(S) and light up each entity slot a(i,j) ∼
Bernoulli(p). p (0.5 to 0.9) is chosen according to different datasets.

3. Replace the lighted entities a(i,k) ∈ Ej with â(i,k) ∼ Binomial(Ej\{a(i,k)}).
This is a crossover operation.

Entity-Centric Augmentation (ECA). In SCA, we can control the augmen-
tation for context, but the entity control is not easy. As shown in Fig. 1(b), ECA
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(a) Sentence-centric augmentation (b) Entity-centric augmentation

Fig. 1. The schematic diagram of data augmentation operations where the black arrows
represent the random selectors

Fig. 2. An overview of bilateral architecture

enhances the entity representation by increasing context diversity. This opera-
tion augments the sentence distribution of an entity. We can better control the
augmentation for entities.

1. Extract the categorical entity glossary E = {E1, E2, ..., Ec} from the training
data.

2. Build the categorical sentence set S = {S1, S2, ..., Sc}. The main idea is to
classify the training samples according to the type mention of entities. Let
e(i,1) ∈ Ei and ei,1 ∈ sj , then sj ∈ Si. In Fig. 1(b), the S-li denotes the i-th
sentence containing at least one l (LOC) entity.

3. Sample an entity e(i,1) with a probability of p = F (e(i,1))/F (Ei) where F (·)
is the frequency. Sample a sentence si ∼ Uniform(Si), and then perform the
crossover operation.
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If we iteratively substitute entities once a time in SCA, it behaves like ECA
to some extent, but the distribution of entity and context is different. The basis
of the two augmentation methods is different, because ECA can be extended to
augment the vertex representation of a knowledge graph, while SCA focuses on
text-level expansion. Here we use a random selector to simplify the augmentation
process and make this work widely available. But this may lead to some noisy
samples, e.g., “Germany imported 47600 sheep from national tennis centre”.
Quality control is critical when faced with data in a specific domain and is
reserved for future work. Our approach actively extracts entities from within
the dataset, thus not relying on the external resources. Our approach can be
generally applied to augment the entity-context diversity for any datasets.

3.3 Bilateral Architecture

As shown in Fig. 2, the bilateral architecture is composed of a baseline network
on the left side and an augmented network on the right side. In the word and
contextual representation layers, each sub-network can optionally use the Bi-
LSTM, CNN and mixed stack layers to form flexible network combinations. This
strategy can generate at least 64 ((2 × 4)n, n ≥ 2, where n is the number of sub-
networks) types of bilateral networks. We compare different layer stack networks
and their combinations in experiments. The data augmentation operations are
only activated during the model training.

The inputs to the left and right sub-networks are different, so they form the
function that adapts to different patterns. The right sub-network is more gen-
eralized, but the weakness is that it may generate noisy samples. This bilateral
network also supports the joint training, but the inputs to both sides are the
same. The bilateral network is a case of the multi-lateral network which also can
be easily extended by adding more sub-networks. This paper adopts the IOBES
scheme [19]. The outputs of bilateral sub-networks are concatenated as the input
to the final CRF layer.

3.4 Training Procedure

We introduce two training methods, the separate training and the joint training.
The separate training contains three steps.

(1) We train the left sub-network of Fig. 2 (freezing the right sub-network)
using the human-annotated data. The left and the right sides represent
the baseline and augmented models respectively. The outputs of the two
sub-networks share the same CRF layer. In this step, the CRF layer only
accepts the output of the baseline network. The output and the gradient
of the augmented network are masked so the parameters of the augmented
network are not updated. The baseline network learns the original features
of the training data.

(2) Then, we train the right sub-network (freezing the left sub-network) with the
human-annotated and the augmented data. The augmented data is gener-
ated dynamically based on the algorithm in subsection Data Augmentation.
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Contrary to step (1), the CRF layer only accepts the output of the aug-
mented network. This step also updates the weights of the full connection
layer before the CRF layer. The augmented network enhances representa-
tions by increasing entity-context diversity.

(3) We retrain the last CRF layer (freezing all the components before the CRF
layer) with the human-annotated data to fuse the representation. In this
step, the functions of two sub-networks are kept, so the outputs of them are
concatenated to form the rich representation from different perspectives.

We refer to the step (1) and (2) as the pre-training and step (3) as the fine-
tuning. The separate training method can form two functional sub-networks,
each of which retains its own characteristics.

For the joint training, we input the same sample into two sub-networks.
Although the joint training can update the parameters simultaneously, the sepa-
rate training achieved better results. This is because the separate training accepts
different sentences in different sub-networks. The separate training retains the
functionality of each sub-network, and features can be extracted independently
from different perspectives, while the joint training processes the same task and
focuses on extending layer width, so it did not fully extract diverse features.

4 Experiments

4.1 Dataset and Evaluation

Different Languages. For different languages, we adopt the CoNLL-2002 [22]
and CoNLL-2003 [24] datasets which are annotated with four types of entity,
location (LOC), organization (ORG), person (PER), miscellaneous (MISC) in
English, German, Dutch, Spanish. The Chinese dataset [25] is a discourse-level
dataset from hundreds of Chinese literature articles where seven types of entities
(Thing, Person, Location, Time, Metric, Organization, Abstract) are annotated.

Biomedical Field. For the biomedical NER, we use the SCAI corpus which is
provided by the Fraunhofer Institute for Algorithms and Scientific Computing.
We focused on the International Union of Pure and Applied Chemistry (IUPAC)
names (e.g., adenosine 3’, 5’-(hydrogen phosphate)) like the ChemSpot [20]. The
second dataset is the GELLUS corpus [12] which annotates cell line names in
1,212 documents drawn from the biomedical literature in the PubMed and PMC
archives.

4.2 Results on NER for Different Languages

We use (C) and (W) to represent the character level input and word level input
respectively, i.e., the (C)CNN and (W)LSTM denote this model use the CNN to
accept the input of character embeddings and the Bi-LSTM to accept the input
of word embeddings respectively.
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Table 1. Results of different network combinations on the CoNLL-2003 English dataset

Layers Models

Character

input

LSTM CNN

Word input LSTM CNN Stack (a) LSTM CNN Stack (b)

Baseline 91.00 ± 0.04a 89.89 ± 0.06 90.99 ± 0.06 90.95 ± 0.06b 90.13 ± 0.04 90.15 ± 0.04

Augment 90.87 ± 0.11 90.01 ± 0.08 91.10 ± 0.05 91.06 ± 0.06 90.32 ± 0.06 89.67 ± 0.07

Baseline+

Baseline

91.02 ± 0.05 89.85 ± 0.03 90.99 ± 0.05 90.98 ± 0.04 90.09 ± 0.03 90.19 ± 0.04

Baseline+

Augment

91.36 ± 0.08 90.24 ± 0.09 91.47 ± 0.06 91.14 ± 0.07 90.52 ± 0.06 90.54 ± 0.05

English. Table 1 shows the results of 24 models on the English NER. This
paper reproduces the baseline models and tests the stack models. To eliminate
the influence of random factors we ran the experiments three times. a and b

denote the models of (C)LSTM-(W)LSTM-CRF [14] and (C)CNN-(W)LSTM-
CRF [15] models respectively. In some cases, our baseline models slightly under-
perform (0.1–0.2% F1) than the corresponding prototypes, but the bilateral
models (Baseline+Augment) achieve better performances than the prototypes
of [1,3,14]. Concatenating two separate baseline models (Baseline+Baseline)
almost did not change results, while the Baseline+Augment model produces
better results. This demonstrates data augmentation is helpful to enhance the
representations to generate better results. The entity-based data transformation
paradigm has great potential to improve the performance of other tasks. More
details could be found in the supplementary material2.

4.3 Results on Biomedical NER

In biomedical domain, one of the challenges is the limited size of training data.
However, expanding biomedical datasets is more challenging because annotators
need to design and understand domain-specific criteria, which complicates the
process. There are many feature-based systems, but they cannot be used in
different areas. Automatically expanding datasets is a promising way to enhance
the use of deep learning models. Our method achieves good performance in the
following two corpora. In the GELLUS corpus, the augmented and the bilateral
models improve 5.11% and 6.08% F1 sore than our baseline model. This means
that our approach will be a good choice in the biomedical field (Table 2).

Due to space constraints, extensive discussions and case studies will be intro-
duced in the supplementary material (see Footnote 2).

2 https://github.com/bke-casia/FLEXNER/blob/master/pic/appendix.pdf.

https://github.com/bke-casia/FLEXNER/blob/master/pic/appendix.pdf
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Table 2. Results of IUPAC Chemical terms and Cell lines on the SCAI chemicals
corpus and the GELLUS corpus respectively

Algorithm SCAI GELLUS

OSCAR4 [10] 57.3 –

ChemSpot [20] 68.1 –

CRF [6] – 72.14

LSTM-CRF [6] – 73.51

This work (Baseline) 69.08 78.78

This work (Baseline × 2) 69.06 78.80

This work (Augment) 69.98 83.89

This work (Bilateral) 69.79 84.86

5 Conclusion

This paper introduces a portable NER framework FlexNER which can recognize
entities from textual input. We propose a data augmentation paradigm which
does not need external data and is straightforward. We augment the learning
representation by enhancing entity-context diversity. The layer stacks and sub-
network combinations can be commonly used in different datasets to provide
better representations from different perspectives.

It seems effortless to extend this framework to the multilingual NER research
since we can use different sub-networks to learn different languages and then
explore the interaction among them. Data quality control is an important task
that seems to improve the learning process. Besides, this method is potential
to be used in low-resource languages and may benefit in other entity related
tasks. In the future, we also plan to apply this system to biomedical research,
i.e., extracting the functional brain connectome [29] or exploring the relations
between drugs and diseases.

Acknowledgement. This study is supported by the Strategic Priority Research Pro-
gram of Chinese Academy of Sciences (Grant No. XDB32070100).
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