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Abstract—Recently, kernelized correlation filter (KCF) has
been a popular tracker for high accuracy and robustness with
high speed. However, KCF tracks objects with a fixed size
template without scale estimation, causing tracking failure during
target scale changes because of learning background or local
appearance of the target. In this paper, we incorporate a
separate scale filter into KCF tracker with feature integration.
Experiments have shown that our tracker outperforms KCF and
other scale adaptive trackers on distance and overlap precision
while attaining relatively high speed.

Index Terms—computer vision, visual tracking, correaltion
filter, scale, feature

I. INTRODUCTION

Visual tracking is one of the most important problems in
computer vision, for its extensive applications ranging from
video surveillance, human-computer interaction and medical
imaging. The problem is to estimate the state(e.g., position
and scale) of the target object given the initial state in the
first frame. It is a model-free problem for the tracking is
performed without using any explicit appearance or shape
model. Therefore, the problem is challenging due to motion
blur, occlusion, deformation and scale change in the video.

Recently, correlation filter based trackers have achieved
excellent performance, showing accurate tracking with real-
time speed. In 2010, Bolme et al. [1] first introduce correlation
filter into visual tracking, setting up a discriminative model
with Minimum Output Sum of Squared Error (MOSSE) filter.
In 2012, Henriques et al. [2] exploit the circulant property
of sample data matrix, proposing CSK based on MOSSE.
In 2015, Henriques et al. proposed KCF [3], incorporating
HoG feature and kernelized multi-channel correlation into the
tracker, greatly improving the tracker performance.

Despite high speed and robustness of KCF, it fails to
estimate the scale variation of the target with a fixed scale
template, resulting in tracking failure when the target scale
changes because of the target appearance change in the sample
window. To tackle this problem, Li et al. [4] proposed SAMF,
performing KCF tracker on multiple scales with multiple
features integrated, showing high accuracy but low tracking
speed. Danelljan et al. [5] use a separate scale filter to estimate
scale variation based on MOSSE, namely DSST, achieving
high accuracy and efficiency simultaneously. Huang et al. [6]

incorporate detection proposal search into tracking framework
based on KCF, enabling the tracker scale and aspect ratio
adaptability. In 2017, Danelljan et al. [7] incorporate PCA di-
mensionality reduction into feature extraction step, expanding
tracking speed and accuracy.

In this paper, we propose a robust scale adaptive tracking
algorithm based on KCF. The main contributions include:

(1)we use a separate correlation filter to estimate scale
change, which has high accuracy and efficiency than that of
SAMF.

(2)we integrate HoG feature of 4×4 cell size, raw grayscale
and color naming features, and employ interpolation to im-
prove the tracking accuracy, resulting in both higher accuracy
and efficiency than DSST(with HoG feature of 1× 1 cell size
+ raw grayscale.

(3)Experimental results on OTB-100 have shown that the
proposed method achieves better robustness and is about or
more than 2X faster than SAMF and DSST.

II. METHOD

In this section, we first review the kernelized correlation
filter tracker, then introduce improvement we make in our
approach, including scale adaptive filter and feature selection.

A. KCF tracker

The KCF tracker uses ridge regression as its discriminate
model, then exploits the property of the circulant matrix to
augment negative samples and reduce computation, achieving
high performance and high efficiency. [3] uses the circulant
shift of the base sample to augment the data samples around
the base sample. Suppose the base sample is one-dimensional
data x = [x1, x2, ..., xn−1, xn], then a cyclic shift of x is
Px = [xn, x1, x2, ..., xn−1]. Concatenating all cyclic shifts
{Pux|u = 1, ..., n − 1} with x by rows, we get the data
matrix as below:

X = C(x) =


x1 x2 x3 · · · xn
xn x1 x2 · · · xn−1

xn−1 xn x1 · · · xn−2

...
...

...
. . .

...
x2 x3 x4 · · · x1

 (1)



Fig. 1. Flow chart of the tracking process. The peak of response map is shifted to the center for better visualizaion.

All circulant matrices can be diagonalized by discrete
Fourier transform(DFT) as following. [8]

X = FHdiag(x̂)F (2)

where F is the DFT matrix, and FH is the Hermitian transpose
of F . x̂ = Fx is the Fourier domain representation of x.

The goal of ridge regression is finding a function f(z) =
wTz that minimize the following objective function.

min
w

∑
i

(f(xi)− yi)2 + λ||w||2 (3)

This regression has the closed-form solution [9]

w = (XTX + λI)−1XTy (4)

Substituted by (2), the Fourier transform of w can be solved
as [2]

ŵ∗ =
x̂∗ � ŷ

x̂∗ � x̂ + λ
(5)

where x̂∗ denotes the complex-conjugate of x̂, and multipli-
cation and division are all element-wise.

Then Henriques et al. [3] introduces kernel trick, which
maps the sample x to non-linear feature space φ(x) , de-
composing solution w as the weighted sum of samples
w =

∑
i αiφ(xi). The dot-products are turned into kernelized

dot-product k(x,x
′
) = φT (x)φ(x

′
). Thus the optimization

variable turns into the coefficients α.
As proved in [3], circulant trick can also be used in the

cases of most commonly used kernels, such as Gaussian
kernel, polynomial kernel and linear kernel. With the kernel
correlation kxx of base sample x, the solution α can be
obtained as

α̂ =
ŷ

k̂xx + λ
(6)

where kernel correlation kxx
′

is the vector with elements
kxx

′

i = k(x
′
, P i−1x) = φT (x

′
)φ(P i−1x).

In detection process, the circulant matrix property is also
substituted to simplify the computation. The patch z is collect-
ed at the current position as the base sample, then regression
function f(z) can be simply computed in Fourier domain by

f̂(z) = k̂xz � α̂ (7)

Then f̂(z) is transformed back into spatial space, the move-
ment of the maximum response is considered as the translation
of the target respect to the previous frame. Then the position
is updated. At the new position, we collect new patch x

′
and

learn the new coefficients α
′

by (6), then perform the following
model update scheme.

α̂new = (1− η)α̂pre + ηα
′

(8)

xnew = (1− η)xpre + ηx
′

(9)

where η denotes interpolation factor, or learning rate.
For most kernels, the computation of kernelized correlation

is based on the dot-products of samples. Computing a multi-
channel dot-product can be simply performed by summing the
individual dot-products of each channel. Due to linearity of
DFT, the computation of kernelized correlation can be easily
expanded to multi-channel case. In this paper, we use multi-
channel Gaussian correlation, computed as below,

kxx
′

= exp(− 1

σ2
(||x||2+||x

′
||2−2F−1(

∑
c

x̂∗
c�x̂

′

c))) (10)

B. Feature selection

One of the advantages that KCF have over CSK [2] is
the employment of Histogram of Gradient(HoG) features
[10]. HoG decriptor describes the gradient feature in a cell,
extracting global shape and local texture information from the
image. This feature is very effective in application and is one
of the most popular features in computer vision. In our method,
we use the HoG feature of 31 gradient orientation bins.

However, KCF tracker fails to take advantage of color
information of the target. To incorporate color information into
the tracker feature, we append color-naming and grayscale
pixel feature to the feature channels, as presented in [4].
Color-nameing, or color attributes, is linguistic color labels
assigned by human to describe the color. This is a color space
which is more similar to human visual sense than RGB space,
which has obtained fantastic results in object detection, object
recognition and action recognition. According to [11], we map
RGB color to a 10 dimensional feature vector, with each value
representing the probability of the color to be assigned to
the corresponding label, providing visual perception of the



target color. Raw grayscale pixels are normalized to [0, 1]
and minus 0.5. HoG, color-naming and grayscale features are
concatenated to be complementary with each other. Note that
the HoG feature size does not consist with color-naming and
grayscale features, the image patch needs to be resized to
be aligned with HoG feature before the extraction of color-
naming and grayscale features.

C. Scale Filter

Inspired by [5], we use a separate one-dimensional scale
filter to incorporate scale estimation to the tracker, reducing
the scale search space. In visual tracking, the scale variation
is much less frequent than translation. Therefore, the KCF
tracker is first applied to detect translation, then the scale filter
is applied at the new target location.

The filter learnt by extracting samples of different scales on
the center of the target. Let M × N denote the target size
in the current frame and S be the size of the scale filter.
For each n ∈ {b−S−1

2 c, ...b
S−1
2 c}, the scale samples are

obtained by extracting an image patch In of anM × anN
centered around the target. Then the patches are resized to the
same base sample size and extracted a d-dimensional column
feature descriptor. In our algorithm, the feature descriptor of
scale samples is HoG descriptor, which is resized to one-
dimensional vector. S feature descriptors concatenated by
columns forms the d−channel scale filter training sample
xs ∈ d× S.

With feature extracted, a one-dimensional MOSSE-like filter
is trained to estimate scale variation. The training process is
to minimize the following cost function

h = argmin
h
||

d∑
l=1

hl ? xls − y||2 + λ

d∑
l=1

||hl||2 (11)

In equation (11), hl is the l−th channel of the d-channel
filter to be trained, xls is the l−th channel of the extracted
training sample, y is the desired output . The parameter λ is
the regularization coefficient. Eq (11) has a solution in Fourier
domain as

H l =
Ȳ F l∑d

k=1 F̄
kF k + λ

(12)

where H l is the l−th channel of the Fourier transform of the
filter h, F l is the l−th channel of the training sample xs, and
Y is the Fourier transform of the desired output y. X̄ denotes
the complex-conjugate of X . Here, we denote the numerator
and denominator by A and B.

A = Ȳ F l

B =

d∑
k=1

F̄ kF k
(13)

In the tracking process, the numerator and denominator of
the filter H are updated separately.

Anew = (1− η)Apre + ηA (14)

Bnew = (1− η)Bpre + ηB (15)

Sequence Frames Challenges
Basketball 725 IV, OCC, DEF, OPR, BC
Biker 142 SV, OCC, MB, FM, OPR, OV, LR
Bird1 408 DEF, FM, OV
Bird2 99 OCC, DEF, FM, IPR, OPR
BlurBody 334 SV, DEF, MB, FM, IPR
BlurCar1 742 MB, FM
BlurCar2 585 SV, MB, FM
BlurCar3 359 MB, FM
...

TABLE I
TEST SEQUENCES IN OUR EXPERIMENT

The scale estimation is performed by maximizing the output
score y with the scale sample zs extracted at the new location.

y = F−1{
∑d

l=1 Ā
lZl

B + λ
} (16)

where Zl is the l−th channel of the Fourier transform of zs,
and F−1 denotes inverse Fourier transform.

By finding the maximum of y, we obtain the scale difference
with the previous frame as ar, where r is the index of the
maximum.

D. Details

As stated in [3], the input patches are multiplied by a cosine
window, in order to remove discontinuity on image boundaries
caused by the cyclic assumption. The desired output label y
is a Gaussian function with the peak at the top-left corner.

For the cell size of HoG descriptor and scale variation
of the target, the translation estimated from the response
should be multiplied with the HoG cell size and scale factor
to obtain the target translation. To estimate the translation
more precisely, we interpolate the response to the real sample
patch size. The interpolated response ŷ is obtained by zero-
padding the high frequencies to make its size identical to the
feature interpolation grid. This technique is called sub-grid
interpolation in [7]. The translation is estimated directly from
the inverse DFT of interpolated response. Figure 1 summarizes
the tracking process.

III. EVALUATION

To comprehensively evaluate the efficacy of proposed track-
er, we conduct experiments on the visual tracking benchmark
[12], namely OTB-100, which includes 100 video sequences
with various challenges. These challenges include illumination
variation(IV), scale variation(SV), occlusion(OCC), deforma-
tion(DEF), motion blur(MB), fast motion(FM), in-plane rota-
tion(IPR), out-of-plane rotation(OPR), out-of-view(OV), back-
ground clutters(BC), low-resolution(LR). Table I lists some of
test sequences in our experiment with challenging attributes
in visual tracking. We first compare feature integrated and
sub-gird interpolated KCF tracker with the original KCF
tracker to validate the effect of feature integration and sub-grid
interpolation. Then we compare our tracker with KCF, SAMF,
DSST tracker, which have shown excellent performance in
literature.



Fig. 2. In sequence Tiger2(left), Panda(middle) and Girl(right), standard KCF fails to track the object because of temporary occlusion and deformation while
KCF with CN and grayscale feature integrated can handle these occasions and successfully track the target.

A. Experiment Setup

We implement the proposed tracker with Matlab and C++
mex. C++ in only employed to resize image samples with
OpenCV library. All experiments are conducted on an Intel
i7-7200U CPU(2.50 GHz) computer with 8 GB memory. The
σ in translation y label is

√
mn/10, where m and n are height

and width of the target. The σ used in scale filter is 0.25. The
sample of translation filter is 2.5 times the size of target size,
with a padding of 1.5. The cell of HoG feature is 4× 4. The
learning rate η for translation filter is set to 0.01, and 0.025
for scale filter. The regularization factor λ is 10−4. The scale
filter has S = 33 scale size with scale factor of a = 1.02.

B. Experiment criteria

In the experiment, two criteria are employed, one is center
distance precision(DP) and the other is overlap precision(OP).
These precisions are popular performance measures in tracker
evaluation. We can consider a frame to be successfully tracked
if the predicted target location error with the ground truth
is within a specified threshold. Precision curves are plotted
showing the proportion of successfully tracked frames with
a range of different thresholds. Distance precision is the
proportion of the frames with the distance between predicted
target and ground truth under the specified threshold, which
is usually 20 pixels. Overlap precision is the proportion of the
frames with the overlap between the target over the specified
threshold, which is usually 0.5. Overlap between the predicted
target and ground truth is defined as following.

Overlap =
|BT

⋂
BG|

|BT

⋃
BG|

(17)

where BT and BG are respectively the tracking bounding box
and ground truth.

C. Experiment 1: Comparison between KCF and our im-
proved KCF

To evaluate the performance gain of color feature integration
and response map interpolation, we test the standard and
our improved KCF on OTB-100 dataset. Learning rate of

improved KCF is set to 0.15 for more descriptive feature of
the target. We plot mean distance precision over the 100 video
sequences on Figure 3, which shows that our improved KCF
tracker tracks object more robustly and more accurately than
standard KCF tracker, for the utilization of color feature and
more precise estimation of the target movement. As is shown
in Figure 2, the improved tracker performs more robustly
compared with standard KCF tracker.

Fig. 3. Distance precision plot of KCF and improved KCF

D. Experiment 2: Comparison with other trackers

We test proposed tracker on OTB-100 to compare with
KCF, SAMF, DSST. Table II summarizes the key properties
of the trackers for comparison. As is shown in Table III,
our tracker has the superior distance and overlap precision in
the trackers for comparison while attaining an FPS of 91.67,
which is faster than scale-adaptive filters for comparison. This
shows our tracker can perform with high accuracy while
attaining relatively high speed. Our tracker runs faster than
DSST because our tracker uses a HoG feature of 4 × 4 cell



Fig. 4. In sequence CarScale, our tracker and DSST correctly estimate the scale variation of the target while SAMF underestimate the car scale variation

Fig. 5. In sequence Dragonbaby, DSST fails to track the target while SAMF and our tracker successfully tracks the target because of the integration of
color-naming feature

Tracker Feature Scale Adaptive
Proposed HoG+Grayscale+CN Yes
KCF HoG No
SAMF HoG+Grayscale+CN Yes
DSST HoG+Grayscale Yes

TABLE II
TRACKERS FOR COMPARISON

Tracker DP, 20px OP, 0.5 Mean FPS
Proposed 0.7610 0.5782 91.6774
KCF 0.6960 0.4544 354.1412
SAMF 0.7394 0.5807 21.5490
DSST 0.6887 0.5368 46.3543

TABLE III
MEAN DISTANCE AND OVERLAP PRECISION ON OTB-100

size for translation filter while DSST uses a HoG feature of
1 × 1 cell size. For SAMF, which performs KCF tracker on
multiple scales, a separate scale filter has a faster performance
because of less computation. We plot mean distance and
overlap precision over 100 video sequences on Figure 6 and
7, showing that our tracker has a better performance over
DSST and SAMF. As is shown in Figure 4, a separate one-
dimensional scale filter can better handle scale variation than
performing detection on multiple scales as SAMF. On the other
hand, we can see from Figure 5 that trackers can perform more
robustly with color feature integrated for taking advantage of
color information.

IV. CONCLUSION

This paper presents a scale adaptive tracker based on
KCF with color-naming and grayscale feature integration.

Fig. 6. Distance precision plot of trackers for comparison on OTB-100

The experiments on visual tracking benchmark have shown
that our tracker outperforms KCF and other scale adaptive
trackers both on distance and overlap accuracy, while attain-
ing relatively high speed despite additional computation on
scale search. However, all of these trackers fails in cases
of occlusion(e.g. Box, Girl2), deformation(e.g. Diving, Bolt2)
and out-of-view(e.g. Bird2, Biker), and the value of learning
rate largely influences the performance of the tracker, which
indicates that the tracker model updating scheme should be
investigated in future work.



Fig. 7. Overlap precision plot of trackers for comparison on OTB-100
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