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ABSTRACT

Scene text recognition has attracted rapidly increasing at-
tention from the research community. Recent dominant ap-
proaches typically follow an attention-based encoder-decoder
framework that uses a unidirectional decoder to perform
decoding in a left-to-right manner, but ignoring equally im-
portant right-to-left grammar information. In this paper, we
propose a novel Gate-based Bidirectional Interactive Decod-
ing Network (GBIDN) for scene text recognition. Firstly, the
backward decoder performs decoding from right to left and
generates the reverse language context. After that, the for-
ward decoder simultaneously utilizes the visual context from
image encoder and the reverse language context from back-
ward decoder through two attention modules. In this way,
the bidirectional decoders perform effective interaction to
fully fuse the bidirectional grammar information and further
improve the decoding quality. Besides, in order to relieve the
adverse effect of noises, we devise a gated context mechanism
to adaptively make use of the visual context and reverse lan-
guage context. Extensive experiments on various challenging
benchmarks demonstrate the effectiveness of our method.
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Figure 1: Recognition examples of attention-based
encoder-decoder models with different decoding di-
rections. Blue and red characters are correctly and
mistakenly recognized characters, respectively.
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1 INTRODUCTION

Scene text recognition has been an active research topic
in computer vision due to the practical value in real-world
applications. With the advent of deep neural networks, there
has been substantial progress on this topic within the last few
years. Current approaches [1, 2, 6, 9, 10] typically follow an
attention-based encoder-decoder framework, which consists
of a Convolutional Neural Network (CNN)/Long-Short Term
Memory (LSTM) based image encoder and an attentional
Recurrent Neural Network (RNN) based word decoder.

In general, most approaches [1, 2, 6, 9] adopt a unidi-
rectional decoder that generates the word sequence in the
left-to-right direction. At each step, the decoder predicts the
next character based on the previously generated characters.
Although RNN has the ability to capture the language context
during decoding, the reverse language context still cannot be
exploited. Besides, once errors occur in previous predictions,
the quality of subsequent predictions would be undermined
due to the negative impact of the noises. Intuitively, the
reverse language context could provide complementary infor-
mation, which is crucial for word predictions. As observed in
Fig. 1, some characters are recognized incorrectly, but can
be accurately predicted by another decoder in the opposite
direction. Consequently, it is important to investigate how
to effectively incorporate reverse language context into the
decoder to improve recognition performance.
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Figure 2: Overview of our Gate-based Bidirectional Interactive Decoding Network. “sow” and “eow” represent
the “start-of-word” and “end-of-word” tokens, respectively.

In this paper, we propose a novel Gate-based Bidirection-
al Interactive Decoding Network for scene text recognition.
Specifically, the forward decoder can make full use of the
reverse language context through an effective interaction with
the backward decoder. First, the backward decoder performs
decoding as the standard decoder but in the right-to-left
manner, where the generated hidden states contain the re-
verse language context. Then, the forward decoder produces
the character sequence in the left-to-right direction, where
two attention modules are simultaneously utilized to capture
the visual context and reverse language context, respectively.
In this way, the forward decoder is able to fully exploit the
complementary backward grammar information. Thus, the
rich bidirectional language contexts work together for more
accurate predictions. Besides, in order to avoid the effect
of noises, we design a flexible gated context mechanism to
decide how much information the forward decoder gets from
the visual context and the reverse language context.

The main contributions are summarized as follows:
(1) We propose a novel Gate-based Bidirectional Interac-

tive Decoding Network, which fully leverages the bidirectional
language contexts through the interaction between decoders
with opposite directions.

(2) We design a gated context mechanism to adaptive-
ly exploit the visual context and reverse language context,
relieving the negative impact of noises.

(3) Extensive experiments on challenging datasets demon-
strate the superiority of our approach over existing methods.

2 METHODS

The overview of our Gate-based Bidirectional Interactive
Decoding Network is shown in Fig. 2. First, we combine
CNN and BLSTM to encode the input image into a sequence
of feature vectors, denoted as ℎ = (ℎ1, ℎ2, . . . , ℎ𝑚). Then
the backward decoder performs decoding in the right-to-left
direction. Based on the visual features and backward hidden
states, the forward decoder generates the character sequence
through two attention modules and gated context mechanism.

2.1 Bidirectional Interactive Decoder

Given the sequential features generated by image encoder, the
backward decoder first performs decoding with an attention
module in a right-to-left manner. Specifically, at step t, the
decoder dynamically weights the image features as follows:

𝑒𝑏𝑖𝑡,𝑗 = 𝑤T
𝑏𝑖𝑡𝑎𝑛ℎ(𝑊𝑏𝑖𝑠

𝑏
𝑡+1 + 𝑈𝑏𝑖ℎ𝑗 + 𝑏𝑏𝑖) (1)

𝛼𝑏𝑖
𝑡,𝑗 =

exp(𝑒𝑏𝑖𝑡,𝑗)∑︀|ℎ|
𝑗=1 exp(𝑒

𝑏𝑖
𝑡,𝑗)

(2)

𝑐𝑏𝑖𝑡 =

|ℎ|∑︁
𝑗=1

𝛼𝑏𝑖
𝑡,𝑗ℎ𝑗 (3)

where 𝑐𝑏𝑖𝑡 is the weighted visual context vector, 𝑠𝑏𝑡+1 is the
previous hidden state of the backward decoder, 𝑊𝑏𝑖, 𝑈𝑏𝑖, 𝑤𝑏𝑖

and 𝑏𝑏𝑖 are the learnable parameters. Then RNN updates the
hidden state as follows:

𝑠𝑏𝑡 = 𝑅𝑁𝑁(←−𝑦 𝑡+1, 𝑠
𝑏
𝑡+1, 𝑐

𝑏𝑖
𝑡 ) (4)

where ←−𝑦 𝑡+1 is the previous predicted character. After that,
we can obtain the probability distribution over label space and
the conditional probability of the reverse decoding sequence:

𝑝(←−𝑦 𝑡|ℎ,←−𝑦 𝑡+1) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉 T
𝑏 𝑠𝑏𝑡) (5)

𝑝(←−𝑦 |ℎ) =
𝑇∑︁

𝑡=1

log 𝑝(←−𝑦 𝑡|ℎ,←−𝑦 𝑡+1) (6)

The hidden state sequence produced by the backward de-
coder serves as the input of the subsequent forward decoder,
which contains the reverse language context. There are two
reasons why we choose the hidden state sequence instead of
the character sequence. The first is that sampling character
is not differentiable, and the second is that hidden states con-
tain more information and are able to alleviate the negative
impacts of prediction errors.

Then the forward decoder conducts decoding under the
guidance of the visual context and reverse language context.
Specifically, the visual context is captured through weighting
the image features with attention mechanism. At t′-th step,

𝑒𝑓𝑖𝑡′,𝑗 = 𝑤T
𝑓𝑖𝑡𝑎𝑛ℎ(𝑊𝑓𝑖𝑠

𝑓
𝑡′−1 + 𝑈𝑓𝑖ℎ𝑗 + 𝑏𝑓𝑖) (7)
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Table 1: Ablation studies by changing the structure of decoder and the hyper-parameter of objective function.

Model Configuration
𝜆 SVT IIIT5k IC03 IC13 IC15 SVTPBackward

Decoder
Interactive

Gated

Context

85.5 89.7 92.1 88.7 69.4 71.7√
0.5 85.8 91.1 92.6 90.1 70.1 73.4√ √
0.5 86.6 91.5 93.4 90.1 72.4 74.6√ √ √
0.5 87.0 92.1 94.0 92.0 73.6 76.1√ √ √
0.9 84.7 89.9 93.0 89.0 70.4 72.0√ √ √
0.7 87.2 91.6 93.5 91.4 72.3 75.0√ √ √
0.3 87.6 92.6 93.7 90.8 74.2 77.2√ √ √
0.1 87.5 92.7 93.1 91.4 73.0 75.1

𝛼𝑓𝑖
𝑡′,𝑗 =

exp(𝑒𝑓𝑖𝑡′,𝑗)∑︀|ℎ|
𝑗=1 exp(𝑒

𝑓𝑖
𝑡′,𝑗)

(8)

𝑐𝑓𝑖𝑡′ =

|ℎ|∑︁
𝑗=1

𝛼𝑓𝑖
𝑡′,𝑗ℎ𝑗 (9)

where 𝑐𝑓𝑖𝑡′ , 𝑠
𝑓
𝑡′−1 are the visual context vector and the previous

hidden state of the forward decoder separately, 𝑊𝑓𝑖, 𝑈𝑓𝑖, 𝑤𝑓𝑖

and 𝑏𝑓𝑖 are the learnable parameters. Likewise, the reverse
language context is utilized by another attention module:

𝑒𝑓𝑏𝑡′,𝑗 = 𝑤T
𝑓𝑏𝑡𝑎𝑛ℎ(𝑊𝑓𝑏𝑠

𝑓
𝑡′−1 + 𝑈𝑓𝑏𝑠

𝑏
𝑗 + 𝑏𝑓𝑏) (10)

𝛼𝑓𝑏
𝑡′,𝑗 =

exp(𝑒𝑓𝑏𝑡′,𝑗)∑︀|𝑠𝑏|
𝑗=1 exp(𝑒

𝑓𝑏
𝑡′,𝑗)

(11)

𝑐𝑓𝑏𝑡′ =

|𝑠𝑏|∑︁
𝑗=1

𝛼𝑓𝑏
𝑡′,𝑗𝑠

𝑏
𝑗 (12)

in which 𝑐𝑓𝑏𝑡′ is the reverse language context vector for forward
decoder, 𝑊𝑓𝑏, 𝑈𝑓𝑏, 𝑤𝑓𝑏 and 𝑏𝑓𝑏 are the learnable parameters.

Then the hidden state of the forward decoder is updated:

𝑠𝑓𝑡′ = 𝑅𝑁𝑁(𝑦𝑡′−1, 𝑠
𝑓
𝑡′−1, 𝑐

𝑓𝑖
𝑡′ , 𝑐

𝑓𝑏
𝑡′ ) (13)

where 𝑦𝑡′−1 is the previous predicted character. Besides, the
conditional probability of the forward decoding sequence is:

𝑝(𝑦𝑡′ |ℎ, 𝑦𝑡′−1) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉 T
𝑓 𝑠𝑓𝑡′) (14)

𝑝(𝑦|ℎ) =
𝑇 ′∑︁

𝑡′=1

log 𝑝(𝑦𝑡′ |ℎ, 𝑦𝑡′−1) (15)

In this way, the bidirectional language contexts are effec-
tively fused to improve the decoding quality.

2.2 Gated Context Mechanism

As shown in Eq.13, the visual context and the reverse lan-
guage context are simultaneously used as the input of forward
decoder. We observe that the visual information may be con-
fusing in the case of occlusions, blurring and heavy touching.
On the other hand, there may exist prediction errors in the
reverse language context. To relieve the effects of mistakes,
we need to filter the noises. Motivated by the above analyses,
we elaborate a flexible gated context mechanism to decide
how much information the forward decoder wants to get from
the visual context and the reverse language context.

Concretely, the visual information and the reverse language
information are separately controlled by two adaptive gates.
Specifically, the gates are generated as follows:

𝐺𝐼 = 𝜎(𝑊𝑔𝑖𝑠
𝑓
𝑡′−1 + 𝑈𝑔𝑖𝑐

𝑓𝑖
𝑡′ + 𝑉𝑔𝑖𝑐

𝑓𝑏
𝑡′ + 𝑏𝑔𝑖) (16)

𝐺𝐵 = 𝜎(𝑊𝑔𝑏𝑠
𝑓
𝑡′−1 + 𝑈𝑔𝑏𝑐

𝑓𝑖
𝑡′ + 𝑉𝑔𝑏𝑐

𝑓𝑏
𝑡′ + 𝑏𝑔𝑏) (17)

where 𝐺𝐼 and 𝐺𝐵 are the gate vectors for visual and reverse
language context separately, 𝑊𝑔𝑖, 𝑈𝑔𝑖, 𝑉𝑔𝑖, 𝑏𝑔𝑖, 𝑊𝑔𝑏, 𝑈𝑔𝑏, 𝑉𝑔𝑏,
𝑏𝑔𝑏 are the learnable parameters, 𝜎 is the sigmoid activation.

Then we model the new adaptive context as a mixture of
the visual context and the reverse language context:

𝑐𝑡′ = 𝐺𝐼 ⊙ 𝑡𝑎𝑛ℎ(𝑐𝑓𝑖𝑡′ ) +𝐺𝐵 ⊙ 𝑡𝑎𝑛ℎ(𝑐𝑓𝑏𝑡′ ) (18)

where ⊙ denotes element-wise product. Then we use the gated
context to replace the original inputs and rewrite Eq.13:

𝑠𝑓𝑡′ = 𝑅𝑁𝑁(𝑦𝑡′−1, 𝑠
𝑓
𝑡′−1, 𝑐𝑡′) (19)

Thus, the visual and reverse language context can be adaptive-
ly modulated, and the impact of noise is effectively relieved.

2.3 Model Training and Testing

Denote the training set as 𝒳 , which consists of pairs of image
ℐ and label 𝒴. The objective function is formulated as:

ℒ = −
∑︁

(ℐ,𝒴)∈𝒳

(𝜆𝑝(𝒴|ℎ) + (1− 𝜆)𝑝(
←−
𝒴 |ℎ)) (20)

where
←−
𝒴 is obtained by inverting 𝒴, and 𝜆 is a tunable

parameter in the range [0, 1].
During testing, we choose the generated word of forward

decoder. For lexicon-based recognition, we select the nearest
lexicon word to replace predicted word under edit distance.

3 EXPERIMENTS

3.1 Datasets and Experimental Settings

Several public datasets are used for evaluation, including
Street View Text, IIIT5K, ICDAR 2003, ICDAR 2013, IC-
DAR 2015 and Street View Text Perspective. The synthet-
ic datasets are used for training, including the 8-million
Synth90k [4] and the 7-million SynthText [3].

There are six convolutional blocks in the image encoder.
The detailed configurations are [3, 32] × 1, [1, 32; 3, 32] ×
3, [1, 64; 3, 64] × 4, [1, 128; 3, 128] × 6, [1, 256; 3, 256]
× 6, [1, 512; 3, 512] × 3. The residual connection is used
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Table 2: Scene text recognition accuracies on standard benchmarks. “50”, “1000” and “Full” represent the size
of lexicon used for lexicon-based recognition, and “None” represents lexicon-free recognition. “*” represents
the methods trained with both word-level and character-level annotations.

Methods
SVT IIIT5k IC03 IC13 IC15 SVTP

50 None 50 1k None 50 Full None None None None

Jaderberg et al. [5] 95.4 80.7 97.1 92.7 - 98.7 98.6 93.1 90.8 - -

Shi et al. [8] 97.5 82.7 97.8 95.0 81.2 98.7 98.0 91.9 89.6 - 66.8
Liu et al. [7] - 87.6 - - 83.6 - - 93.3 93.7 - 73.5

Lee and Osindero [6] 96.3 80.7 96.8 94.4 78.4 97.9 97.0 88.7 90.0 - -

Shi et al. [9] 95.5 81.9 96.2 93.8 81.9 98.3 96.2 90.1 88.6 - 71.8
Cheng et al. [2] 96.0 82.8 99.6 98.1 87.0 98.5 97.1 91.5 - 68.2 73.0

*Cheng et al. [1] 97.1 85.9 99.3 97.5 87.4 99.2 97.3 94.2 93.3 66.2 71.5

*Yang et al. [10] 95.2 - 97.8 96.1 - 97.7 - - - - 75.8

GBIDN (Ours) 97.2 87.6 99.5 98.6 92.6 99.0 97.9 93.7 90.8 74.2 77.2
GBIDN+stn (Ours) 97.7 89.5 99.6 98.7 93.6 99.4 98.3 94.2 91.9 77.1 80.6

GBIDN+90k Dict (Ours) - 90.1 - - - - - 95.8 93.6 - 82.3

except the first one. Downsampling is performed by 2×2
stride convolutions in the second and third blocks. The stride
is changed to 2×1 in the last three blocks. Following the
convolutional layers is two-layer BLSTM with 256 hidden
units per LSTM. Both the backward and forward decoder
adopt one-layer LSTM with 256 hidden units. The input
images are resized to 32×100. The label space contains 94
classes, including 10 digits, 52 case sensitive letters, and 32
punctuations. The model takes 24.6ms recognizing an image.

3.2 Ablation Studies

The ablation studies are shown in Table 1. As observed, the
introduction of backward decoder significantly improves the
performance. Comparing with the independent bidirectional
decoders with two parallel opposite decoding branches that
do not interact, the bidirectional interactive decoder performs
better. Moreover, the gated context mechanism further im-
proves the recognition performance. Furthermore, we should
conduct relatively more constraints on the backward decoder.

3.3 Comparison with Existing Methods

We compare our method with the state-of-the-arts as in
Table 2. Our method performs better than most existing
methods. In particular, we achieve significant improvements
over the methods with unidirectional decoder [1, 2, 6, 9]. We
also use an STN module following [9] to fairly compare with
other methods specially for irregular text. We substantially
outperforms [2, 9, 10] on all benchmarks. As [5, 7] benefited
from a 90K dictionary, we also report results using the same
dictionary to post-process the predictions on SVT, IC03 and
IC13. Particularly, with the same dictionary, we outperform
[7] by 2.5 percents on SVT and 2.5 percents on IC03.

4 CONCLUSION

In this paper, we propose a Gated Bidirectional Interactive
Decoding Network for scene text recognition. We introduce a
bidirectional interactive decoder into the traditional attention-
based encoder-decoder framework. Besides, we design a gated

context mechanism to adaptively modulate the visual and
reverse language context. Extensive experiments validate the
effectiveness of our method.
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