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ABSTRACT

Reading text in the wild is a challenging task in computer
vision. Scene text suffers from various background noise, in-
cluding shadow, irrelevant symbols and background texture.
In order to reduce the disturbance of background noise, we
propose a dense chained attention network with stacked at-
tention modules for scene text recognition. Each attention
module learns the attention map that is adapted to correspond-
ing features to enhance the foreground text and suppress the
background noise. Besides, the attention branch is designed
with the convolution-deconvolution structure which rapidly
captures global information to guide the discriminative fea-
ture selection. We stack multiple attention modules to gradu-
ally refine the attention maps and capture both the low-level
appearance feature and the high-level semantic information.
Extensive experiments on the standard benchmarks, the Street
View Text, IIITSK, and ICDAR datasets validate the superi-
ority of the proposed method. The dense chained attention
network achieves state-of-the-art or highly competitive recog-
nition performance.

Index Terms— text recognition, attention, convolution-
deconvolution

1. INTRODUCTION

Reading Scene text is to recognize the text in natural images,
and has been receiving considerable attention and playing an
important role in a variety of computer vision tasks. Read-
ing text in the wild can extract rich semantic information that
is highly relevant to scene or object and therefore has been
widely applied in street sign reading in the driverless vehicle,
automatic license plate recognition, assistant technologies for
the blind, robot navigation, scene understanding and image
retrieval. However, suffering from various appearance, distor-
tion, low resolution, blurring and disturbance of background
noise, text recognition in unconstrained environment is still a
challenging problem.

Traditional methods [1, 2] recognized scene text by first
detecting individual character and then recognizing each
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cropped character with convolutional neural network. How-
ever, a large amount of inter-character and intra-character
confusion will reduce the performance of the entire recog-
nition network greatly. Therefore, these approaches heavily
depend on an accurate character detector. Recently, some
approaches adopted an end-to-end framework for scene text
recognition, without detecting characters. Jaderberg er al.
[3] formulated the scene text recognition as an image clas-
sification problem. Each class corresponds to a word in a
pre-defined lexicon composed of around 90k words. How-
ever, it is difficult for this method to generalize to other
situations with huge number of classes, due to the oversized
pre-defined dictionary and the requirement for large amount
of training samples.

Recent studies [4, 5, 6, 7] regarded scene text recognition
as a sequence recognition problem. Shi et al. [4] proposed
Convolutional Recurrent Neural Network (CRNN) that com-
bined convolutional network and recurrent network to mod-
el the spatial dependencies. In [5], a recurrent network with
attention mechanism was constructed to decode feature se-
quence and predict labels recurrently. Shi et al. [6] adopted
a convolutional-recurrent structure in the encoder to learn the
sequential dynamics.

However, for text in natural images, there often exists
some disturbances, including shadow, irrelevant symbols and
background texture. The scene text with various appearance
is often confused by these factors. Existing approaches are in-
capable of extracting discriminative feature which is robust to
various background noise. Considering attention mechanism
could selectively focus on the salient regions of the objects
and enhance the representation of relevant parts. We design
a dense chained attention network to enhance the representa-
tion of foreground text and suppress background noise. The
attention module learns the soft weights for features, which
plays an important guiding role in the process of feature learn-
ing. Besides, stacking multiple attention modules gradual-
ly refines attention maps. And different attention modules
generate corresponding attention weights adaptively. Further-
more, we use a convolution-deconvolution structure in the at-
tention branch to rapidly capture global information within a
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Fig. 1. Overview of the proposed dense chained attention network.

larger receptive field and generate better attention mask.

We evaluate our approach on the challenging benchmarks,
Street View Text, IIIT-5K and ICDAR datasets. It is observed
that our method not only achieves state-of-the-art or highly
competitive performance, but also effectively suppresses the
response of background noise while enhancing the represen-
tation of foreground text.

2. THE PROPOSED APPROACH

2.1. Network Achitecture

The overview of our dense chained attention network is illus-
trated in Figure 1. The stacked attention modules extract ro-
bust feature representation for the entire image. Then we con-
vert the feature maps into a sequential representation. Specif-
ically, the three-dimensional feature map is cut into 2D maps
along its width and then each map is flattened into a vector.
In this way, each element in the feature sequence corresponds
to a local region of the word image and can be viewed as the
feature representation of the region. Then bidirectional long
short-term memory (BLSTM) learns the context information
and models the sequential dependencies within the feature se-
quence. Next, the generated sequence is transformed into a
sequence of probability distributions. Finally, Connectionist
Temporal Classification (CTC) converts the probability distri-
butions into the label.

2.2. Dense Chained Attention Module

To extract the discriminative feature representation, we design
an attention module to suppress the response of background
noise while enhancing the representation of foreground tex-
t. For the attention module, we utilize the dense connectivity
[8] in the basic convolutional block to improve the flow of
information and gradient propagation. There exist direct con-
nections between all layers in the dense block. Therefore,
each layer can get the information from all preceding layers
and transmit its message to all subsequent layers. Taking the
dense block as input, the attention branch generates the soft
attention weights adapted to corresponding features.
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Fig. 2. The structure of attention branch.

As shown in Figure 2, the attention branch is designed
with the convolution-deconvolution structure so that the glob-
al information can be rapidly captured to guide the discrim-
inative feature selection. Specifically, each down-sampling
unit contains a max pooling layer and a convolutional lay-
er. Correspondingly, each up-sampling unit contains a bilin-
ear interpolation layer and a convolutional layer. The fea-
ture maps are first down-sampled to the lowest spatial res-
olution. A series of stacked down-sampling units increase
the receptive field rapidly and collect the global information.
Then a symmetrical architecture with up-sampling units is ap-
plied to recover the resolution to the original size. During
up-sampling, the high-level semantic information is expand-
ed to guide corresponding features in each position. Then the
values are normalized by a sigmoid function as the attention
weights.

Considering the attention weights range from zero to one,
the element-wise product between feature maps and attention
maps may cause severe degradation of useful information. E-
specially, repeated element-wise product will cause signifi-
cantly information loss. Therefore, we add 1 on the values
of attention maps to enhance the original features. In this
way, the good properties of original features could be main-
tained. Next, the modified attention maps as soft weights are
fused on corresponding feature maps with element-wise prod-
uct. Thus, the attention maps not only reduces the response



of background noise, but also keeps the disciriminative infor-
mation of original features.

Furthermore, we stack multiple attention modules to grad-
ually refine the attention maps. If the learned attention map
cannot correctly focus on the foreground text, the subsequent
attention modules can modify the attention-aware features.
Besides, different attention modules generate the attention
maps adapted to the corresponding features. The low-level
attention module mainly concentrates on the appearance in-
cluding edge, color and texture, while the high-level attention
module contains more semantic information. With the atten-
tion mechanism, the feature encoder benefits from the noise
suppression to obtain a more discriminative representation.

2.3. Sequence Decoding

In the process of sequence decoding, the output sequence
y = (¥1,92, - , Yw) by BLSTM is transformed into the label
sequence, using the CTC proposed by [9]. Defining L as the
set of 36 classes including all English alphanumeric charac-
ters, we get the final label space L' =LuU {blank}, in which
the extra blank denotes the class of observing no character.
Given the probability distribution, the conditional probability
of the sequence 7 is

=

p(rly) = | | 4%, (1

t=1

where yfrt denotes the probability of emtting label 7, at step ¢.
Then a many-to-one mapping B merges the repeated contin-
uous labels to a single one and then remove the blank labels.
Furthermore, the probability of the final output sequence is
formulated as the sum of the conditional probabilities of all 7
corresponding to it:

ply)= > p(rly)

re€B-1(l)

@

Given the training set D = {I;,l;}, where I; and l; repre-
sent the word image and the corresponding ground truth label,
respectively. The objective function is formulated as the sum
of the negative log likelihood of the probabilities for target
labels:

O=— > logp(lly;)

(I:,l:)€D

3)

During inference, for lexicon-free recognition, we emit
the label with the highest probability at each step and then
use B3 to generate the final label. For lexicon-based recogni-
tion, we adopt an approximate method by comparing the edit
distance between the predicted sequence in the lexicon-free
setting and words in the lexicon, then choosing the word with
the smallest edit distance as the output label.
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3. EXPERIMENT

Several public datasets are used for the evaluation, including
Street View Text, IIITSK, ICDAR 2003 and ICDAR 2013.
For training data, our model is trained purely on the synthet-
ic dataset released by [10], without any extra data for fine-
tuning. Following the evaluation protocol in [1], we perform
recognition on word images that contain only alphanumeric
characters and at least three characters.

3.1. Implementation Details

The dense chained attention network contains two attention
modules. Specifically, there are six convolutional layers with
filter size 3 and stride 1 in each dense block. And the growth
rate, that is the number of output feature maps for each layer,
is 18 in all experiments. Besides, 3,2 down-sampling units
are used in the two attention branches, respectively. All the
convolution are performed with zero padding, ReL.U activa-
tion and batch normalization. The BLSTM contains 2 layers
with 256 units per LSTM. In the process of training and test-
ing, the word images are resized to 32 x 100 with gray scale.
We adopt the msra [20] as the weight initialization method.
The proposed network is implemented with Tensorflow.

3.2. Attention Module

To validate the effectiveness of the attention modules, we
compare the performance of networks with and without at-
tention mechanism. Keep the other parts unchanged, we on-
ly remove the attention branches for comparison. Besides,
we conduct experiments on networks with different depths to
evaluate the generalization. As shown in Table 2, the net-
works with attention mechanism consistently outperform the
networks without attention, which proves the effectiveness of
the method. Additionally, we observe that the improvements
brought by attention mechanism on ICDAR datasets are not
as significant as that on SVT and IIITS5k. ICDAR13 dataset
has plenty of images suffering from blurring and non-uniform
illumination. This increases the difficulty in focusing on the
foreground text. Some incorrect samples are presented in Fig-
ure 3. Furthermore, we visualize the attention maps of some
examples in Figure 3. As shown in Figure 3, in most cases, the
attention maps focus on the foreground text to be recognized
and effectively reduce the response of background noise.

3.3. Comparisons with State-of-the-art Methods

We evaluate our method on the above four public datasets and
compare it with state-of-the-art algorithms in Table 1. Since
Cheng et al.[21] uses large additional training datasets with
character level annotations, we do not do comparison with
the results of [21].

For lexicon-free recognition, our network achieves the
state-of-the-art or highly competitive performance. Specifi-



Table 1. Scene text recognition accuracies on the benchmark datasets. “50”, “1000” and “Full” represent the size of lexicon

used for constrained recognition, and “None” represents unconstrained recognition.

the output sequence is constrained to a 90k dictionary.

g

[3] is not lexicon-free strictly, due to

Methods SVT IIIT5k 1C03 IC13
50 | None | 50 1k | None | 50 Full | None | None
Wang et al.[1] 57.0 - - - - 76.0 | 62.0 - -
Mishra et al.[11] 73.2 - 64.1 | 57.5 - 81.8 | 67.8 - -
Bissacco et al.[2] 90.4 | 78.0 - - - - - - 87.6
Yao et al.[12] 75.9 - 80.2 | 69.3 - 88.5 | 80.3 - -
Rodriguez-Serrano et al.[13] | 70.0 - 76.1 | 57.4 - - - - -
Jaderberg et al.[14] 86.1 - - - - 96.2 | 91.5 - -
Gordo [15] 91.8 - 93.3 | 86.6 - - - - -
xJaderberg et al.[3] 954 | 80.7 | 97.1 | 92.7 - 98.7 | 98.6 | 93.1 90.8
Jaderberg et al.[16] 932 | 71.7 | 95.5 | 89.6 - 97.8 | 97.0 | 89.6 | 81.8
Shi et al.[4] 975 | 82.7 | 97.8 | 95.0 | 81.2 | 98.7 | 98.0 | 91.9 89.6
Shi et al.[6] 955 | 819 | 96.2 | 93.8 | 81.9 | 98.3 | 96.2 | 90.1 88.6
Lee et al.[5] 963 | 80.7 | 96.8 | 944 | 784 | 979 | 97.0 | 88.7 | 90.0
Liu et al.[17] 955 | 83.6 | 97.7 | 945 | 83.3 | 969 | 953 | 89.9 89.1
He et al.[7] 92.0 - 94.0 | 91.6 - 97.0 | 94.4 - -
Yang et al.[18] 95.2 - 97.8 | 96.1 - 97.7 - - -
Wang and Hu[19] 963 | 81.5 | 98.0 | 95.6 | 80.8 | 98.8 | 97.8 | 91.2 -
Ours 97.7 | 839 | 99.1 | 97.2 | 83.6 | 986 | 96.6 | 91.4 | 89.5
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Fig. 3. Visualization of the attention maps and the recognition
results. (a) Input images. (b) Attention maps. (c) The ground
truth and the recognized results. The blue and red characters
represent the correctly and incorrectly recognized characters,
respectively.

cally, we obtain the best result on SVT and IIIT5k. It is worth
noting that the model in [3] only can deal with the words in its
90k dictionary, which is not lexicon-free recognition strictly.
Different from [3], our approach is able to recognize random
word strings and is not restricted by a fixed dictionary.

For lexicon-based recognition, our method consistently
outperforms other approaches on several benchmarks. The
significant improvement validates the effectiveness of our
method. Moreover, it is observed that IIIT5k contains plenty
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Table 2. Lexicon-free scene text recognition accuracies on
standard benchmarks. “Depth17” and “Depth23” represent
the network with 17 layers and 23 layers, respectively.

Method SVT | IIT5k | ICO3 | IC13
Depth17 819 | 804 | 90.7 | 89.5
Depth17+attention | 83.0 | 83.0 90.8 | 88.7
Depth23 82.4 | 829 | 89.2 | 89.9
Depth23+attention | 83.9 83.6 91.4 | 89.5

of images suffering from background noise, which proves
the superiority of our method in suppressing noise. Besides,
we behind [3] on ICDARO3 dataset. However, [3] benefits
from the pre-defined large dictionary as mentioned before.
Therefore, our results are still competitive compared with the
state-of-the-arts.

4. CONCLUSION

In this paper, we propose a dense chained attention network
for scene text recognition, with stacked attention modules to
learn robust representation. The attention mechanism signifi-
cantly suppresses background noise and improves the perfor-
mance. Besides, the proposed network can be trained end-to-
end with the word level annotations. The extensive experi-
mental results on the benchmarks demonstrate the superiority
of our approach compared with the state-of-the-art methods.



(1]

[2

—

(3]

[4

[}

(5]

[6

—_

[7

—

[8

—_—

[9

—

(101

5. REFERENCES

Kai Wang, Boris Babenko, and Serge Belongie, “End-
to-end scene text recognition,” in Computer Vision (IC-
CV), 2011 IEEE International Conference on. IEEE,
2011, pp. 1457-1464.

Alessandro Bissacco, Mark Cummins, Yuval Netzer,
and Hartmut Neven, “Photoocr: Reading text in un-
controlled conditions,” in Proceedings of the IEEE In-
ternational Conference on Computer Vision, 2013, pp.
785-792.

Max Jaderberg, Karen Simonyan, Andrea Vedaldi, and
Andrew Zisserman, ‘“Reading text in the wild with con-
volutional neural networks,” International Journal of
Computer Vision, vol. 116, no. 1, pp. 1-20, 2016.

Baoguang Shi, Xiang Bai, and Cong Yao, “An end-to-
end trainable neural network for image-based sequence
recognition and its application to scene text recogni-
tion,” IEEE transactions on pattern analysis and ma-
chine intelligence, 2016.

Chen-Yu Lee and Simon Osindero, “Recursive recur-
rent nets with attention modeling for ocr in the wild,” in
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2016, pp. 2231-2239.

Baoguang Shi, Xinggang Wang, Pengyuan Lyu, Cong
Yao, and Xiang Bai, “Robust scene text recognition with
automatic rectification,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, 2016, pp. 4168-4176.

Pan He, Weilin Huang, Yu Qiao, Chen Change Loy, and
Xiaoou Tang, “Reading scene text in deep convolutional
sequences.,” in AAAI 2016, pp. 3501-3508.

Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Lau-
rens van der Maaten, “Densely connected convolutional
networks,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2017, vol. 1,

p- 3.

Alex Graves, Santiago Fernandez, Faustino Gomez, and
Jirgen Schmidhuber, “Connectionist temporal classifi-
cation: labelling unsegmented sequence data with recur-
rent neural networks,” in Proceedings of the 23rd inter-
national conference on Machine learning. ACM, 2006,
pp- 369-376.

Max Jaderberg, Karen Simonyan, Andrea Vedaldi, and
Andrew Zisserman, “Synthetic data and artificial neu-
ral networks for natural scene text recognition,” arXiv
preprint arXiv:1406.2227, 2014.

683

(1]

(12]

[13]

[14]

[15]

(16l

(17]

(18]

(191

[20]

(21]

Anand Mishra, Karteek Alahari, and CV Jawabhar,
“Scene text recognition using higher order language pri-
ors,” in BMVC 2012-23rd British Machine Vision Con-
ference. BMVA, 2012.

Cong Yao, Xiang Bai, Baoguang Shi, and Wenyu Li-
u, “Strokelets: A learned multi-scale representation for
scene text recognition,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, 2014, pp. 4042-4049.

Jose A Rodriguez-Serrano, Albert Gordo, and Florent
Perronnin, “Label embedding: A frugal baseline for text
recognition,” International Journal of Computer Vision,
vol. 113, no. 3, pp. 193-207, 2015.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisser-
man, “Deep features for text spotting,” in European
conference on computer vision. Springer, 2014, pp. 512—
528.

Albert Gordo, “Supervised mid-level features for word
image representation,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
2015, pp. 2956-2964.

Max Jaderberg, Karen Simonyan, Andrea Vedaldi, and
Andrew Zisserman, ‘“Deep structured output learning
for unconstrained text recognition,” arXiv preprint arX-
iv:1412.5903, 2014.

Wei Liu, Chaofeng Chen, Kwan-Yee K Wong, Zhizhong
Su, and Junyu Han, “Star-net: A spatial attention residue
network for scene text recognition.,” in BMVC, 2016,
vol. 2, p. 7.

Xiao Yang, Dafang He, Zihan Zhou, Daniel Kifer, and
C Lee Giles, “Learning to read irregular text with atten-
tion mechanisms,” in Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence,
IJCAI-17, 2017, pp. 3280-3286.

Jianfeng Wang and Xiaolin Hu, “Gated recurrent con-
volution neural network for ocr,” in Advances in Neural
Information Processing Systems, 2017, pp. 334-343.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification,” in Pro-
ceedings of the IEEE international conference on com-
puter vision, 2015, pp. 1026-1034.

Zhanzhan Cheng, Fan Bai, Yunlu Xu, Gang Zheng, Shil-
iang Pu, and Shuigeng Zhou, “Focusing attention: To-
wards accurate text recognition in natural images,” in
2017 IEEE International Conference on Computer Vi-
sion (ICCV). IEEE, 2017, pp. 5086-5094.



		2018-08-29T09:41:45-0400
	Certified PDF 2 Signature




