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Abstract: As a major component of speech signal processing, speech emotion recognition has become increasingly essential to under-
standing human communication. Benefitting from deep learning, many researchers have proposed various unsupervised models to ex-
tract effective emotional features and supervised models to train emotion recognition systems. In this paper, we utilize semi-supervised
ladder networks for speech emotion recognition. The model is trained by minimizing the supervised loss and auxiliary unsupervised cost
function. The addition of the unsupervised auxiliary task provides powerful discriminative representations of the input features, and is
also regarded as the regularization of the emotional supervised task. We also compare the ladder network with other classical autoen-
coder structures. The experiments were conducted on the interactive emotional dyadic motion capture (IEMOCAP) database, and the
results reveal that the proposed methods achieve superior performance with a small number of labelled data and achieves better per-

formance than other methods.
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1 Introduction

As one of the main information mediums in human
communication, speech contains not only basic language
information, but also a wealth of emotional information.
Emotion can help people understand real expressions and
potential intentions. Speech emotion recognition (SER)
has many applications in human-computer interactions,
since it can help machines to understand emotional states
like human beings dolll. For example, speech emotion re-
cognition can be utilized to monitor customers’ emotion-
al state which reflects their service quality in call centers.
The information can help promote service level and re-
duce the workload of manual evaluation/?.

Emotion is conventionally represented as several dis-
crete human emotional moods such as happiness, sadness
and anger over utterancesi®l. In speech emotion recogni-
tion, the establishment of a speech emotional database is
based on the reality that every speech utterance is as-
signed to a certain one of emotional categories. As a res-
ult, most researchers regard speech emotion recognition
as a typical supervised learning task. Given the emotion-
al database, the classification models are trained to pre-
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dict exact emotional labels for each utterance. Thus, lots
of conventional machine learning methods were applied
successfully in speech emotion recognition. The models,
hidden Markov models (HMMs) and Gaussian mixture
models (GMMs) which emphasize the temporality of
speech signal and had achieved great performance in
speech recognition, were also applied in SERM 3. Sup-
port vector machines (SVMs), which have the superior-
ity of modeling small data sets, usually achieved better
performance than other alterative modelslfl. Inspired
by the success of various tasks with deep learningl” 8],
numerous research efforts have been made to build an
effective speech emotion recognition model with deep
neural networks (DNN), leading to impressive achieve-
ment[% 10,

However, speech emotion recognition still faces many
challenges, such as the diversity of speakers, genders, lan-
guages and cultures which would influence the system
performance. The difference of recording conditions is also
bad for the stability of the system. While automatic sys-
tems have been shown to outperform naive human listen-
ers on speech emotion classificationl!l], existing SER sys-
tems are not so mature compared with speech and image
classification tasks. One of the serious problems is the
shortage of emotional data that limits the robustness of
the models.

Supervised classification methods estimate emotional
class by learning the differences between different cat-
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egories. The guarantee of a large enough number of la-
belled speech emotional data is necessary for the exacti-
tude of the separatrices. However, the acquisition of la-
belled data demands experts’ knowledge and is also highly
time consuming. Even worse, there exists large ambigu-
ity and subjectivity among the boundaries of the emoti-
ons since the expressions and perceptions of different peo-
ple are different[!2l. Thus, there is no definite standard for
providing emotional labels. Due to these shortcomings,
the quantity of speech emotion databases is limited, and
cannot cover the diversity of different conditions/!3.

Considering the scarcity of speech emotion data, it is
beneficial to take full advantage of the information from
unlabeled data. Unsupervised learning is one choice which
extracts robust feature representations from the data
automatically without depending on label information.
This technique can depict the intrinsic structures of the
data, and has stronger modeling and generalization abil-
ity for training better classification models[!4. Most of the
existing unsupervised feature learning approaches have
been explored to generate salient emotional feature rep-
resentations for speech emotion recognition, such as au-
toencoders (AE)[% and denoising autoencoders (DAE)[].
The purpose of AE and DAE is to obtain intermediate
feature representations which can rebuild the input data
as much as possible. Other sophisticated methods, such
as variational autoencoders (VAE)[] and generative ad-
versarial networks (GAN)[7, have achieved better per-
formance in SER. They emphasize the modeling of the
distribution of the data, explicit form such as normal dis-
tribution for VAE and inexplicit form for GAN, rather
than the data itself.

The feature representations learning from unsuper-
vised models are usually used as the inputs of supervised
classification models to train speech emotion recognition
systems. Nevertheless, such an approach has an underly-
ing problem. The former unsupervised learning plays the
role of the feature extractor, while the target of the mod-
el is to recover the input signals perfectly. It means all in-
formation would persist as much as possible. However, we
only need to focus on emotionally relevant information.
On the other hand, the later supervised learning only
concentrates on the information that is good for classific-
ation prediction. The extra information which is maybe
supplementary for SER would be dropped. Therefore, the
feature representations learning from unsupervised learn-
ing may not necessarily support the supervised classifica-
tion task. The objectives of two steps, unsupervised part
and supervised part are not consistent because their
trainings are parted.

To address this problem, deep semi-supervised learn-
ing is proposed to dispose of the difficultyl!8-20l. Semi-su-
pervised learning is the combination of unsupervised fea-
ture representation learning and supervised model train-
ing. The key is that these two parts are trained simultan-
eously so that the feature representations obtained from
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unsupervised learning can accord with the supervised
model better. The typical structures, such as semi-super-
vised variational autoencoders!!®) and ladder networks(8,
have achieved competitive performance with less labelled
training samples in other areas.

Benefiting from the unsupervised learning part, semi-
supervised learning can introduce great feature represent-
ations with the aid of many unlabeled examples to im-
prove the performance of supervised tasks. Due to the
scarcity of speech emotional data and richness of speech
data, it is appropriate to apply semi-supervised learning
approaches to speech emotion recognition. Actually, the
part of auxiliary unsupervised learning also plays the role
of regularization in the semi-supervised learning model.
The regularization is essential to develop speech emotion
recognition systems that generalize across different condi-
tions[2l. Conventional models obtained poor performance
when the databases of training and testing are differ-
ent[?2. 23] By training models that are optimized for
primary and auxiliary tasks, the feature representations
are more general, avoiding overfitting to a particular do-
main. It is appealing to create unsupervised auxiliary
tasks to regularize the network.

Classic semi-supervised learning structure is an au-
toencoder which introduces additional unsupervised learn-
ing. The autoencoder structure can be replaced by other
structures like DAE and VAE. More layers can be
stacked. A more advanced structure is a semi-supervised
ladder networks['® 24, Similar to DAE, every layer of a
ladder network is intended to reconstruct their corrupted
inputs. Further, the ladder network adds the lateral con-
nections between each layer of the encoder and decoder,
which is different from DAE. Figuratively, this is also the
meaning of the term “ladder”, and it indicates the deep
multilayer structure of the ladder network. The attrac-
tion of hierarchical layer models is the ability of model-
ing latent variables to learn from low layers to high lay-
ers. Generally, low layers represent the specific informa-
tion while high layers can generate abstract features
which are invariant and relevant for classification tasks.
This can model more complex nonlinear structures than
conventions methods[25],

Most unsupervised methods aim to learn intermediate
feature representations that may not support the underly-
ing emotion classification task. This paper proposes to
employ the unsupervised reconstruction of the inputs as
an auxiliary task to regularize the network, while optim-
izing the performance of an emotion classification system.
We efficiently achieve this goal with a semi-supervised
ladder network. The addition of the unsupervised auxili-
ary task not only provides powerful discriminative repres-
entations of the input features, but is also regarded as the
regularization of primary emotional supervised task. The
core contributions of this paper can be summarized as fol-
lows:

1) In this paper, we utilize semi-supervised learning
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with a ladder network for speech emotion recognition. We
emphasize the importance of unsupervised reconstruction
and skip connection modules. In addition, higher layers of
the ladder network have a better ability to obtain dis-
criminative features.

2) We show the benefit of semi-supervised ladder net-
works and that the promising results can be obtained
with only a small number of labelled samples.

3) We compare the ladder network with DAE and
VAE methods for emotion recognition from speech, show-
ing superior performance of the ladder network. Besides,
the convolutional neural network structure of the en-
coder and decoder has a better ability to encode emotion-
al characteristics.

The remainder of the paper is organized as follows.
Section 2 discusses the related work. In Section 3, we de-
scribe our proposed methods. We then present the data-
set and acoustic features used for the experiments in
Section 4. Section 5 presents the experimental results and
analysis. Finally, Section 6 concludes this paper.

2 Related work

Traditional speech emotion recognition relies on well-
established hand-crafted speech emotional features. The
most popular acoustic features are frame-level low-level
descriptors (LLD) such as mel-frequency cepstral coeffi-
cients (MFCC), followed by utterance-level information
extraction with different functionals, such as mean and
maximum etc.[26, 27]

With the great achievement of deep learning, a great
number of approaches utilize DNN to extract effective
emotional feature representations, then feed them as in-
puts to an emotional classifier. Kim et al.28! captured
high-order nonlinear relationships from multimodal data
with four deep belief networks (DBN) architectures.
Firstly, the audio features and video features were input-
ted to their individual layers, then their outputs were
concatenated to generate final multimodal fusion emo-
tional features in a later layer. Finally, the classifier SVM
was used to evaluate their performance.

Various autoencoders have been widely applied in
speech emotion recognition. Deng et al.2% proposed
shared hidden layer autoencoders for common feature
transfers learning to cope with the mismatch between the
corpora. Then, they extended to sparse autoencoders
(SAE)BY. In source domain, every emotional class trained
its own individual SAE model. After that, all training
data of the target domain was reconstructed with corres-
ponding SAE of the same class to alleviate the difference.
The new reconstructed data was regraded as training
data to train the SVM model to predict test samples.
Furthermore, they substituted SAE with DAE to obtain
performance gainlfl. Xia and LiuB! proposed a modified
DAE to distinguish the emotional representations from
non-emotional factors like speakers and genders. They de-

signed two hidden layers separately to represent emotion-
al and non-emotional representation in parallel. The non-
emotional layer was trained firstly like normal autoen-
coder. Then, the emotional layer was trained with the
non-emotional layer frozen. Finally, the emotional repres-
entations were the inputs of SVM for speech emotion
classification. Next, they joined gender information to
model emotional specific characteristics for further per-
formance gain[32l.

Ghosh et al.3% 34 combined DAE and bidirectional
long short-term memory (BLSTM) AE to get more ro-
bust emotional representations from the original wav
spectrogram. They utilized a multilayer perceptron
(MLP) to evaluate the performance of generated latent
representations. Eskimez et al.139] systematically investig-
ated four kinds of unsupervised feature learning methods,
DAE, VAE, adversarial autoencoder (AAE) and ad-
versarial variational Bayes (AVB) for improving the per-
formance of speech emotion recognition. They showed
that the models which emphasized the distribution of
speech emotional data, namely VAE, AAE and AVB,
outperformed DAE.

Deng et al.38 proposed semi-supervised autoencoders
to improve the performance of SER. This was achieved
by regarding the unlabeled data as an extra class, which
explicitly aided the supervised learning by incorporating
prior information from unlabeled samples. In this paper,
our work builds upon the ladder network to further ex-
plore the influence of semi-supervised learning for speech
emotion recognition.

Valpolal24 proposed the ladder network to reinforce
autoencoder networks. The unsupervised tasks involve
the reconstruction of hidden representations of a denois-
ing autoencoder with lateral connections between the en-
coder and decoder layers. Rasmus et al.l8; 37 further ex-
tended this idea to support supervised learning. They in-
cluded a batch normalization to reduce covariate shift.
They also compared various denoising functions to be
used by the decoder. The representations from the en-
coder are simultaneously used to solve the supervised
learning problem. The ladder network conveniently solved
unsupervised auxiliary tasks along with primary super-
vised tasks. Finally, Pezeshki et al.38l explored different
components of the ladder network, noting that lateral
connections between encoder and decoder and the addi-
tion of noise at every layer of the network greatly con-
tributed to their improved performance. The skip connec-
tions between the encoder and decoder ease the pressure
of transporting information needed to reconstruct the rep-
resentations to the top layers. Therefore, top layers can
learn features that are useful for the supervised task, such
as the emotional prediction.

Inspired by their work, we propose semi-supervised
ladder networks for speech emotion recognition, showing
their benefits for emotion prediction. This work is an ex-
tension of our previous work presented in [39], which fo-
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cused on discrete emotion recognition. In similar work,
Parthasarathy and Bussol% utilized the ladder network
to perform dimensional emotional recognition with multi-
task learning. Notice that our work[3% was published first
in AAAC Asian Conference on Affective Computing and
Intelligent Interaction (ACII Asia 2018) before Parthas-
arathy’s work0 in International Speech Communication
Association (INTERSPEECH 2018).

3 Method

In this section, we will describe specific ladder network
architecture with two hidden layers, as shown in Fig.1.
There are two encoders in the ladder network, that is, one is
the noise encoder corrupted by noise which is similar to
DAE, and the other is an original clean input signal with
shared parameters. The ladder network combines a prim-
ary supervised task with an auxiliary unsupervised task.
The auxiliary unsupervised task reconstructs the hidden
representations of a clean encoder. The noise encoder is
simultaneously used to train primary classification task.

The key aspect of the ladder network is the lateral
connections between the layers of the encoder and deco-
der. These lateral skip connections establish the relation-
ships between each layer of the noisy encoder and its cor-
responding layer in the decoder. This operation enables
the information to flow freely between the encoder and
decoder. As a result, the feature representations from low
layers to high layers would be from specific to abstract
and emotional-relevant for speech emotion classification
tasks. Formally, the ladder network is defined as follows:

z, 5(1)7 . 72@)’ 7§ = Encodernoisy () (1)
z, Z<1>7 . 7Z(L)7 Yy = EnCOderclean (.’L‘) (2)
z, 2 o s y = Decoder (5(1), T ’E(L)) ®3)

where the variables z, y, § and y* are the input, the
noiseless output, the noisy output and the true target,
respectively. The variables 2, 2 and 2% are the
hidden representation, its noisy version, and its
reconstructed version at layer I. In the following parts, we
give a detailed description of the ladder network to
introduce our proposed methods herein.

3.1 Encoder

The encoder of the ladder network is a fully connec-
ted MLP network. A Gaussian noise with variance o? is
added to each layer of the noisy encoder, as shown in
Fig. 1. The representations from the final layer " of the
encoder are used for the supervised task. The decoder
tries to reconstruct the latent representation Z at every
layer using a clean copy of the encoder z as target. In the
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Fig.1 The architecture wusing semi-supervised ladder
networks[!8] for speech emotion recognition. This figure
illustrates the ladder network with two hidden layers. The noise
feedforward path (z — 3 — 2 - 3}) shares the network

parameters  f " with the clean feedforward path

(:E B C N y). The decoder 20 5 20 Lﬁ)
reconstruct the input vector of the encoder with denoising
functions g(l). The lateral connections on every layer make
RC;I) to minimize the difference between 2 and 2. The

output § of the encoder and the true target y* are utilized to
calculate the supervised loss.

training phase, the supervised task is trained with the
noisy encoder which further regularizes the supervised
learning. Meanwhile, the clean encode is utilized to pre-
dict emotional class in the testing phase.

In the forward network, a single layer of the encoder
includes three types of calculation. The inputs are first
transformed with linear transformation, then batch nor-
malization is applied with the mean and standard devi-
ation of mini-batch, followed by a non-linear activation
function. The detailed schematic diagram is illustrated in
Fig. 2. Formally, the encoder is defined as follows:

20, =w® . {0-b (4)

u(” = mean (ZI(JZT)@) (5)

oW = std (21(,96) (6)

) _ Zpre — p® + N (0,0%) (7)
o

AONS (7<1> (5<1> n 5(0)) (8)

where h(~Y is the post-activation at layer | — 1 and W
is the weight matrix from layer [ — 1 to layer I. u) and
o are the mean and standard deviation of mini-batch at
layer I — 1. The Gaussian noise with zero mean and o
variance is added to post-normalization to get pre-
activation 2. The purpose of 8% and 'y(l) is to increase
the diversity and robustness of the model. Finally, a non-
linear activation function @ (-) is applied to obtain the
output h®. The difference between the noise encoder and
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Fig.2 The detailed calculation structure diagram of the ladder
network[38], Both sides of the figure are encoders, the left is noise
encoder ((4) to (8)) and the right is clean encoder. At each layer
of encoders, linear transformation and normalization are first
applied to Y=Y and AU, The noise encoder injects noise
addition to get 7 while 2V has no noise in clean encoder.
Then, the batch normalization correction and nonlinearity
activation is computed to get hY and iz(l), respectively. At the
decoder ((9) to (13)), the inputs of every layer are from two
signals, that one is from above layer 2(+Y) and another is noise
signal 20 from corresponding layer in the encoder. The linear
transformation and normalization are applied to 204D before
combining singals. CE stands for supervised cross entropy cost
and RC stands for unsupervised reconstruction cost. The total
objective function is a weighted sum of the supervised loss and
unsupervised loss.

clean encoder is the second item of (7). It is a noisy
encoder with noise N/ (O, 02) just as mentioned above, and
it is a clean encoder without noise N (0, 02), h and 7 are
replaced with h and z, respectively.

3.2 Decoder

The structure of the decoder is similar to the encoder.
The goal of the decoder is to denoise the noisy latent rep-
resentations. Instead of using a nonlinear activation func-
tion, the denoising function g (-,-) combines top-down in-
formation from the decoder and the lateral connection
from the corresponding encoder layer. With lateral con-
nections, the ladder network performs similarly to hier-
archical latent variable models. Lower layers are mostly
responsible for reconstructing the input vector and high-
er layers can learn more abstract, discriminative features
for speech emotion recognition.

Similarly, batch normalization is also employed at
each layer of the decoder. In the back network of the de-
coder, the inputs of every layer are from two signals, that

one is from above layer 20+

and another is the noise
signal £ from the corresponding layer in the encoder.
The detailed schematic diagram is illustrated in Fig.2.
Formally, the decoder is defined by the following equa-

tions:

NCRIRVORPICES )
2 = mean (u;lrtm) (10)
oY = std (u;l;‘;l)) (11)

141
LD — “z(we ) - /L(H'l)

o (12)

20— g (s”>,u“+1)) (13)

where VW is a weight matrix from layer [+1 to layer [.

The function g (-, -) is also called the combinator func-
tion as it combines the vertical u!T" and the lateral .
We use the function proposed by Pezeshki et al.[38],
modeled by an MLP with inputs [u, Z,u ©® z], where u is
the batch normalized projection of the layer above and ©
represents the Hadamard product.

3.3 Objective function

The objective function of the ladder network consists
of two parts which correspond to the supervised part and
unsupervised part respectively. The goal of the unsuper-
vised part is to reconstruct the input signals, whose im-
pact is to obtain effective intermediate hidden representa-
tions automatically that accord with speech emotion clas-
sification better. Besides, the unsupervised objective can
regularize the supervised speech emotional recognition
task. The unsupervised objective and supervised object-
ive are optimized simultaneously, which makes the sys-
tem integrated into a whole model to train the ladder
network and avoids the discordance of the optimization
objective of two parts.

The supervised loss is cross entropy cost calculated
between the noisy output ¢ from the top of noise encoder
and the true target y*. The unsupervised loss is recon-
struction loss between every layer of clean encoder and its
corresponding layer of the decoder with lateral connec-
tions. The total objective function is a weighted sum of
the supervised loss and unsupervised loss:

L
C=CE+X\Y _RCY (14)
=1

where ); is a hyper-parameter weight for the unsuper-
vised loss and CFE is the supervised loss:

N
CE = —ZlogP (g (n) =y" (n)|z(n)) (15)

and RCy) is the reconstruction loss at layer I:

50 _ 2

o

RCC(IZ) = ReconsConst (z(l), é(l)) = @

—Zz

(16)
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where u® and o are mean and standard deviation of
the samples in the encoder. The output of the decoder
5® is normalized to release the effect of unwanted noise
introduced by the limited batch size of batch
normalization.

3.4 Variational autoencoder (VAE)

In this paper, we utilize VAE[6l, another version of
AE, as a comparison. Unlike DAE which aims to recon-
struct the data, VAE emphasizes the modeling of the ex-
plicit distribution form of the data to generate more in-
trinsic feature representations, as shown in Fig.3. Form-
ally, VAE is defined as follows:
fo (z|z) (17)

(Z#asz) ~
z=2zu+ 2o ©N(0,1) (18)

where x is the input, fy means the encoder. z,, z, are the
mean and standard deviation of normal distribution
learning from the encoder network. N (0,1) is the
Gaussian distribution with zero mean and unit standard
deviation.

N =

/\
O®0 O®O
\/'
OOCROO
OOCBOO
OO(;)OO

X

Fig. 3 Variational autoencoder models the data using an
explicit distribution represented by z, and z,

During the training of VAE, besides the reconstruc-
tion loss, Kullback-Leibler (KL) divergence loss is also
used.

Loss = KL (fo (z]z)||m (%)) (19)

where m (z) = N (2;0,I) is the prior multivariate
Gaussian distribution.

4 Experiments

4.1 Database

In this paper, we conduct the experiments on the inter-
active emotional dyadic motion capture (IEMOCAP)HI.

@ Springer

The database has multimodal data of 12 hours duration
from audio, visual and textual data. We focus on emo-
tion recognition from speech data. It was recorded by ten
actors; five males and five females. The recording condi-
tion was based on the form of dyadic interaction acting in
two different scenarios: scripted play and spontaneous
dialog. After completing the conversations, the record-
ings would be cut into the sentence levels. Valid and
valuable sentences would be selected and annotated as
emotional labels and neutral label with at least three an-
notators. The database has nine emotion classes in total,
namely angry, excited, happy, sad, neutral, frustrated,
fearful, surprised, and disgust. For this study, we use four
categories to evaluate the system performance including
“angry”, “happy”, “sad” and “neutral” which are re-
searched frequently and own most samples. Like other re-
searchers dol® 19, we regard the “excited” class as
“happy” class. Only the sentences satisfying the condi-
tion that at least two annotations are agreed would be se-
lected. In total we collect 5531 utterances. The basis for
partitioning the training set and test set is leave-one-
speaker-out. The class distribution is: 20.0% “angry”,
19.6% “sad”, 29.6% “happy”, and 30.8% “neutral”.

4.2 Acoustic features

The inputs of the networks are speech acoustic fea-
tures which are traditional hand-crafted emotional fea-
tures for speech emotion recognition. We refer to the
baseline features of the INTERSPEECH 2009 Emotion
Challengel2l. As shown in Table 1, it contains 16 acous-
tic low-level descriptors (LLDs) including zero-crossing-
rate (ZCR), root mean square (RMS) frame energy, pitch
frequency (normalized to 500Hz), harmonics-to-noise ra-
tio (HNR) by autocorrelation function, and mel-fre-
quency cepstral coefficient (MFCC) 1-12. Their first or-
der delta regression coefficients are utilized to double the
LLDs resulting in 32 LLDs. 12 functionals — mean, stand-
ard deviation, kurtosis, skewness, minimum and maxim-
um value, relative position, and ranges as well as two lin-
ear regression coefficients with their mean square error
(MSE) are applied to 32 LLDs to calculate 384 dimen-
sional features. The extraction of the LLDs and the com-
putation of the functionals are done wusing the
openSMILE toolkit[43],

4.3 Experimental setup and evaluation
metrics

In the experiments, three hidden layers with the size
of 500-300-100 from low layers to high layers are em-
ployed. The size of input layer is 384 corresponding to
speech acoustic feature dimension and the final predic-
tion layer is 4 corresponding to emotional classes. For the
hyper-parameter weight of the unsupervised loss A in
(14), we optimize them with search grid {0.1, 0.2, 0.5,
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Table 1 Features sets including 32 low-level descriptors (LLDs)
and 12 functions

LLD (16X 2) Functions (12)

(A) ZCR Mean
(A) RMS Energy Standard deviation
(A)FO Kurtosis, skewness
(A) HNR

Extremes: value, real, position, range

(A) MFCC 1-12 Linear regression: offset, slope, MSE

1, 2, 5}. Since every layer has individual AD) the global
search would consume much time. Thus, this parameter
is optimized layer by layer. The ADAM optimization al-
gorithml4 is utilized. The batch size is set as 32. The ini-
tial learning rate is 0.02 for 50 iterations followed by 25
iterations with a learning rate decaying linearly to 0. In
the following part, we use SVM to evaluate the perform-
ance of the feature representations learning from the net-
works. To determine the parameters of SVM, we use a
grid search in the range of [1.0, 100.0] and [0.0001, 0.1]
for C and g, respectively. Each experiment is repeated
five times to account for instability. The evaluation meas-
ure is the unweighted accuracy (UAR).

5 Results

For semi-supervised learning, the true benefit of the
ladder network is that only a few labelled samples are
available for the primary supervised task. Thus, we con-
duct four semi-supervised emotion recognition tasks with
300, 600, 1200 and 2400 labelled samples. Labelled
samples are chosen randomly from the training set but
the number of training samples in each class is balanced.
The left training samples are utilized to pretrain the net-
work without label information. To evaluate the perform-
ance of the semi-supervised ladder networks, we utilize
three other methods as a comparison. SVM is utilized to
evaluate the performance of acoustic features as baseline
results. The DAE method has similar network structure
to the ladder network shown in Fig.1, however it has no
skip connections and reconstruction loss of high layers.
Further, the VAE method is achieved by replacing the
encoder and decoder of the DAE structure with the part
described in Fig.3. The network settings of DAE and

VAE are the same as the ladder network.

Table 2 lists the average accuracies with standard de-
viation over five trials for four models. In addition, the
best accuracy of five trials is presented in the table as
well. The following analyses are mostly based on the av-
erage accuracies. With the increase of training samples,
the performance is gradually improved and the best per-
formance is achieved with all training samples for all situ-
ations, showing the increasing number of training samples
is beneficial to the emotional classification task. Further-
more, our proposed methods can achieve superior per-
formance with a small number of labelled data. The VAE
method using only 600 training samples, achieves better
performance 53.7% than SVM 52.4% using all training
samples, while the ladder network only needs 300 train-
ing samples to reach 53.6%. This suggests semi-super-
vised learning has a positive influence on performance im-
provement for speech emotion recognition. It is worth no-
ticing that the performance is improved faster for three
network methods when fewer training samples are avail-
able, specifically from 300 to 600 and from 600 to 1200.
This suggests the auxiliary unsupervised task is essential
to performance improvement. Overall, three network
methods achieve better performance than SVM baseline
results in all situations. Thus, the representations learn-
ing from deep autoencoder structures achieves better
performance than conventional models when using simil-
ar hand-crafted acoustic features. As can be seen from
Table 2, VAE yields better accuracy than the DAE meth-
od, which shows that VAE would model intrinsic struc-
ture of speech emotional data to generate better feature
representations. However, there is instability for VAE,
since their standard deviations are greater than DAE. We
can also observe that the ladder network achieves best
performance among all methods. Noticing the difference
between DAE and the ladder network is the existence of
lateral connections. The results verify that lateral connec-
tions between encoder and decoder greatly contribute to
the improved performance. The ladder network yields
better performance than VAE with smaller standard devi-
ation, showing its superiority to speech emotion recogni-
tion.

The results of Table 2 are based on the structure
whose encoder and decoder are composed of MLP. Next,
we replace the MLP layer with convolutional neural net-

Table 2 Average accuracies (in percent) with standard deviation over five trials on the testing set with 300, 600, 1200, 2400 and all
labelled samples using MLP

Number of labelled samples

1200

2400

All

Systems
300 600
SVM 46.3+1.3 (47.2) 47.3+1.4 (48.0)
DAE 50.1+1.6 (51.1) 50.9+2.1 (52.1)
VAE 51.94+2.0 (53.0) 53.71+2.0 (54.8)

Ladder network

53.6+1.8 (54.7)

55.6+1.7 (56.5)

49.5+0.9 (49.9)
53.9+1.5 (54.3)
55.4+1.6 (56.1)

57.3+2.1 (58.4)

51.1+1.1 (52.0)
54.9+1.2 (55.7)
56.7+1.5 (57.3)

58.0+1.0 (58.5)

52.440.8 (53.8)
55.8+1.4 (56.4)
57.4%1.7 (58.2)

58.6+1.1 (59.1)
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works (CNN) layer for three network models to improve
the performance. The inputs are frame-level features
which replace utterance-level features when using MLP.
Specifically, the encoder is replaced with three 2D convo-
lutional layers and the decoder is replaced with three 2D
deconvolutional layers. The filter number and kernel size
are shown in Table 3. The number of parameters is in-
creased from 2.8 M with MLP to 5.8M with CNN for
three networks. Therefore, the training time is also in-
creased from less than one hour to about two hours for
three networks. The training time of the ladder network
is larger than DAE because of the addition of lateral con-
nections and reconstruction loss. The training time of
VAE is sometimes larger than the ladder network or
smaller than the ladder network due to its instability.

Table 3 Architecture of the encoder and decoder. Conv2D is a
2D convolution layer, and Conv2D-d is a 2D deconvolution layer

Layers Filter number Kernel size  Strides
Encoder Conv2D 32 9Xx9 2X2
Conv2D 64 X7 2X2
Conv2D 128 5X5 2X2
Decoder Conv2D-d 128 5X5 2X2
Conv2D-d 64 X7 2X2
Conv2D-d 32 9X9 2X2

The corresponding experimental results are shown in
Table 4. By comparing Table 2 with Table 4, we can ob-
serve that the models with MLP have better perform-
ance when fewer training samples (300 and 600) are avail-
able, while the models with CNN have better perform-
ance when more training samples (1200 and more) are
available. In addition, the standard deviation is relat-
ively decreased. This suggests CNN has better and ro-
bust ability to encode emotional characteristics when
training data is enough. Similarly, the ladder network
achieves better performance than VAE, which achieves
better performance than DAE. The results also verify the
significance of unsupervised learning when few training
samples are available.

The autoencoder structures have superior ability to
extract effective feature representations compared with
other network models. We extract the features from the
highest hidden layer of trained models and feed them to

the SVM classifier to assess their quality. Fig.4 reveals
the classifier performance of three network methods on
the testing set with 300, 600, 1200 and 2400 labelled
samples using MLP and CNN as feature extractor. We
also explore the influence of supervised learning. In Fig.4,
the symbol “1” represents training without supervised
learning while “2” represents training with supervised
learning. At every setting, the ladder network achieves
best performance followed by VAE, and DAE is worst.
Comparing Fig.4(a) with Fig.4(b), the performance of
CNN structure achieves better performance than MLP
structure. For example, when using 2400 training samples
with supervised learning, the ladder network using CNN
structure achieves 60.3%, better than the MLP
structure’s result of 59.8%. The results show the models
with supervised learning yield better performance than
the models without supervised learning. The “Ladder2”
using CNN achieves better performance of 60.3% than
“Ladderl” with 59.4%, which shows the supervised in-
formation is beneficial to guide better feature representa-
tions. The results of Fig.4 are better than the results of
Tables 2 and 4, verifying the ability of autoencoder struc-
tures to generate more discriminating feature representa-
tions for speech emotion recognition.

After comparing the performance of the features from
the highest layer, we turn our attention from low layers
to high layers with three network structures. Similarly,
SVM is utilized to evaluate the quality of the features.
This part is based on CNN structure using all training
samples and the experimental results are shown in Fig. 5.
The performances of the first layer “384” are the experi-
mental results of acoustic features which are similar to
Table 2 and final layer “4” are accuracies of supervised
learning which are similar to Table 4. The results show
that the accuracies of last layer “4” are worse than last
hidden layer “100” which is the same as the experiment-
al results of Fig.4. The accuracies are improved with the
increase of the layers for three network methods. We can
observe that DAE achieves better performance than VAE
and the ladder network in first hidden layer “500” while
VAE and the ladder network outperform DAE in the fol-
lowing layers “300” and “100”. Therefore, high layers
have the advantage of generating more salient emotional
representations. Further, the ladder network achieves bet-
ter performance than VAE in all hidden layers, which
verifies the effectiveness of our proposed methods.

Table 4 Average accuracies (in percent) with standard deviation over five trials on the testing set with 300, 600, 1200, 2400 and all
labelled samples using CNN

Number of labelled samples

Systems
300 600 1200 2400 All
DAE 48.41+2.0 (49.5) 50.4+1.8 (51.4) 54.3+1.1 (55.3) 55.4+1.1 (56.1) 56.3+1.0 (57.0)
VAE 47.3+2.1 (48.5) 51.2+1.7 (52.1) 55.84+1.3 (56.3) 57.0+1.4 (57.7) 58.0+1.3 (58.5)

Ladder network 49.1+1.3 (49.9) 53.510.9 (53.9)

57.741.2 (58.2) 58.4+1.1 (58.8) 59.4+0.8 (59.7)

@ Springer



J. H. Tao et al. / Semi-supervised Ladder Networks for Speech Emotion Recognition 445

60 | CTDAEIL
W DAE2 | |
53 [IVAEIL ] i
| CIVAE2 -
[JLadderl
% 56 r [JLadder2
=]
54
5 H {
50
300 600 1200 2400
Samples number
(a) MLP

60 | CTDAEIL -
W DAE2 i il
53 [IVAEL ]
| CIVAE2 m
[JLadderl
% 56 I [JLadder2
=]
54
52 t ‘ (
50
300 600 1200 2400
Samples number
(b) CNN

Fig. 4 Classification performance on the testing set with 300, 600, 1200 and 2400 labelled samples using MLP and CNN as feature
extractor. SVM is used as classifier. The symbol “1” represents training without supervised learning while “2” represents training with

supervised learning.
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Fig.5 Classification performance from low layers to high
layers for DAE, VAE and the ladder network

Finally, we demonstrate the performance on different
speech emotional categories. Table 5 shows the results of
different models corresponding to the best results using
all training samples in Table 4. The performance of DAE,
VAE and the ladder network are 57.0%, 58.5% and 59.7%
respectively. Compared with DAE, the results show that
the VAE method yields better performance on “angry”,
“happy” and “sad”. The ladder network achieves its best
performance on “angry”, “happy” and “neutral”, while
the performance of “sad” is decreased slightly. Thus, the
enhanced network structure is beneficial to the perform-
ance improvement of “angry” and “happy”.

We also compare the proposed method with other
methods in the literature. We also compare the proposed

Table 5 Accuracy (in percent) for each class using three
different methods

Class
Systems
Ang Hap Neu Sad
DAE 65.9 52.9 53.9 63.3
VAE 69.4 55.4 52.9 65.3
Ladder network 70.6 56.3 56.8 62.9

method with other methods in the literature, as shown in
Table 6. Our proposed method achieves better perform-
ance of 59.7% than the 56.1% of Michael's work in [9],
which uses an attentive convolutional neural network to
recognize emotions. Fayek et al.ll0 introduce a frame-
based formulation to model intra-utterance dynamics
with end-to-end deep learning, achieving better perform-
ance of 60.9%. The feature representations from the top
layer with SVM achieve 60.3% in Fig.5, which is a com-
parable result to [10].

Table 6 Performance comparison between our method with
other methods

Model Accuracy
Attentive CNNLI 56.1
Frame-based SER['V] 60.9
Ladder network 59.7

6 Conclusions

In this paper, we apply semi-supervised learning to
speech emotion recognition to explore the effect of the
ladder network. The unsupervised reconstruction of the
inputs is an auxiliary task to regularize the network,
which can generate more powerful representations for
speech emotion recognition system. We conduct the ex-
periments on the IEMOCAP database and the results
demonstrate that the proposed methods achieve superior
performance with a small number of labelled data. We
also compare the ladder network with two classic net-
work structures DAE and VAE, showing the ladder net-
work outperforms them significantly. The results suggest
lateral connections between encoder and decoder greatly
contribute to the improved performance. The skip con-
nections between the encoder and decoder ease the pres-
sure of transporting information needed to reconstruct
the representations to the top layers. Thus, a higher lay-
er has the ability to generate discriminative features for
speech emotion recognition. Meanwhile, the supervised
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learning task is beneficial to generate more effective fea-

ture representations. Besides, CNN has better and robust

ability to encode emotional characteristics compared to

the MLP structure. Finally, our proposed methods are be-

neficial to the performance improvement of “angry” and

“happy”. In the future, we will try to utilize more avail-

able unlabeled speech data to improve the performance of

SER. Deeper semi-supervised learning and other network

structures like recurrent neural networks (RNNs) will be

explored.
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