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ABSTRACT 
The continuous dimensional emotion can depict subtlety and 
complexity of emotional change, which is an inherently 
challenging problem with growing attention. This paper presents 
our automatic prediction of dimensional emotional state for 
Audio-Visual Emotion Challenge (AVEC 2017), which uses 
multi-features and fusion across all available modalities. Besides 
the baseline features provided by the organizers, we also extract 
other acoustic audio feature sets, appearance features and deep 
visual features as complementary features. Each type of feature 
is trained using Long Short-Term Memory Recurrent Neutral 
Network (LSTM-RNN) for every dimensional emotion prediction 
separately considering annotation delay and temporal pooling. 
To overcome overfitting problem, robust models are chosen 
carefully for individual model. Finally, multimodal emotion 
fusion is achieved by utilizing Support Vector Regression (SVR) 
with the estimates from different feature sets in decision level 
fusion. The experimental results indicate that our extracted 
features are beneficial to performance improvement and our 

system design achieves very promising results with Concordant 
Correlation Coefficient (CCC), which outperform the baseline 
system on the testing set for arousal of 0.599 vs 0.375 (baseline) 
and for valence of 0.721 vs 0.466 and for liking 0.295 vs 0.246. 

Keywords 
Dimensional Emotion Recognition; LSTM-RNN; Delay; Temporal 
pooling; Overfitting; Multimodal fusion 

1 INTRODUCTION 
Due to the essential role of affective computing in artificial 
intelligence, emotion recognition has gained increasingly 
intensive attention [1], especially for the recognition of non-
acted spontaneous emotions in the continuous dimensional 
space. The past emotion recognition focused on laboratory 
settings, which is difficult to be applied in real world situations 
effectively [2]. Moreover, there is a shift from discrete emotion 
model to dimensional emotion model which describes emotion in 
a continuous multi-dimensional emotion space [3][4] and thus 
can model subtle and complicated emotional behaviors. 

The Audio-Visual Emotion Challenge (AVEC) [5-11], an 
annual challenge since 2011, aims at promoting the development 
of multimedia processing and machine learning methods for 
automatic continuous emotion recognition in the wild. It 
provides a framework for non-acted spontaneous emotion 
recognitions and a fair benchmark to evaluate various emotion 
recognition methods. The first AVEC [5] simplifies the 
continuous dimensional emotion prediction as a classification 
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task, while the following challenges regard it as a regression task 
to be corresponding to natural emotional state. The depression 
recognition sub-challenge is added since AVEC 2013 [7], which 
is related to emotion recognition well. The physiological 
modality is added in AVEC 2015 [9] and AVEC 2016 [10], but 
doesn’t appear in AVEC 2017 [11]. AVEC 2017 introduces text 
modality in the first time. For the dimensional modeling of 
emotion, arousal and valence dimension are widely used in most 
of AVEC challenges. Besides these two dimensions, AVEC 2017 
introduces prediction of likability indicating the participants’ 
tastes for the video/audio, which are explained in Fig. 1. 

Audio modality plays a key role in emotion recognition 
especially in arousal dimension. For the audio signals, AVEC 
organizers provide the extended Geneva Minimalistic Acoustic 
Parameter Set (eGeMAPS) [13] as baseline features. The acoustic 
feature sets are main audio features for emotion recognition in 
most of researches. Bottle-neck (BN) features are firstly proposed 
to improve the performance of speech recognition [14] and then 
found to be effective in language identification [15] and speaker 
identification [16]. BN features are generated from a narrow 
hidden layer of Deep Neural Network (DNN), which are adopted 
for emotion recognition in AVEC 2015 [17] and AVEC 2016 [18]. 
Filip et al. [17][18] adopt two Neural Networks (NNs) structure, 
the output of the first network is stacked in time, defining 
context-dependent input features for the second NN. Two 
stacked BN features are used as acoustic feature set trained as 
French and several languages, which achieve promising 
performance for emotion recognition. 

For video signals, AVEC organizers provide geometric features 
related to the position and expression of the subjects’ face. 
Empirically, facial expressions have an important influence on 
emotion recognition especially in valence dimension. Bo et al. 
[19] explore various visual features for continuous emotion 
recognition, including Local Binary Gabor Patterns (LGBP) [20], 
geometric features, multi-scale dense SIFT and deep visual 
features. They utilize Convolutional neutral networks (CNNs), 
AlexNet and ResNet pre-trained on other dataset and fin-tuned 
on the AVEC dataset to extract deep visual features, which have 
positive effect on emotion recognition. 

 
 
 
 
 
 
 
 
 
 

 
 
People can perceive emotion straightway from hearing and 

vision. In addition, the semantic of the words can provide helpful 
and important information in emotion recognition. For example, 
some special words, laughter and sob can reflect the current 
emotion state of the person indeed. Two main methods are 

applied to take advantage of text modality, lexicon-based 
approach and word embedding. The lexicon-based approach 
obtains semantic information from the lexicon of emotional 
words to estimate emotion. Word embedding maps the words to 
real number vectors in a lower dimensional space. Due to the 
lack of text modality data of AVEC 2016, Filip et al. [18] use an 
automatic speech recognition system to get text transcriptions. 
They investigate the effectiveness of text based features using 
lexicon-based approach and word embedding, and the results 
indicate that word embedding can improve the performance of 
arousal dimension. In AVEC 2017, organizers provide a bag-of-
words text feature representation based on the transcription of 
the speech as text features. The baseline experimental results [11] 
show that text features achieve best and robust performance in 
liking dimension. 

With respect to the continuous emotion recognition, various 
regression models have been used. Two regression models are 
used frequently; one is static regression models represented by 
Kernel based SVR and the other introduces recurrent networks 
such as Long Short-Term Memory Recurrent Neural Networks 
(LSTM-RNNs). SVR can achieve satisfactory performance and is 
chosen as the baseline method in AVEC challenges [9][10]. 
However, dimensional emotion is continuous temporal process 
related closely to contextual information. Therefore, successful 
application of temporal information has a critical impact on 
performance improvement of emotion recognition. Wöllmer et 
al. [21] utilize LSTM-RNN to perform regression analysis on 
arousal and valence dimension, which improves recognition 
performance significantly. Later, Wöllmer and Nicolaou et al. 
[22] further improve the LSTM architectures to bidirectional 
LSTM (BLSTM). Compared to SVR, LSTM can capture the 
temporal information of the emotional dimension better, which 
is also adopted by the first place winner [23] and second place 
winner [24] of AVEC 2015. 

Benefited from the complementarity of different modalities, 
multimodal emotion fusion can achieve significant recognition 
improvements and provide the robustness when feature 
extraction fails. Feature level fusion and decision level fusion 
strategies are widely utilized [3]. Feature level fusion extracts 
features from every modality separately and then concatenates 
them into feature vector for final emotion recognition. Feature 
level fusion suffers from the curse of dimensionality and 
demands a strict time synchrony between the modalities. 
Decision level fusion assumes each modality is independent 
which eliminates some disadvantages of feature level fusion. It 
builds separate emotion recognition models and combines the 
predictions of different modalities to train a second level model. 
The baseline systems [10][11] and Bo et al. [19] utilize multi-
modal decision level fusion to improve system performance. 
Chao et al. [24] adopts LSTM for decision level fusion to achieve 
better performance than feature level fusion. Therefore, decision 
level fusion is considered in this challenge. 

In the following, Section 2 briefly introduces the database. 
Section 3 presents feature sets adopted in this challenge. Section 
4 describes the regression model. Section 5 show details of the 
entire experiment and results. Section 6 concludes this paper. 

Figure 1: The descriptions of arousal, valence and liking 
dimensions [12] 
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2 DATABASE 
AVEC 2017 is based on Sentiment Analysis in the Wild (SEWA). 
This database collects spontaneous and naturalistic interactions 
consisting of audio, video and text modalities. All recordings 
were recorded ‘in the wild’ through human-human interactions, 
but only the behaviors of one person are in every recording. 
Thus, the recording of audio can record the sound of another 
interlocutor, which would influence the effectiveness of features. 
Speaker turn timings are derived to know which subject is 
specking when. We add the turn timings information to feature 
sets to decrease this influence. The duration time of the 
recording ranges from 40 seconds to 3 minutes, which is 
different from former challenges having similar duration time 
for all the recordings. This dataset is annotated in three 
dimensions, namely arousal, valence, liking. The results are 
evaluated using CCC, which combines the Pearson correlation 
coefficient of two times series with mean square error. 

3 MULTI-MODAL EMOTION FEATURES 

3.1 Audio Features 
3.1.1 Baseline Audio Features. This challenge adopts 
eGeMAPS as the baseline audio features. Both segment-level 
acoustic feature types are computed over segments of 4/6 
seconds. Overall, the acoustic baseline feature sets contain 88 
dimensional features. The extraction of the LLDs and the 
computation of the functionals are done using the openSMILE 
toolkit [25]. 

3.1.2 Other Audio Feature Sets. Due to the importance of 
audio modality in emotion recognition, we extract other acoustic 
feature sets to complement the baseline audio features. 
Specifically, we extract the baseline audio feature set of 
INTERSPEECH 2010 Paralinguistic Challenge (IS10) [26] which 
can better reflect a border coverage of paralinguistic information 
assessment. It includes 38 LLDs computed by 21 functionals 
resulting in 1582 acoustic features. Finally, we apply a Principal 
Component Analysis (PCA) to retain 418 dimensional features. 

In addition, MFCC features have wide application and 
excellent performance in the field of speech recognition. The 
winner of AVEC 2016 [27] extracts MFCC features as one type of 
audio features which achieve better performance than other 
audio features in arousal and valence dimension. Therefore, we 
compute MFCC features using mel-scale filterbank to extract 39 
dimensional features including 13 dimensional MFCC along with 
their delta and acceleration coefficients. 

3.1.3 BN Features. Filip et al. [17][18] have verified the 
effectiveness of BN features. We extract high level BN features 
from bottleneck DNN network, which is different from Filip’s 
two Neural Networks (NNs) structure. The bottleneck DNN 
network, designed for speech recognition, has six hidden layers 
and each layer has 1024 nodes except 60 nodes of last layers. We 
utilize 300 hours spontaneous English speech recognition corpus 
to train this network. The trained deep speech recognition 
network acts as DNN based feature extractor.  

3.2 Video Features 
3.2.1 Baseline Video features. AVEC organizers provide 
geometric features related to the position and expression of the 
subjects’ face including face orientation, eye points and facial 
landmarks. We handle origin features to obtain robust and 
efficient features [9]. The 49 facial landmarks are aligned with a 
mean shape from stable points (located on the eye corners and 
on the nose region). Then, we compute the difference between 
the coordinates of the aligned landmarks and those from the 
mean shape, and also between the aligned landmark locations in 
the previous and the current frame. The same operations are 
applied for face orientation and eye points. Then, the facial 
landmarks are split into three regions: i) the left eye and left 
eyebrow, ii) the right eye and right eyebrow and iii) the mouth. 
For each of these groups, the Euclidean distances (L2-norm) and 
the angles (in radians) between the points are computed. We also 
computed the Euclidean distance between the median of the 
stable landmarks and each aligned landmark in a video frame. 
The geometric feature sets are interpolated by a piecewise cubic 
Hermite polynomial to cope with dropped frames. In a results, 
geometric features have 372 dimensional features. 

3.2.2 Appearance Features. Facial expressions are usually 
quantified by two types of facial descriptors: appearance and 
geometric features. We extract Local Gabor Binary Patterns from 
Three Orthogonal Planes (LGBP-TOP) and Histogram of 
Oriented Gradients (HOG) as the appearance features. LGBP-
TOP features are extracted based on blocks of frames to capture 
dynamic information effectively. Firstly, we detect face pictures 
with frame step 20ms from video stream. The failed frames are 
replaced with neighboring successful frame. Then, we follow the 
operating steps [9] to extract LGBP-TOP features. HOG [28] 
features describe the distribution information of intensity 
gradients or edge directions. The descriptor decomposes a local 
region into small squared cells, computes the histogram of 
different bins of oriented gradients in each cell, and normalizes 
the results using block-wise pattern (each block contains several 
cells). Finally, a feature reduction is performed by applying a 
PCA for LGBP-TOP keeping 500 dimensional features and HOG 
features keeping 40 dimensional features. 

3.2.3 Deep Visual Features. As previously mentioned, Bo et 
al. [19] verify the effectiveness of deep visual features based on 
AlexNet and ResNet for continuous emotion recognition. 
Therefore, we extract deep visual features based on AlexNet. The 
effective Deep CNN model is trained using 110,000 face images 
from 1032 people in all, inspired by Liu’s work [29]. The trained 
CNN model acts as CNN based feature extractor. The detected 
face images are fed into trained CNN network to extract the 
9216-dimensional features from the 5th pooling layer. Finally, 
500 dimensional features are kept based on the importance of the 
features. 

3.3 Text Features 
AVEC 2017 firstly introduces text modality features, which are 
bag-of-words feature representation. The dictionary for these 
textual features is learnt from the training partition taking only 
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the terms with at least two occurrences into account. The 
generated dictionary consists of 521 words, where only unigrams 
are considered. Finally, bag-of-text-words (BoTW) features are 
extracted by openXBOW [30]. In this challenge, text features are 
used to improve the recognition performance. 

4 MULTI-MODAL EMOTION REGRESSION 
MODEL 

For this challenge, we adopt the LSTM-RNN based neutral 
network as basic emotion regression model. The overview of 
system framework is shown in Figure 2(a). Different types of 
features from audio, video and text modalities described in detail 
in section 3 are extracted respectively. Then, each feature set is 
trained individually to get its best model. The concatenated 
estimates from different modalities are utilized to obtain final 
emotion predictions using SVR. Figure 3(b) presents specific 
procedure of model training. The turn timings information is 
added to feature sets as mentioned in section 2. Then, the 
features are fed into LSTM to train emotion regression model by 
taking the factor of annotation delay and temporal pooling into 
consideration. 

 

4.1 Annotation Delay 
Continuous dimensional emotion accords with nature emotional 
dynamic, while time-continuous annotations bring problems 
about the reliability of the labels. When the annotators label the 

recordings, a serious problem is their reaction lag caused by 
observing, appraising and responding to the expressive 
behaviors [31]. Soroosh et al. [31] propose to compensate for this 
reaction lag by finding the time-shifting that maximizes the 
mutual information between the expressive behaviors and the 
time-continuous annotations. The factor of annotation delay is 
processed in many emotion recognition systems of AVEC 
[11][23][32] to improve the prediction performance. Therefore, 
we consider the influence of annotation delay in our emotion 
regression model. This is achieved by shifting all annotations 
forward in time before training a model. The duration time of 
delay is regarded as a parameter to be optimized when training 
LSTM model. For each feature set, we find its proper duration 
time of delay adapted to LSTM training. The parameter delay 
ranges from 0 s to 2 s with a step of 0.2 s. 

4.2 Temporal Pooling 
There exists inevitable label noise owing to continuous long time 
annotation. Michel et al. [8] calculate the average ratings from 
all raters to minimize the label noise. In AVEC 2017 [11], 
Hermitian resampling and EWE approach are performed to 
create one unique gold standard from the annotations and 
decrease the noisy of the labels. In SEWA, every frame (100ms) is 
labeled one dimensional value and the maximum frames is 1756. 

Therefore, there also exists redundant information among 
adjacent frames. Ringeval et al. [32] add average window to the 
labels and features to smooth the labels and decrease the noise. 
Chao et al. utilize temporal pooling function in the forward 
network for deep belief network [33] and LSTM [24] to reduce 

 
Figure 2: (a) Overview of the proposed multimodal emotion regression method. The features from different modalities are 
extracted in feature extraction. Each feature set is trained individually based on LSTM model. The estimates from different 
modalities are concatenated to obtain final emotion predictions using SVR in decision level fusion. (b) Modeling training. 
The feature sets combined with turns time information are fed into LSTM to train emotion regression model considering 
the factor of delay and temporal pooling. 
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the label noise and redundant information. The temporal pooling 
operation add the window to average both the features and 
labels, which can get the statics of the successive frames to 
achieve short level temporal modeling. On the other, temporal 
pooling of the features is also regarded as sub-sampling. The 
labels are also averaged in the same size of window to decrease 
the noisy to some extent. Thus, we utilize the temporal pooling, 
specifically mean pooling same as Chao’s work [24]. The 
window length of temporal pooling is also regarded as a 
parameter to be optimized when training LSTM model.  

4.3 LSTM-RNN Model 
LSTM-RNN can learn long-term dynamic information since the 
output of LSTM layer is influenced by the outputs of hidden 
layer involving previous information and the current input. 
Emotion is a temporally expression event which can be better 
inferred by LSTM network structure. Each feature set is inputted 
to LSTM to train individual emotion regression model. The turn 
timings information is added to the feature sets to decrease the 
noise of the recordings. We quantize the turn timings 
information by setting the time range when the recorder is 
talking to 1 and the time range when another interlocutor is 
talking to 0. We use ↋-insensitive loss function to ignore small 
errors and assign absolute value loss to large errors, which is 
more suitable than the other loss functions [24]. For different 
feature sets, the architectures of the network including one 
LSTM layer keeps same except the number of nodes in the input 
layer. Adadelta [34] optimization algorithm is utilized. Weight 
decay in the linear regression layer is also applied to prevent 
over-fitting. The hyper-parameters, the number of hidden layer 
nodes along with the delay time and the window length of 
temporal pooling, are chosen based on the CCC performance by 
random combination in the development set. The maximum 
training epochs are 70. We also use dropout after LSTM with the 
rate 0.5. 

4.4 Decision Level Fusion 
Having finished model training of every feature set, the 
estimates from different features are concatenated to train 
further regression model. Three conventional regression 
algorithms, logistic regression, random forest and SVR are 
utilized in this study. In random forest, the number of trees 
varies from range [50, 500] and the maximum depth of the tree 
varies from range [5, 10]. In SVM, the parameter C varies from 
range [1, 100] and gamma varies from range [0.01, 0.5]. The 
experimental results indicate that SVR with RBF kernel can 
achieve best performance. Therefore, we utilize SVR with RBF 
kernel for decision level fusion. The hyper-parameters of SVR 
are chosen based on the CCC performance in the development 
set. Given space limitations, we only present the experimental 
results of SVR in the following. 
 
 
 

5 EXPERIMENTS AND ANALYSIS 
Limited to the size of SEWA database, the LSTM model is hard to 
be trained adequately, easy to fall into overfitting. The 
experimental results reveal that the CCC performance of 
training can achieve near 0.9, but it degrades seriously on 
development and testing set, which will be shown in Fig. 3. To 
solve this problem, we split the development set into two 
subsets: the first 9 subjects are regarded as dev1 set to adjust the 
parameters and the left 5 subjects are regarded as dev2 set to test 
the model. We choose the model that achieves better and close 
performance on both dev1 and dev2 set. The predicted 
performance is reported in terms of CCC with the root mean 
squared error (RMSE) and Pearson’s correlation coefficient 
(PCC). 

5.1 Unimodal Emotion Prediction 
For every dimension, different feature sets are trained separately 
to get best performance through the settings described in section 
4.3. There are nine feature sets in all, four feature sets 
(eGeMAPS, IS10, MFCC and BN) for audio modality, four feature 
set (Geometric, LGBP-TOP, HOG and Deep visual) for video 
modality and one feature set (BoTW) for text modality. The 
experimental results on dev2 set are shown in Table 1, and the 
corresponding results of dev1 set are in brackets. The symbol “-” 
represents that the feature sets are abandoned because of worse 
performance. 

In the following, we assess the feature sets based on the CCC 
performance of dev2 set. Deep visual features achieve best 
perform 0.682 in arousal dimension, while geometric features 
achieve best performance 0.740 in valence dimension. Thus, 
video modality achieves better performance than audio modality 
both in arousal and valence dimension, which is different from 
previous statements that audio modality can achieve better 
performance in arousal dimension and video modality can 
achieve better performance in valence dimension. However, only 
BoTW features can perform well on both dev1 (0.444) and dev2 
set (0.473) for liking dimension. LGBP-TOP features achieve 
promising performance on dev1 set (0.581) but generalize badly 
on dev2 set (0.236). As a whole, the performance of arousal and 
valence dimension are much higher than that of liking 
dimension. The performance of valence dimension is better than 
that of arousal dimension, which is also contrary to previous 
AVEC challenges. 

The delay of different feature sets is recorded in Table 2. We 
can observe that arousal and valence dimension have shorter 
delay less than 1 second and liking dimension has longer delay 
more than 1 second except the IS10. It indicates that the 
annotators can react quickly to arousal and valence dimension 
when perceiving others’ emotional state, but slowly to liking 
dimension when expressing their preferences for the recordings. 
Besides, the duration of delay time is shorter than the 
experimental results of baseline system. An explain could be that 
LSTM network capturing the temporal information has 
alleviated some influence of annotation delay. 
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5.2 Multi-modal Emotion Prediction 
For each feature set, we need to obtain robust model 
respectively. To be specific, the chosen model should perform 
well on both dev1 and dev2 set, meanwhile avoid overfitting. In 
reality, there is high chance that overfitting would exist if the 
number of the training epochs is set too large. We can observe 
from Fig. 3(b) in valence dimension that the performance of dev1 
and dev2 set have reached a stable state in near 10 epochs, but 
the performance of training set is still increasing after 10 epochs.  

Therefore, the final model near 70 epochs is overfitting. The 
same situation also exists in Fig. 3(a) for arousal dimension and 
in Fig. 3(c) for liking dimension. To overcome this problem, the 
models are chosen once the performance of dev1 and dev2 set 
reach a stable state. For example, we choose the model near 10 
epochs in Fig. 3(b) rather than the model near 70 epochs. We also  
 
 

Delay(s) Arousal Valence Liking 
eGeMAPS 0.4 0.6 1.8 

IS10 1.0 1.6 0.4 
BN  0.0 0.4 - 

MFCC  0.8 0.0 - 
Geometric  0.2 0.2 1.2 
LGBP-TOP 0.8 0.8 1.6 

HOG 0.2 0.2 1.2 
Deep visual  0.0 0.2 1.0 

BoTW 0.8 1.0 1.4 

notice that the training of valence dimension is stable, but that of 
arousal and liking dimension have serious fluctuation, which 
influences their robustness. 

After obtaining appropriate model of every feature set, their 
estimates are combined by frame-wise concatenation. Then, SVR 
is utilized for decision level fusion. The model of SVR are trained 
on training set, optimized on dev1 set and tested on dev2 set. In 
order to select an optimal combination of feature sets, a greedy 
feature selection strategy is utilized. Firstly, we rank the feature 
sets according to their CCC performance of dev2 set. Then, the 
feature sets are added sequentially to the combination in order, 
and the feature set is retained if the performance of dev2 set 
increases, otherwise abandoned. The combination with the 
highest value is selected. Finally, the post-processing median-
filtering [9] is applied to smooth the prediction with the window 
size optimized on dev1 set. Prediction results on dev1 and dev2 
set, with different combinations are shown in Table 3 for arousal 
dimension, Table 4 for valence dimension, Table 5 for liking 
dimension. We can observe that the feature selection strategy is 
effective because the selected feature combinations is better than 
the combinations including all available feature sets for three 
dimensions. The optimal combination of arousal dimension is 
deep visual features, geometric features, LGBP-TOP, HOG and 
eGeMAPS. The optimal combination of valence dimension is 
geometric features, deep visual features, HOG, IS10, eGeMAPS 
and BoTW. The optimal combination of liking dimension is 
BoTW, deep visual features, LGBP-TOP, IS10 and geometric 
features.  

 
 

Table 1: Performance comparisons with the proposed emotion regression model and different feature sets for the AVEC 
2017 dev2 set (dev1 set).  

 
Arousal Valence Liking 

RMSE PCC CCC RMSE PCC CCC RMSE PCC CCC 

eGeMAPS(88) 
0.123 

(0.144) 
0.522 

(0.509) 
0.506 

(0.485) 
0.165 

(0.167) 
0.500 

(0.484) 
0.455 

(0.478) 
0.133 

(0.133) 
0.203 

(0.468) 
0.193 

(0.426) 

IS10(418) 
0.119 

(0.125) 
0.502 

(0.655) 
0.465 

(0.631) 
0.131 

(0.139) 
0.442 

(0.540) 
0.440 

(0.536) 
0.103 

(0.126) 
0.229 

(0.427) 
0.227 

(0.373) 

BN(60) 
0.107 

(0.128) 
0.543 

(0.627) 
0.533 

(0.604) 
0.128 

(0.122) 
0.485 

(0.647) 
0.466 

(0.643) 
- - - 

MFCC(39) 
0.139 

(0.165) 
0.356 

(0.406) 
0.341 

(0.400) 
0.127 

(0.142) 
0.425 

(0.468) 
0.421 

(0.453) 
- - - 

Geometric(372) 
0.092 

(0.117) 
0.645 

(0.691) 
0.639 

(0.662) 
0.087 

(0.109) 
0.742 

(0.718) 
0.740 

(0.713) 
0.110 

(0.144) 
0.169 

(0.327) 
0.166 

(0.310) 
LGBP-

TOP(500) 
0.108 

(0.112) 
0.647 

(0.724) 
0.604 

(0.708) 
0.100 

(0.114) 
0.696 

(0.691) 
0.695 

(0.686) 
0.139 

(0.117) 
0.284 

(0.588) 
0.236 

(0.581) 

HOG(40) 
0.100 

(0.130) 
0.649 

(0.615) 
0.602 

(0.591) 
0.109 

(0.141) 
0.597 

(0.544) 
0.590 

(0.526) 
0.134 

(0.135) 
0.165 

(0.354) 
0.153 

(0.329) 
Deep 

visual(500) 
0.093 

(0.117) 
0.703 

(0.699) 
0.682 

(0.673) 
0.090 

(0.103) 
0.724 

(0.738) 
0.720 

(0.720) 
0.096 

(0.147) 
0.314 

(0.374) 
0.302 

(0.351) 

BoTW(521) 
0.112 

(0.135) 
0.463 

(0.558) 
0.451 

(0.503) 
0.125 

(0.135) 
0.518 

(0.539) 
0.518 

(0.526) 
0.090 

(0.124) 
0.478 

(0.472) 
0.473 

(0.444) 
 

Table 2: The delay of different feature sets in three 
dimensions 
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    Multimodal fusion improves the performance obviously 
compared to unimodal prediction. For valence dimension, the 
performance of dev1 and dev2 set are both increasing when 
adding the new features. It’s worth noting that the performance 
of dev1 set might decrease, contrary to dev2 set when adding the 
new features for arousal and liking dimension. It indicates that 
multimodal fusion is stable and effective for valence dimension, 
but a little fluctuant for arousal and liking dimension. The final 
results for AVEC 2017 development and testing set are shown in 
Table 6 including baseline results. Our proposed method 
achieves promising results. The system results with Concordant 
Correlation Coefficient (CCC), outperform the baseline system 
on the testing set for arousal of 0.599 vs 0.375 (baseline) and for 
valence of 0.721 vs 0.466 and for liking 0.295 vs 0.246. 
 
 
 

 RMSE PCC CCC 
A: Deep visual+ 

Geometric  
0.082 

(0.110) 
0.725 

(0.742) 
0.708 

(0.697) 

B: A+ LGBP-TOP 
0.082 

(0.110) 
0.732 

(0.736) 
0.709 

(0.690) 

C: B+ HOG 
0.072 

(0.117) 
0.763 

(0.722) 
0.750 

(0.635) 

D: C+ eGeMAPS 
0.071 

(0.112) 
0.773 

(0.756) 
0.762 

(0.649) 

All 
0.072 

(0.114) 
0.766 

(0.735) 
0.754 

(0.633) 
 

6 CONCLUSIONS 
This paper presents our approach for AVEC 2017. Besides the 
baseline features, we extract extra feature sets as additional 
features, IS10, MFCC features and BN features for audio 
modality; LGBP-TOP, HOG and deep visual features for video 
modality. LSTM-RNN is adopted to train dimensional emotion 
regression model for every feature set considering the factor of 
annotation delays and temporal pooling. The turn timings 

information is added to feature sets to decrease the noise of the 
recordings. Visual features achieve better performance both in 
arousal and valence dimension, especially deep visual features 
and geometric features. Audio features can achieve a good 
complementary role for emotion recognition. Text features are 
beneficial to robustness of system especially liking dimension. 
To overcome overfitting problem, better and robust models are 
chosen carefully for each feature set, which improve the 
generalization performance of emotion regression system.  
 
 
 

 RMSE PCC CCC 
A: Geometric + Deep 
visual+ LGBP-TOP 

0.088 
(0.116) 

0.744 
(0.718) 

0.718 
(0.630) 

B: A+ HOG 
0.083 

(0.106) 
0.760 

(0.753) 
0.754 

(0.697) 

C: B+ IS10+ eGeMAPS 
0.079 

(0.105) 
0.784 

(0.771) 
0.774 

(0.699) 

D: C+ BoTW 
0.078 

(0.103) 
0.786 

(0.777) 
0.776 

(0.706) 

All 
0.079 

(0.104) 
0.785 

(0.773) 
0.772 

(0.692) 
 
 
 
 

 RMSE PCC CCC 

A: BoTW+ Deep visual 
0.081 

(0.113) 
0.517 

(0.566) 
0.509 

(0.529) 

B: A+ LGBP-TOP 
0.081 

(0.114) 
0.519 

(0.565) 
0.513 

(0.530) 

C: B+ IS10  
0.077 

(0.120) 
0.542 

(0.521) 
0.530 

(0.445) 

D: C+ Geometric 
0.077 

(0.121) 
0.559 

(0.531) 
0.553 

(0.458) 

All 
0.076 

(0.118) 
0.550 

(0.525) 
0.534 

(0.400) 

Table 4: Multi-modal prediction results of valence 
dimension on dev2 set (dev1 set). 
 

 

 

Table 5: Multi-modal prediction results of liking dimension 
on dev2 set (dev1 set). 
 

 

Figure 3: (a) The CCC performance over training epochs for arousal dimension. (b) The CCC performance over training 
epochs for valence dimension. (c) The CCC performance over training epochs for liking dimension. 
 

Table 3: Multi-modal prediction results of arousal 
dimension on dev2 set (dev1 set). 
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Multimodal emotion fusion is achieved by utilizing Support 
Vector Regression (SVR) with the estimates from different 
feature sets in decision level fusion. The experimental results 
reveal that our proposed system achieves very promising results 
on both the development and testing set of AVEC 2017. 
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Table 6: Decision level fusion results for AVEC 2017 development set and testing set, including the proposed method and 
baseline scores 
 

 

 Arousal Valence Liking 
 RMSE PCC CCC(Baseline) RMSE PCC CCC(Baseline) RMSE PCC CCC(Baseline) 

Development 0.102 0.726 0.721(0.525) 0.094 0.771 0.728(0.507) 0.106 0.524 0.481(0.314) 
Testing 0.093 0.609 0.599(0.375) 0.085 0.725 0.721(0.466) 0.150 0.338 0.295(0.246) 
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