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Abstract—Continuous emotion recognition is a challenging 
task due to its difficulty in modeling long-term contexts 
dependencies. Prior researches have exploited emotional 
temporal contexts from two perspectives, which are based on 
feature representations and emotional models. In this paper, we 
explore the model based approaches for continuous emotion 
recognition. Specifically, three temporal models including 
LSTM, TDNN and multi-head attention models are utilized to 
learn long-term contexts dependencies based on short-term 
feature representations. The temporal information learned by 
the temporal models allows the network to more easily exploit 
the slow changing dynamics between emotional states. Our 
experimental results demonstrate that the temporal models can 
model emotional long-term dynamic information effectively. 
Multi-head attention model achieves best performance among 
three models and multi-model combination models further 
improve the performance of continuous emotion recognition 
significantly. 

Keywords—continuous emotion recognition, temporal model, 
TDNN, multi-head attention, multi-model combination model. 

I. INTRODUCTION  

To enable the human-machine interfaces more 
harmoniously, it is bound to have emotional intelligence [1]. 
Automatic emotion recognition is key factor for building 
intelligent human-machine interfaces that can adapt to the 
affective state of the user. Given the initial stereotypical 
expressions, most of the works focused on modeling an 
emotional space consisting of discrete basic states such as 
anger, disgust, fear, happiness, sadness, and surprise [2]. 
However, human expresses emotional state related 
information through numerous subtle ways. A person’s 

emotional state can be described by continuous space, which 
uses numerical values to indicate the type and degree of the 
emotions continuously [3], such as arousal (calm versus 
active) and valence (negative versus positive). Continuous 
emotion model has the advantages to represent multiple 
subtle and complex emotional states.  

Emotional state is a gradual and smooth process with 
temporal change. A continuous space not only allows for a 
more complete description of a complex emotional state [4], 
but also leads itself better to continuous tracking and temporal 
modeling. Therefore, it is essential to model long-term 
context dependencies when making frame-level dense 
prediction for continuous emotion recognition. Modeling the 
temporal dynamics to capture the long-term dependencies 
between emotional behaviors, requires an emotional model 
which can effectively deal with long temporal contexts. Two 
types of approaches to exploit temporal contexts are using 
feature representations, which are designed to present this 
information to the model in a suitable form, or using 
emotional models, which can learn the long-term 
dependencies based on short-term feature representations. 

Many researchers have investigated this problem using 
feature representations. Valstar et al. [5] showed that it was 
necessary to consider larger window to obtain segment-level 
features e.g. four seconds for arousal and six seconds for 
valence. Le et al. [6] and Cardinal et al. [7] found that 
increasing the number of contextual frames with deep neural 
network (DNN) could improve the performance. Povolny et 
al. [8] applied simple frame stacking and temporal content 
summarization to consider contextual information. Huang et 



al. [9] utilized temporal pooling subsampling to obtain wider 
context information to achieve emotional temporal modeling. 

On the other hand, many emotional models have been 
explored to learn emotional dynamic information. Nicolaou 
et al. [10] exploited the temporal dependencies over a 
dimensional domain by extending the relevance vector 
machine regression framework, to capture the output 
structure and the covariance within a predefined time 
window. Recurrent neural networks (RNNs) and Long short-
term memory (LSTM) have been shown to achieve state-of-
art performance in sequence-to-sequence modeling. Wöllmer 
et al. [11] first proposed a method based on LSTM for 
continuous emotion recognition that included modeling of 
long-range dependencies between observations. Zhang et al. 
[12] utilized RNN to learn spatial and temporal dependencies 
for emotion recognition. 

Many researchers have utilized Convolutional Neural 
Network (CNN) based methods to capture long-term 
temporal dependencies of emotion recognition. Khorram et 
al. [13] investigated two convolutional network architectures, 
dilated convolutional networks and 
downsampling/upsampling networks for capturing long-term 
temporal dependencies. The results achieved good 
performance and generated smooth output trajectories on the 
RECOLA dataset. Li et al. [14] proposed a CNN with two 
different groups of filters to capture both temporal and 
frequency domain context information for emotion 
recognition. Most works utilize 2D CNN for emotion 
modeling, which means that frequency domain features are 
employed for speech signals and single frame image is 
processed for video data. Recently, there is a recent trend in 
deep system design which attempts to derive features of the 
input signal directly from raw unprocessed input signals. 
Huang et al. [15] utilized 3D CNN to directly learn from 
video data for end-to-end continuous emotion recognition. 
Trigeorgis et al. [16] trained a convolutional recurrent 
network for continuous emotion recognition using the time 
domain signals directly. Due to single dimension of speech 
signals, they employed temporal CNN which is 1D 
convolutional neural network. Similar works are presented in 
EnvNet [17] and SoundNet [18]. 

Actually, the network structure of temporal CNN is 
similar to time-delay neural network (TDNN). TDNN [19] is 
another neural network model with the capability of capturing 
the dynamic relationship between consecutive observations. 
TDNNs have been shown to effectively learn the temporal 
dynamics of the signal for speech recognition [20]. Meng et 
al. [21] proposed a two-stage architecture that combines a 
simple regression algorithm and TDNN for automatic 
continuous affective state prediction from facial expressions. 
The experimental results demonstrated that the use of a two-
stage approach combined with the TDNN, to take into 
account previously classified frames, significantly improves 
the overall performance of continuous emotional state 
estimation. Sarma et al. [22] tried interleaves TDNN-LSTM 
with time-restricted self-attention and achieving a weighted 
accuracy of 70.6% in IEMOCAP. These results reveal the 
availability of TDNN to model emotional temporal contexts. 

The above models are either based on RNNs or CNNs. 
Recently, Vaswani et al. [23] proposed a no-recurrence 
sequence-to-sequence Transformer model to achieve state-of-
the-art performance on machine translation, which also 

achieved most promising performance in speech recognition 
[24]. Its fundamental module is self-attention, a mechanism 
relates all the position-pairs of a sequence to extract a more 
expressive sequence representation. Since the self-attention 
can draw the dependencies between different positions 
through the position-pair computation rather than the 
position-chain computation of RNNs, it just needs to be 
calculated once to obtain the transformed representation. 
Therefore, the Transformer model also can learn long 
temporal dependencies on the longer span of time. 

The methods discussed above make use of different 
emotional models that are able to capture temporal 
information. Inspired by their works, we utilize LSTM, 
TDNN and multi-head attention models to model long 
temporal contexts for continuous emotion recognition. In the 
following, Section 2 briefly introduces the proposed models. 
Section 3 presents the database and feature sets. Section 4 
describes experimental results and analysis. Section 5 
concludes this paper. 

II. PROPOSED METHODS 

In this paper, we utilize three temporal models to learn 
long-term contexts dependencies of continuous emotion. In 
this section, we firstly describe the TDNN and multi-head 
attention models briefly except the LSTM model due to its 
universality. Then, we introduce individual emotional 
temporal models and their combination models. 

A. TDNN 

TDNN is a fully-connected forward-feedback neural 
network model with delays in the nodes of the hidden and 
output layers. In a TDNN, different layers or sets of layers 
can act on different time scales. As such, it can be seen as a 
type of CNN operating over the time dimension. Particularly, 
current input signal is augmented with delayed copies of the 
previous input values. The neural network is time-shift 
invariant since it has no internal state, as shown in Fig. 1. 
Besides, the first few layers look at smaller time scales and 
produce more abstract higher level features. The later layers 
take larger time windows over these abstract features as the 
inputs. In term of emotion recognition, this means that an 
instant of an emotional expression is recognized by taking 
into account not only the input features describing that 
instant, but also the input features describing the previous 
instants, i.e., how the expression evolved over time to the 
current state. We utilize TDNN to capture the temporal 
relationship between the predictions on continuous emotional 
states. 

 

Fig. 1. Overall architecture of the TDNN. 



B. Multi-head Attention 

The multi-head attention module is a core module of the 
Transformer network, which plays an essential impact of 
learning long temporal dependencies. It is based on self-
attention module to extract a more expressive sequence 
representation. The multi-head attention module leverages 
different attending representations jointly for emotion 
modeling. Besides, it extends the conventional attention 
mechanism to have ℎ multiple heads, where each head can 
generate a different attention distribution. This allows each 
head to have a different role on attending the representations. 

Specifically, the multi-head attention calculates ℎ times 
Scaled Dot-Product Attention in Figure 2. Before performing 
each attention, there are three linear projections to transform 
the queries � , keys �  and values �  to more discriminated 
representations respectively. Then, each Scaled Dot-Product 
Attention is calculated independently, and their outputs are 
concatenated and fed into another linear projection to obtain 
the final outputs: 

MultiHead(�, �, �) = Concat(head�, … , head�)�
� 

head� = Attention����
�, ���

�, ���
�� 

where the projection are parameter matrices. 

Scaled Dot-Product Attention has three inputs: queries, 
keys of dimension ��  and values of dimension �� . One 
query’s output is computed as a weighted sum of the values, 
where each weight of the value is computed by a designed 
function of the query with the corresponding key. The dot 

products of the query with all keys, divided each by ��� and 
applied a softmax function to obtain the weights on the values. 

Attention(�, �, �) = ����������� ���⁄ �� 

where the scalar 1/��� is used to prevent softmax function 

into regions that has very small gradients. 

C. Emotional Temporal Modeling 

We build continuous emotion recognition systems to 
model long-term contexts dependencies with temporal 
models described in previous section.  Firstly, we utilize 
single temporal models for emotion modeling as shown in 
Fig. 4. The inputs are emotional features extracted from 
different modalities. The outputs are the predictions 
corresponding to every frame. The emotional temporal model 
is responsible to modeling emotional long temporal contexts 
dynamic information. In addition, the purpose of initial linear 
layer is to transform original emotional features to common 
emotional feature space, and final linear layer is to convert 

high level representations to continuous emotion space and 
get the predictions. 

 Three models have their own advantages in emotional 
temporal modeling. TDNN can process window temporal 
contexts with delayed copies of the previous input values. 
LSTM can learn long-term dynamic information since their 
outputs are influenced by the outputs of hidden layer 
involving previous information and the current input. Multi- 
head attention model can achieve long span modeling from 
global information with self-attention mechanism. These 
three models employ temporal convolution, recurrence and 
attention mechanism respectively. On basis of them, we build 
sequence-to-sequence continuous emotion recognition 
systems respectively. 

Next, various temporal models are combined, called multi-
model combination models, to strengthen the ability of 
learning emotional temporal contexts information. We 
establish emotion recognition systems based on pairwise 
combination, as shown in Fig. 5(a)(b)(c). Fig. 5(a) shows the 
combination of TDNN and LSTM represented by 
“TDNN+LSTM”. TDNN learns short term dependencies from 
the emotional features to produce high level features, and 
LSTM is responsible to learn long temporal contexts from 
high level features. We take the encoder part of original 
Transformer model to perform continuous emotion 
recognition. The common structure of encoder part is 
composed of multi-head attention module followed by one 
feed forward layer which is fully connected layer [23]. We 
replace the fully connected layer with TDNN layer to combine 
the multi-head attention and TDNN models, as shown in Fig. 
5(b) represented by “Attention+TDNN”. 

 

 Fig. 4. Continuous emotion recognition system with single temporal 
model. 

 

Fig. 2. Multi-head attention consists of several attention layers 
running in parallel. 

 

Fig. 3. Scaled Dot-Product Attention. 



                 

(a) TDNN+LSTM        (b) Multi-head attention+TDNN 

               

(c) Multi-head attention+LSTM     (d) Multi-head attention+TDNN 
+LSTM 

Fig. 5. Continuous emotion recognition systems combining different 
emotional temporal models. 

In Fig. 5(c), the feed forward layer is still fully connected 
layer and the multi-head attention module is followed by the 
LSTM layer, which is the combination of the multi-head 
attention and LSTM models represented by 
“Attention+LSTM”. Finally, we add the LSTM layer to the 
back of the TNDD layer of Fig. 5(b) to combine three 
temporal models represented by “Attention+TDNN+LSTM”, 
as shown in Fig. 5(d).  The goal of multi-model combination 
is to absorb the advantages of different temporal models to 
better learn emotional long temporal contexts dependencies. 

III. DATABASE AND FEATURE SETS 

A. Database 

In this study, we use Audio/Visual Emotion Challenge 
and Workshop (AVEC 2017) database based on Sentiment 
Analysis in the Wild (SEWA) [25] to show the benefits of our 
proposed methods. SEWA collects spontaneous and 
naturalistic human-human interactions in the wild consisting 
of audio, video and text modalities. The recordings are 
annotated time-continuously in terms of the emotional 
dimensions including arousal for the emotion activation, 
valence for the emotion positiveness and liking for the user’s 
preference. The recording was based on the form of dyadic 
interactions and the conversations were asked to discuss the 
commercial product they had just viewed. The duration of 
each conversation is at most 3 minutes. All three emotional 
dimensions are annotated every 100ms and scaled into [-1, 

+1]. There are 64 German subjects in the dataset and are 
divided into training set with 36 subjects, development set 
with 14 subjects and testing set with 16 subjects. We focus on 
the estimation of arousal and valence in this work. 

B. Feature Sets 

In this work, we extract the emotional features from audio 
and visual modalities. The extended version of the Geneva 
Minimalistic Acoustic Parameter Set (eGeMAPS) feature set 
[26] are adopted as the audio features. eGeMAPS is an expert-
knowledge based feature sets consisting of 23 acoustic low-
level descriptors (LLDs) extracted every 10 ms over a short-
term frame, which have been applied in emotion recognition 
tasks successfully [5]. The LLDs set consists of energy, 
spectral and cepstral features, pitch, voice quality, and micro-
prosodic features. The functionals including arithmetic mean 
and the coefficient of variation are computed on all LLDs. 
Segment-level acoustic features are computed over segments 
of 4 seconds. Overall, the acoustic baseline feature sets 
contain 88 dimensional features. The extraction of the LLDs 
and the computation of the functionals are done using the 
openSMILE toolkit [27]. 

The geometric features are adopted as visual features. We 
extract geometric features related to the position and 
expression of the subjects’ face including face orientation, 
eye points and facial landmarks by Openface [28]. The 49 
facial landmarks are aligned with a mean shape from stable 
points (located on the eye corners and on the nose region). 
Then, we compute the difference between the coordinates of 
the aligned landmarks and those from the mean shape, and 
also between the aligned landmark locations in the previous 
and the current frame. The same operations are applied for 
face orientation and eye points. We also computed the 
Euclidean distance between the median of the stable 
landmarks and each aligned landmark in a video frame. The 
geometric feature sets are interpolated by a piecewise cubic 
Hermite polynomial to cope with dropped frames. Finally, we 
apply a PCA to retain 55 dimensional features. 

IV. EXPERIMENT AND ANALYSIS 

A. Experimental Setup 

All our experiments are done using TensorFlow. The 
implementation of TDNN is based on 1D convolutional 
neural network with conv1d layer. The output channels are 64 
with 3 convolutional kernel. For single TDNN emotional 
model, we utilize a stack of 4 identical TDNN layers. The 
multi-head attention module is composed of a stack of 2 
identical layers which are 4-head attention sublayer. And, 
each sublayer has a residual connection and layer 
normalization. The number of hidden nodes of multi-head 
attention sublayer are 64. For single LSTM emotional model, 
we use a stack of 2 LSTM layers with 64 hidden nodes. 

For multi-model combination models, we combine 
different network structures to perform continuous emotion 
recognition. The parameters settings are similar to previous 
single models. The “TDNN+LSTM” model includes two 
TDNN layer and two LSTM layers. The “Attention+TDNN” 
model is composed of the multi-head attention module 
followed by one TDNN layer. The “Attention+LSTM” model 
includes the multi-head attention module followed by fully 
connected layer and one LSTM layer. We add one LSTM 
layer to the back of the “Attention+TDNN” model to achieve 
“Attention+TDNN+LSTM” model.  



We use adam optimization algorithm [29]. The batch size 
is 3. The maximum training epochs are 70. The evaluation 
measure is the Concordance Correlation Coefficient (CCC) 
[30]. Due to no availability of the testing set, we utilize the 
training set to train models and the development set to 
evaluate the performance. 

B. Continuous Emotion Recognition with Single Temporal 
Models 

 As discussed in the previous section, TDNN, LSTM and 
multi-head attention models are good candidates for real-time 
emotional state prediction at unit level. They capture the 
dynamic relationship existing between consecutive units of 
expressions. We utilize these three temporal models using 
audio and visual features to perform continuous emotion 
recognition in arousal and valence individually.  

The experimental results are shown in Table I. Three 
temporal models can model emotional long-term dynamic 
information effectively and accomplish valid continuous 
emotion recognition results. We can observe that the 
performance of LSTM is better than TDNN both in arousal 
and valence. LSTM uses a dynamically changing contextual 
window over all of the sequence history due to recurrent 
structure resulting in better ability of long temporal contexts. 
TDNN only can cover local context with delayed inputs so 
that its design is better at short temporal modeling. Thus, 
LSTM can obtain better performance than TDNN. But, 
TDNN can achieve faster model training due to parallel 
computing compared with LSTM. 

It is worth noticing that the performance of multi-head 
attention model is mostly better than LSTM except the audio 
modality in valence. Although the improved performance is 
not high, the multi-head attention model makes positive 
effects on continuous emotion recognition. The results reveal 
that multi-head attention mechanism, without recurrence and 
convolution structure, can model emotional long-term 
dynamic information effectively. The multi-head attention 
model completes the computation of self-attention 
mechanism based on global information on the long span of 
time. Thus, the multi-head attention model can learn longer 
span temporal contexts dependencies and improve the 
performance significantly. This indicates that the multi-head 
attention model has great potential to build more promising 
and robust continuous emotion recognition systems. 

TABLE I.  THE CCC PERFORMANCE OF DIFFERENT SINGLE 

TEMPORAL MODELS IN AROUSAL AND VALENCE FROM AUDIO 

AND VIDEO FEATURES. 

 
Arousal Valence 

Audio Visual Audio Visual 

TDNN 0.385 0.551 0.421 0.508 

LSTM 0.426 0.563 0.451 0.532 

Multi-head attention 0.459 0.581 0.438 0.554 

 

This also verifies the strong strength and universality of 
the multi-head attention model on sequence modeling. 
Therefore, incorporating long-term temporal dependencies is 
critical for continuous emotion recognition tasks. In addition, 
visual features achieve better performance than audio features 
in arousal and valence, which is similar to the works [9][25]. 
In audio features, the performance of arousal and valence is 
comparable while the performance of arousal is better than 
valence in visual features. 

We take one sample of the development set to compare 
the effectiveness of three temporal models in arousal and 
valence, as shown in Fig. 6. The ground truth (the blue line) 
shows emotion evolves intensively in a short period of time, 
making it difficult to predict emotional dynamic precisely. 
The black, green and red one are the predictions of the TDNN, 
LSTM and multi-head attention models respectively. We can 
observe that the predictions of TDNN deviates the ground 
truth severely sometimes limited by the accessibility of local 
information. The predictions of LSTM and multi-head 
attention model can relieve this problem actually. However, 
these exists some lags and bias problems in the predictions of 
LSTM. The predictions of multi-head attention model are 
closest to the ground truth and depict the trend of emotional 
change. This reveals the superiority of multi-head attention 
model of emotion modeling. Efficient temporal modeling can 
promote the performance of continuous emotion recognition 
significantly. 

C. Continuous Emotion Recognition with Multi-model 
Combination Models. 

In order to better recognize continuous emotions, the 
crucial emotional temporal dependencies should be well 
modeled. In this work, multiple temporal models are 
combined to promote the ability of modeling long temporal 

     

(a) Arousal                                                                                                  (b) Valence 

Fig. 6. The visualization of the predictions produced by the TDNN, LSTM and multi-head attention models against the ground truth. 



contexts dependencies. We conduct the experiments based on 
multi-model combination models described in section II. The 
corresponding experimental results are shown in Table II.  

We can observe that multi-model combination models can 
improve the performance in most of the situations. The 
“TDNN+LSTM” model achieve better performance than the 
single TDNN and LSTM models, benefited from the 
combination of short temporal and long temporal modeling. 
The performance of the “Attention+TDNN” is better than the 
“TDNN_LSTM” due to excellent ability of long temporal 
modeling of the multi-head attention model. However, the 
“Attention+TDNN” model is just optimization of the 
Transformer network, which can’t take full advantage of the 
TDNN model. Thus, the performance improvement is limited. 
The “Attention+LSTM” model further improves the 
performance of emotion recognition systems, showing the 
superiority of LSTM over TDNN. Besides, the 
“Attention+LSTM” model achieves best performance in 
valence with audio features 0.477. The combination of the 
multi-head attention and LSTM model can model long 
temporal dependencies to improve the performance.  

Next, we combine three temporal models together to learn 
long temporal contexts dependencies for continuous emotion 
recognition. The performance of the 
“Attention+TDNN+LSTM” model achieves best 
performance in arousal with audio features 0.519 and visual 
features 0.623. In addition, the “Attention+TDNN+LSTM” 
model achieves best performance in valence with visual 
feature 0.647. As for audio features, the multi-model 
combination models don’t make difference in valence. The 
results show that multi-model combination models can 
achieve significant improvements in comparison with single 
temporal models. It’s essential for continuous emotion 
recognition to consider long temporal contexts dependencies. 
Different from the results of single temporal models, the 
performance of arousal is better than valence in audio features 
while the performance of valence is better than arousal in 
visual features due to its higher promotion. The multi-model 
combination models can model longer temporal contexts of 
valence to improve the performance. 

Finally, we compare our results with two other methods of 
the literatures. Ringeval et al. [25] utilized SVM as 
continuous emotion recognition model, which are the 
baseline work of AVEC 2017. Dang et al. [31] utilized 
Gaussian Mixture Regression model with audio features and 
Relevant Vector Machines model with visual features. The 
corresponding performance are listed in Table III. The 
features of the three models are same. The results show that 
our methods can improve the performance significantly 
compared with the baseline results. Furthermore, our methods 
achieve better performance than Dang’s works. Therefore, 
our proposed models can efficiently model emotional long 

TABLE II.  THE CCC PERFORMANCE OF DIFFERENT SINGLE 

TEMPORAL MODELS IN AROUSAL AND VALENCE FROM AUDIO AND 

VIDEO FEATURES. 

 
Arousal Valence 

Audio Visual Audio Visual 

TDNN+LSTM 0.461 0.591 0.431 0.585 

Attention+TDNN 0.471 0.612 0.315 0.557 

Attention+LSTM 0.506 0.616 0.477 0.634 

Attention+TDNN+LSTM 0.519 0.623 0.421 0.647 

TABLE III.  CCC COMPARISON BETWEEN OUR METHODS AND 

OTHER METHODS 

 
Arousal Valence 

Audio Visual Audio Visual 

Ringeval et al. [25] 0.344 0.466 0.351 0.400 

Dang et al. [31] 0.454 0.518 0.446 0.583 

Our methods 0.519 0.623 0.451 0.647 

 
temporal contexts for continuous emotion recognition to 
improve the performance. The results verify the effectiveness 
of our proposed methods.  

V. CONCLUSION 

This work explores different temporal models to learn long 
temporal contexts dependencies for continuous emotion 
recognition. TDNN can achieve short temporal modeling 
with delayed inputs, but can’t learn long temporal contexts 
and obtain limited performance. LSTM is common emotional 
sequence modeling model and can achieve better 
performance. The multi-head attention model can model long 
temporal contexts dependencies to achieve best performance, 
which is based on self-attention mechanism to attend global 
information on the long span of time. The results show the 
potential benefits of the multi-head attention model to obtain 
more promising performance on continuous emotion 
recognition. The multi-model combination models can 
improve the performance significantly due to enhanced 
ability of temporal modeling. The combination of three 
models can achieve best performance in arousal and valence. 
Our methods also achieve better performance than other 
methods, verifying the effectiveness of our proposed methods. 
In the future work, we will explore better temporal models for 
continuous emotion recognition. 
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