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Abstract 

Speech emotion recognition is crucial for future human-

machine interfaces to be more natural and harmonious. On the 

basis of close relationship between dimensional emotion and 

discrete emotion, this paper investigates how dimensional 

emotion information contributes to discrete speech emotion 

classification. The experimental results based on discrete 

emotion labels and manual dimensional emotion ratings of 

IEMOCAP database, show that the supplementary of 

dimensional ratings-based features can improve discrete 

classification performance significantly. In addition, 

dimensional information provides a substantial boost to “angry” 

and “happy” than “neutral” and “sad” specially. To integrate 

dimensional information into a fully automatic emotion 

recognition system, binary dimensional emotion predication 

experiments are constructed, and the results show their 

feasibility. Automatic dimensional emotion prediction is 

added to discrete speech emotion classification system, which 

could obtain 8% accuracy improvement over acoustic-only 

baseline results, also 3% better than other methods. 

Index Terms: discrete speech emotion classification, 

binarization, automatic dimensional emotion prediction 

1. Introduction 

Speech emotion recognition (SER) is becoming more and 

more essential for many applications related to human-

machine interactions, such as speech recognition systems and 

spoken dialogue systems [1]. The increasing application of 

SER makes it a core component in the next generation of 

computer system, in which natural human machine interface 

requires a good appreciation of the emotional state of a user 

[2]. However, robust and accurate SER is still a challenging 

problem due to complex factors such as the variations of 

speakers and contents, and environment distortion [3][4]. 

SER system consists of feature extraction step followed by 

classification step. Various spectral and prosodic features have 

been applied to SER in the literature [5][6]. Speech emotional 

features, which are different types of low-level descriptors 

(LLD) [7], are extracted based on frame-level. Then, various 

functionals, such as mean, maximum, minimum, variance etc., 

are applied to these LLDs across utterance-level to get final 

fixed speech emotional feature vector.  

In terms of the emotion model, most researches 

concentrate on two major emotion models [8], discrete 

emotion model, dimensional emotion model. Discrete emotion 

model describes an emotion state as discrete labels such as 

“sad”, “happy” etc. It is intuitive and simple but difficult to 

express complex affective states. Dimensional emotion model 

considers an emotion state as a point in a continuous 

dimensional space. Hence, dimensional emotion model can 

model subtle, complicated, and continuous affective behavior, 

but it is hard to understand. Typically, an emotion state is 

described by three dimensions: valence-activation-dominance 

[8]. Some researchers also use two dimensional arousal-

valence space to denote dimensional emotion state [9]. 

Discrete model and dimensional model are two different 

descriptions of emotion, which have their strengths and 

weaknesses. They have a close connection with each other, as 

shown in Figure 1 [8]. For example, “happy” lies in first 

quartile of arousal-valence space that arousal and valence are 

great positive. Conversely, the region which owns great 

positive arousal and valence corresponds to “happy”. Valence 

indicates a measure of pleasure and has a stronger correlation 

with the semantic context of what is spoken than how it is 

prosodically spoken [10][11], which relates “happy”, “excited” 

et al. Activation is described as a conscious affective 

experience based on a varied degree of subjective mental 

activation. Increased activation is represented by stronger 

acoustic formant intensity and fundamental frequency vocal 

tension, resulting in a perceivable rise in pitch [12], which 

relates “sad”, “depressed” et al. Dominance is an individual’s 

perceived assertiveness authority, and aggressive vocal 

characteristics. A high degree of dominance is useful in 

parenting, emergency, or threatening situations, which relates 

“surprise”, “fear” et al.  

 

Figure 1: distribution of the discrete emotions in 

dimensional arousal-valence space 

 



Christie and Friedman [13] use discriminant function to 

describe the location of discrete emotions within dimensional 

affective space for autonomic nervous system and find valence 

more accurately portray the structure of self-reported emotion. 

Barrett [10] points that dimensional emotion is related to the 

co-occurrences of discrete emotional state. He also suggests 

that one of emotion theories may not apply to all people due to 

difference of individuals. Stasak et al. [14] explore that 

features derived from dimensional affect ratings carry 

complementary information to conventional acoustic features 

and achieve the performance gains when classifying 

depression via speech. Inspired by Stasak’s work, we explore 

the benefits features derived from dimensional ratings could 

introduce to discrete emotion classification system.  

As mentioned above, there is close relationship between 

dimensional emotion and discrete emotion. In this study, we 

investigate the effect of dimensional emotion information in 

discrete speech emotion classification. Practically, continuous 

dimensional emotion ratings are converted to binary value by 

setting suitable threshold, and then the binarization value 

combined with acoustic features is input to classifier. 

Dimensional ratings-based features are utilized to improve the 

performance of discrete speech emotion classification. Lastly, 

a fully automatic discrete speech emotion classification system 

based on binary dimensional emotion prediction is carried out. 

In the following, Section 2 presents database and acoustic 

features. Section 3 briefly introduces the proposed method. 

Section 4 describes experimental results and discussion. 

Section 5 concludes this paper.  

2. Database and Feature Set 

2.1. Database 

In this study, we use Interactive Emotional Dyadic Motion 

Capture (IEMOCAP) [15] to evaluate our proposed method. 

This corpus has approximately 12 hours of audiovisual data, 

including video, speech, motion capture of face, and text 

transcriptions [15]. It has 10 professional actors (5 males and 5 

females) acting in two different scenarios: scripted play and 

spontaneous dialog, in their dyadic interactions. Each 

interaction is around 5 minutes in length, and is segmented 

into sentence levels. Every sentence corresponds a discrete 

emotion label and a three-dimensional point rating. We use 

four emotion categories in this study: “angry”, “happy”, “sad”, 

and “neutral”, similar to most prior studies using this corpus. 

Note that we merge “happy” and “excited” in the original 

annotation into the “happy” class. Meanwhile, we also use 

their corresponding three-dimensional ratings. Only the 

utterances with majority agreement are used in the 

experiments. In total we use 5,531 utterances. The class 

distribution is: 20.0% “angry”, 19.6% “sad”, 29.6% “happy”, 

and 30.8% “neutral”. The experiment protocol is leave-one-

speaker-out which means there is no speaker overlap between 

training and testing set.  

2.2. Acoustic Features 

We add the first dimension of the Mel Filterbank Cepstral 

Coefficients (MFCC 0), the first order derivatives of all the 

LLDs, as well as the second order derivatives of MFCC 0-14 

to the 65 LLDs of the INTERSPEECH 2014 Computational 

Paralinguistics Challenge [16]. The resulting features 147 

LLDs extracted by openSMILE [17] are listed in Table 1, 

where △ denotes the first order [18]. 

Table 1: Low-Level Descriptors (LLDs) features  

8 energy related LLD 

Sum of auditory spectrum (loudness) +△ 

Sum of RASTA-filtered auditory spectrum +△ 

RMS Energy +△, Zero-Crossing Rate +△ 

127 spectral LLD 

RASTA-filtered auditory spectrum, bands 1-26 (0-8 kHz) +△ 

MFCC 0-14 +△ + △△, Spectral Centriod +△ 

Spectral energy 259-650 Hz, 1k-4kHz +△ 

Spectral Roll Off Point 0.25,0.50,0.75,0.90 +△ 

Spectral Flux, Entropy, Variance, Skewness, Kurtosis, Slope, 

Psychoacoustic Sharpness, Harmonicity +△ 

12 voicing related LLD 

F0 (SHS + Viterbi smoothing), Probability of voicing +△ 

Logarithmic HNR, Jitter (local, delta), Shimmer (local) +△ 

3. Proposed method 

3.1. Discrete Emotion Classification Using Binary 

Dimensional Emotion Rating 

Dimensional ratings information combined with acoustic 

features are utilized to improve discrete speech emotion 

classification. We choose three functionals, namely maximum, 

minimum and mean to explore the distinction of different 

functionals. These functionals are applied to LLDs across 

utterance-level in acoustic feature extraction. In IEMOCAP, 

an audio sample corresponds to a discrete emotional label and 

a continuous three-dimensional point rating. To simplify the 

complexity of continuous value, dimensional ratings are 

converted to binary value, which is easily applied for 

automatic binary dimensional emotion prediction. Binarization 

dimensional ratings are complemented to baseline acoustic 

features to investigate discrete emotion classification. The 

influence of single dimension from valence, activation or 

dominance is also explored by adding its ratings to acoustic 

features individually. Three conventional classifiers, logistic 

regression, random forest and SVM are utilized in this study. 

 

 

 

 

 

3.2. Discrete Emotion Classification Based on Automatic 

Dimensional Emotion Prediction 

Unluckily, the system of Figure 2 can’t be applied in 

automatic discrete emotion classification because of no 

accessibility of manual emotion ratings in actual applications. 

To develop the function of dimensional information, binary 

dimensional emotion predication experiments are constructed, 

and the results show their feasibility. Therefore, automatic 

prediction of binary dimensional ratings module is introduced 

to replace manual ratings, as shown in Figure 3. In this 

modified system, whose input is only speech, dimensional 

emotion features predicted by baseline acoustic features are 

Figure 2: System framework of proposed method. All 

experiments evaluate LLD, binary dimensional emotion 

ratings and classifiers with various combinations.  

 

 



combined with acoustic features for discrete speech emotion 

classification. 

 

 

 

 

 

4. Results and Discussion 

4.1. Discrete Emotion Classification 

After extracting 147 dimensional frame-level acoustic features 

shown as Table 1, three functionals mean, maximum and 

minimum are respectively applied across utterance-level to get 

speech emotional feature vector. The classification accuracies 

are shown in Table 2, which indicates that mean functional 

can achieve better performance than other functionals. In the 

following, we combine mean functional with others, for 

example the combination of mean functional and maximum 

functional, which are represented by “Mean_max” in Table 2. 

And “LR”, “RF” and “SVM” represent logistic regression, 

random forest and SVM respectively. In random forest, the 

number of trees vary from range [50, 500] and the maximum 

depth of the tree vary from range [5, 10]. SVM adopts RBF 

kernel and searches the parameter C and gamma from range 

[0.0001, 1000]. Experimental results indicate that single mean 

functional has achieved good performance and the supplement 

of maximum and minimum functional only bring a little 

improvement. Besides, random forest achieves best 

performance among three classifiers. 

 

Table 2: Classification accuracies of different functionals 

using only acoustic features 

Accuracy LR RF SVM 

Mean 0.502 0.562 0.518 

Max 0.492 0.515 0.517 

Min 0.491 0.524 0.513 

Mean_max 0.519 0.565 0.526 

Mean_min 0.506 0.564 0.533 

Mean_max_min 0.537 0.566 0.546 

 

4.2. Binary Dimensional Emotion Prediction 

The dimensional ratings are continuous value ranging from 1 

to 5.5 in IEMOCAP. The median of all ratings is set as the 

threshold, then we compare each dimensional rating value 

with the median to give a binary label:’0’ or ‘1’. ‘0’ denotes 

below the median value and ‘1’ means above the median value. 

Therefore, origin continuous dimensional ratings are refined 

as binary ones, which reduces a regression problem into a 

classification one. Same as experimental configurations of 

section 4.1, we get binary three dimensional prediction results 

as shown in Table 3, which achieve satisfied results. In 

particular, the accuracy of activation dimension is 0.784, 

higher than other dimensions. We also observe that optimal 

functional are various in different dimension and random 

forest can achieve good performance compared with other 

classifiers. 

4.3. Effect of Binary Dimensional Emotion Ratings 

As mentioned earlier, prior studies indicate a close connection 

between dimensional emotion and discrete emotion [10][13]. 

We conjecture that the supplementary of dimensional 

information can guide discrete emotion classification. To 

verify whether binary dimensional ratings are beneficial to 

discrete speech emotion classification, we combine binary 

three-dimensional ratings with acoustic features, according to 

Figure 2. The experimental results, are shown in Table 4, 

indicate that the accuracy of the proposed method is 0.741, 

which uses SVM classifier based on mean functional. The 

results verify the advantage of using binary dimensional 

ratings-based features. In a result, it provides us the directory 

to improve classification performance considering 

supplementary of binary dimensional information. 

Then, we explore the influence of every dimension on 

discrete speech emotion classification. Binary dimensional 

emotion ratings from valence, activation and dominance are 

added to acoustic features individually. The experimental 

results, shown in Figure 4(b)(c)(d), indicate that the 

supplementary of valence dimension can achieve best 

performance among three dimensions, which is comparable to 

Figure 4(a). Among these classifiers, we observe interesting 

phenomenon from Table 2 and Figure 4 that SVM can achieve 

best performance if valence dimensional ratings exist, 

otherwise random forest does. 

 

Table 4: Classification accuracies of different functionals 

using acoustic and three-dimensional ratings-based features 

Accuracy LR RF SVM 

Mean 0.702 0.703 0.741 

Max 0.696 0.680 0.724 

Min 0.712 0.687 0.728 

Mean_max 0.721 0.688 0.733 

Mean_min 0.710 0.692 0.723 

Mean_max_min 0.721 0.672 0.732 

Accuracy Valence Activation Dominance 

LR RF SVM LR RF SVM LR RF SVM 
Mean 0.674 0.677 0.645 0.737 0.757 0.725 0.654 0.670 0.677 

Max 0.675 0.669 0.679 0.766 0.765 0.757 0.668 0.677 0.664 

Min 0.679 0.675 0.674 0.765 0.773 0.765 0.664 0.655 0.656 

Mean_max 0.662 0.686 0.674 0.772 0.778 0.760 0.669 0.669 0.667 

Mean_min 0.671 0.683 0.678 0.774 0.784 0.765 0.661 0.658 0.662 

Mean_max_min 0.682 0.680 0.683 0.778 0.771 0.776 0.670 0.658 0.671 

 

Table 3: Binary dimensional emotion prediction accuracies of three dimensions with different functionals using acoustic features   

 

Figure 3: Automatic discrete emotion classification 

using predicted binary dimensional rating-based 

features and baseline features 

 

 



 

Having realized the contribution of dimensional ratings-

based features, we explore their influence on specific speech 

emotion category. Table 5 shows each category accuracy of 

only acoustic features from Table 2 and acoustic features with 

dimensional ratings from Table 4. When only using acoustic 

features, “neutral” and “sad” have better performance than 

“angry” and “happy”. With the supplementary of dimensional 

ratings-based features, the performance of “angry” and “happy” 

is improved significantly, but the performance of “neutral” 

and “sad” is decreased slightly. Therefore, dimensional 

emotion information provides a substantial boost to “angry” 

and “happy” particularly in IEMOCAP. 

 

Table 5: Each emotion category accuracy of only acoustic 

features from Table 2 and acoustic features with dimensional 

ratings from Table 4 

Model Angry Happy Neutral Sad 

Acoustic features 0.518 0.391 0.695 0.710 

Acoustic features 

with dimensional 

ratings 

 

0.788 

 

0.894 

 

0.602 

 

0.649 

4.4 Effect of automatic Dimensional Emotion Prediction 

The insights in Section 4.3 point that the supplementary of 

binary dimensional ratings can improve classification 

performance largely. However, this method can’t be applied in 

automatic discrete emotion classification due to no 

accessibility of manual ratings in actual applications. In 

section 4.2, the experimental results have verified the 

feasibility of binary dimensional emotion prediction. To 

explore whether the effectiveness of binary manual 

dimensional ratings could be replicated to an automatic 

process, automatic binary dimensional prediction module is 

added to the system, as shown in Figure 3. Feature 

combination includes baseline acoustic features and 

dimensional ratings-based features generated from baseline 

acoustic features as well.  

Section 4.2 has determined optimal functional and 

classifier for binary dimensional emotion prediction. 

Similarity, Section 4.3 chooses optimal functional and 

classifier of discrete emotion classification using binary 

dimensional emotion ratings. We follow these configurations 

of corresponding module in the modified system. The result 

raises the accuracy to 0.644, yielding almost 8% improvement 

over acoustic-only baseline result. Although the performance 

is declined compared with direct use of manual dimensional 

ratings, it still achieves better performance than acoustic-only 

baseline results, which verifies the effectiveness of automatic 

binary dimensional prediction. 

We also compare the proposed method with two other 

methods of the literature. Xia and Liu [19] propose to combine 

deep belief network and i-vector space for speech emotion 

recognition with IEMOCAP, which achieves 0.596 accuracy, 

yielding 2% improvement compared with standard i-vector. 

Denoising autoencoder is also utilized to generate robust 

feature representations for SER [20], whose accuracy is 0.615, 

yielding 3% improvement compared with 1584 static acoustic 

features. The above two papers use elaborate design and 

complex neural networks, which can achieve better 

performance than baseline acoustic features. However, the 

proposed method can boost classification performance of SER, 

achieving 3% better than these methods.  

 

Table 5: Classification accuracies of proposed method 

and other methods 

Model Accuracy 

DBN-ivector Framework [19] 0.596 

Denoising Autoencoder [20] 0.615 

Acoustic features 0.566 

Proposed method 0.644 

 

5. Conclusion 

Given dimensional ratings information, this study suggests 

that dimensional ratings-based features can boost the 

performance of discrete speech emotion classification. 

Considering the complexity of continuous dimensional ratings 

and no accessibility of manual ratings in actual applications, 

we simplify continuous dimensional ratings by converting 

them to binary ones. The experimental results demonstrate that 

the supplementary of binary dimensional ratings can achieve 

large performance improvement, especially for valence 

dimension. Further, automatic binary dimensional prediction 

Figure 4: Classification accuracies of different functionals using acoustic features and dimensional ratings-based features. 

(a) acoustic features and binary three-dimensional emotion ratings (b) acoustic features and binary valence dimensional ratings 

(c) acoustic features and binary activation dimensional ratings (d) acoustic features and binary dominance dimensional ratings  

 

  



combined with baseline acoustic features raises the accuracy 

to 0.644, yielding almost 8% accuracy improvement over 

acoustic features baseline, also 3% greater than other methods 

significantly. The results verify the effectiveness of the 

proposed method. The optimization selection of different 

functionals and classifiers are also explored to provide 

improvements for discrete emotion classification. We observe 

that optimal functional are various in different situations and 

SVM can achieve best performance if valence dimensional 

rating exists, otherwise random forest does. In addition, the 

supplementary of dimensional information contributes to 

performance of “angry” and “happy” than “neutral” and “sad” 

particularly. In the future, we will apply this method to other 

databases with transfer learning to improve the performance of 

discrete speech emotion classification. 
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