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Fluorescence molecular tomography (FMT) is a promising technique for in vivo small animal imaging. In
this paper, the sparsity of the fluorescent sources is considered as the a priori information and is pro-
moted by incorporating L1 regularization. Then a reconstruction algorithm based on stagewise ortho-
gonal matching pursuit is proposed, which treats the FMT problem as the basis pursuit problem. To
evaluate this method, we compare it to the iterated-shrinkage-based algorithm with L1 regularization.
Numerical simulations and physical experiments show that the proposed method can obtain comparable
or even slightly better results. More importantly, the proposedmethod was at least 2 orders of magnitude
faster in these experiments, which makes it a practical reconstruction algorithm. © 2010 Optical
Society of America
OCIS codes: 170.6960, 170.6280, 170.3010.

1. Introduction

Fluorescence molecular tomography (FMT) is a cost-
effective method for in vivo small animal molecular
imaging, and it has many successful applications
[1–4]. Based on certain inversemathematicalmodels,
FMT can achieve three-dimensional (3D) imaging of
molecular processes noninvasively by localizing the
targeted fluorescent probes. In recent years, much
effort has been made in developing practical FMT
reconstruction algorithms [5–8].

Fluorescence molecular tomography is an inverse
problem that is severely ill posed. Therefore, to obtain
meaningful solutions, some form of regularization
should be incorporated to stabilize the FMT problem,
which can be considered as the a priori information of
the fluorescent probe biodistribution. When FMT is
used for early detection of tumors, an important char-
acteristic is the sparsity of the fluorescent sources.
This is because tumors are usually very small and
sparse at this stage [9]. Generally speaking, there

are two kinds of fluorescent sources: the fluorescent
protein and fluorescent probe.The fluorescentprotein
is produced by the transgenic tumor cells, which con-
tain the fluorescent protein gene. The fluorescent
probe is exogenous and can be used to target a specific
receptor or enzyme of the tumor cell. For both cases,
the fluorescent sources are around the tumor cells.
Because the tumors are sparse, we can assume that
the fluorescent sources have a sparsity distribution
as well. Sparsity can be promoted by including the
L0-norm constraint in the reconstruction. However,
the FMT problem becomes NP-hard in this case and
the reconstruction is computationally heavy [10]. For-
tunately, for an underdetermined system, if there is a
unique and sparse solution, the compressed sensing
theory allows the recovery of that solution [11]. Be-
cause we have assumed that the fluorescent sources
are sparse, it is suitable to apply the compressed sen-
sing theory in the FMT problem. Compressed sensing
is realized by incorporating the L1-norm constraint
of the solution into the FMT problem. The L1-norm-
constrained FMT problem can be solved by standard
optimization tools, such as pursuit algorithms [12].
In recent years, several algorithms for optical
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tomography problems incorporating L1-norm regu-
larization have been reported [9,13–15]. For example,
in [15], the authors propose an iterated-shrinkage-
based (IS-based) method for FMT, which can handle
general sparse Lp-norm regularization problems. A
good effort has been made to improve the computa-
tional efficiency of the method. The IS-based method
belongs to the class of first-order methods, and it has
been proved to have a linear convergence rate [16]. In
[15], 30,000 iterations have been used to obtain satis-
factory results, a number which is much larger than
the dimension of the optimization problem.

In this paper, L1-norm regularization is utilized to
promote the sparsity of the fluorescent sources. We
treat the FMT problem as the basis pursuit problem
and propose a reconstruction algorithm based on
stagewise orthogonal matching pursuit (StOMP)
[17]. To our best knowledge, this is the first time that
the StOMP method is used for FMT reconstructions.
Different from standard orthogonal matching pur-
suit (OMP) [18], many coefficients can be selected
within one stage for StOMP, which makes StOMP
run much faster than OMP. To show the merits of the
proposed method, we compare it to the IS-based al-
gorithm. From the results, it can be seen that the pro-
posed method can obtain comparable or even slightly
better results. More importantly, the proposed meth-
od was at least 2 orders of magnitude faster than the
IS-based algorithm in these experiments, which
makes it a practical reconstruction algorithm.

This paper is organized as follows. The proposed
algorithm is presented in Section 2. In Section 3,
both numerical simulations and physical experi-
ments are conducted to evaluate the proposed algo-
rithm.We discuss the results and conclude this paper
in Section 4.

2. Method

A. Diffusion Model

In highly scattering media, the FMT model with
continuous wave excitation point sources can be de-
scribed by the following coupled diffusion equations
[19–21]:�

−∇·½DxðrÞ∇ΦxðrÞ�þμaxðrÞΦxðrÞ¼Θδðr−rlÞ
−∇·½DmðrÞ∇ΦmðrÞ�þμamðrÞΦmðrÞ¼ΦxðrÞημaf ðrÞðr∈ΩÞ;

ð1Þ
with the Robin-type boundary conditions:

Φx;mðrÞ þ 2qDx;mðrÞ½~vðrÞ ·Φx;mðrÞ� ¼ 0 ðr ∈ ∂ΩÞ;
ð2Þ

where Ω is the domain of the object, with its bound-
ary ∂Ω. Subscripts x andm denote the excitation light
and the emission light, respectively. μax;am is the ab-
sorption coefficient, and Dx;m ¼ 1=3ðμax;am þ μ0sx;smÞ is
the diffusion coefficient. μ0sx;sm is the reduced scatter-
ing coefficient. Φx;m denotes the photon density. The
excitation light is modeled as an isotropic point

source Θδðr − rlÞ, which is located one transport
mean free path beneath the surface. Θ denotes the
amplitude of the point source. ~v is the outward nor-
mal vector to the surface. q is a constant depending
on the optical reflective index mismatch on the
boundary [22]. ημaf denotes the unknown fluorescent
yield that is to be reconstructed.

By employing the finite element method, Eqs. (1)
and (2) can be linearized and the following matrix-
form equations can be obtained:

KxΦx ¼ Sx; ð3Þ

KmΦm ¼ FX ; ð4Þ

where matrix F is obtained by discretizing the un-
known fluorescent yield distribution. Vector X de-
notes the fluorescent yield to be reconstructed. For
the excitation process, the photon density Φx, which
is used as the energy source for the emission process,
can be obtained by solving Eq. (3). For the inverse
problem, based on Eq. (4), we can establish the linear
relationship between the emitted fluorescence mea-
surements Φ on the surface and the unknown fluor-
escent yield distribution X as follows:

Φ ¼ AX : ð5Þ

Detailed descriptions can be found in [8].

B. Reconstruction Based on the StOMP Algorithm

Because FMT is an ill-posed inverse problem, addi-
tional constraints on the solution should be included
to regularize the problem. Considering the sparse a
priori information of the fluorescent sources, L1-
norm regularization is adopted in this study. In this
case, the FMT problem can be formulated as follows:

min
X

EðXÞ ¼ 1
2
‖AX −Φ‖2

2 þ λ‖X‖1; ð6Þ

where λ is the regularization parameter. Here, if we
consider the columns of matrix A as a set of atoms
coming from a dictionary D and vector X as the coef-
ficient vector, the FMT problem can be approxi-
mately regarded as the basis pursuit problem that
has the following form:

min‖X‖1 subject to AX ¼ Φ: ð7Þ

In this case, the optimal representation Xopt is ex-
pected to have only a small number of significant
coefficients. Various algorithms have been proposed
to solve the basis pursuit problem. For instance, the
OMP algorithm is a heuristic approach that starts
with an empty index set. At each iteration, a single
index, which maximizes an objective function, is se-
lected and added to the index set. The algorithm
stops after a specially chosen number of iterations.
In this section, an FMT reconstruction algorithm
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is proposed that is based on the StOMP algorithm.
Different from the standard OMP method, many
coefficients can be selected within one stage for
StOMP, which makes StOMP run much faster than
OMP.

The proposed algorithm starts with an empty in-
dex set I0. At the nth iteration, the residual vector
rn−1 is first calculated, which can be considered as
the mismatch between the observations and the cur-
rent predictions:

rn−1 ¼ Φ − AXn−1: ð8Þ

Suppose A is an m × k dense matrix, then computing
rn−1 needs m × k multiplications. This can be greatly
reduced by exploring the sparsity of Xn−1. Suppose
there are k0 nonzeros in Xn−1, then only m × k0 multi-
plications are actually needed, which is usually a
small fraction of the original. Next we compute the
residual correlations vector cn, which can be regarded
as a measure of the correlations between the atoms
in A and the current residual:

cn ¼ ATrn−1: ð9Þ

Then hard thresholding is performed to find a small
set of indices that indicate those atoms that are best
for reducing the current residual:

Sn ¼ fs:s ∈ �In−1∧jcnðsÞj > tng; ð10Þ

where �In−1 is the complement of set In−1, tn ¼ αjjcnjj∞
and α ∈ ð0; 1Þ is a specially chosen threshold para-
meter. ∧ means logical and. This is different from
the OMP algorithm in which only the largest coeffi-
cient is selected within one step. Here, if Sn is an
empty set, the algorithm outputs the current solu-
tion and stops. If not, Sn is merged with In−1 to form
the new supporting index set In:

In ¼ In−1∪Sn: ð11Þ

By using the supporting index set In, the coefficients
in X can be divided into two parts: permissible and
nonpermissible, and only the permissible coefficients
can possibly have nonzero values. Here, we set the
maximum number of the permissible coefficients to
be Pmax, which is usually much smaller than the di-
mension of X. If jInj > Pmax, the algorithm outputs
the current solution and stops. If not, we remove
the columns of A and the corresponding elements
of X whose indices are not in In and obtain AIn
and XIn . Then the linear relationship between the ob-
servationsΦ and the permissible coefficients XIn can
be established as follows:

AInXIn ¼ Φ: ð12Þ

Because jInj can be much smaller than the dimension
of X, Eq. (12) is often an overdetermined linear
equation, and there is no exact solution in general.

Therefore, we compute the least-squares solution
of Eq. (12):

AT
In
AInXIn ¼ AT

In
Φ: ð13Þ

In this paper, the conjugate gradient algorithm is
adopted to solve Eq. (13). The iteration number is
set to be jInj. Then Xn can be constructed from XIn
with all the nonpermissible elements set to zero.
Afterward, a new iteration of the algorithm begins.
The maximum iteration number Nmax can be speci-
fied in advance. Note that when the algorithm stops,
all the negative elements in the solution are replaced
with zeros. Figure 1 summarizes the proposed recon-
struction algorithm.

3. Results

A. Simulation Experiments

The proposed method was first evaluated by per-
forming reconstructions of fluorescent sources with
different depths in a cylindrical phantom. This phan-
tom had a diameter of 20 mm and a height of 20 mm.
Optical parameters for the muscle region in Table 1

Fig. 1. Flow chart of the proposed algorithm.
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were used for this phantom. Three fluorescent source
configurations were considered, which are illu-
strated in Fig. 2. All the fluorescent sources were
spherical, with a diameter of 2 mm. These fluores-
cent sources were centered in the z ¼ 0 plane. The
depths of the three sources (from the center of the
source to the nearest surface) were 4, 6, and 8 mm,
respectively. As can be seen from Fig. 2, the deepest
source was quite near the center of the phantom. The
fluorescent yield was set to be 0.5. The black dots in
the cross section images of Fig. 2 represent the exci-
tation point sources. To generate the fluorescence
measurements, for each point source, the emitted
fluorescence was collected from the opposite cylind-
rical surface within a 160° field of view. In [15],
the authors have shown that by using L1 regulariza-

tion, the sparsity of the fluorescent sources can be
well preserved. This is especially the case when
the measurement data are very limited. Therefore, to
better demonstrate the sparsity-promoting charac-
teristic of the proposed method, in our simulation
experiments, only three different excitation point
sources were used to generate the fluorescence mea-
surements. Afterward, 5% Gaussian noise was added
to the measurement data. For the reconstruction of
the fluorescent sources, this phantom was discre-
tized into 2978 nodes and 12,380 tetrahedron ele-
ments. In this case, there were 2978 unknowns, and
the total number of measurement nodes was 1507.

In this paper, to better evaluate the proposed algo-
rithm, we compared it to the IS-based algorithm with
L1 regularization (IS-L1), which minimized the en-
ergy function EðXÞ in Eq. (6). For the proposed
method, a maximum of 10 iterations was used. Con-
sidering the sparsity of the fluorescent sources, we
set Pmax to be 100, which was sufficiently large for
these experiments. For the IS-L1 method, we set the
maximum iteration number to be 30,000, which was
the same as the number used in [15]. In our FMT ex-
periments, the dimension of the optimization pro-
blem was much smaller than 30,000. Therefore, for
the IS-L1method, the second reconstruction strategy
was adopted [15]. Zero vectors were used as the in-
itial values for both methods. The tuning parameters

Table 1. Optical Parameters of the Numerical Phantom
(Unit: mm−1) [23]

Region μax μ0sx μam μ0sm
Muscle 0.0052 1.08 0.0068 1.03
Lung 0.0133 1.97 0.0203 1.95
Heart 0.0083 1.01 0.0104 0.99
Bone 0.0024 1.75 0.0035 1.61

Fig. 2. (Color online) Three different fluorescent source config-
urations. The left column is the 3D views of the configurations,
and the right column is the cross sections in the z ¼ 0 plane.
The black dots in the cross sections represent the excitation point
sources. For each excitationpoint source, fluorescencewas collected
from the opposite cylindrical surface within a 160° field of view.

Fig. 3. (Color online) Cross sections in z ¼ 0 plane of the recon-
struction results for the three fluorescent sources with depths of 4
(top row), 6 (middle row), and 8 mm (bottom row), respectively. The
results in the left column are from the IS-L1 method, and the re-
sults in the right column are from the proposed method. The small
circles in the cross sections denote the real positions of the fluor-
escent sources.
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for the proposed method and the IS-L1 method are
the threshold parameter α and the regularization
parameter λ, respectively. These tuning parameters
were manually optimized. In our experiments, the
best values for parameter α ranged between 0.7 and
0.9. In our experience, 0.8 is a proper value for most
cases. Although 0.8 may not be the optimal value, it
is good enough to obtain satisfactory results. Both re-
construction algorithms were implemented in Cþþ,
and all the reconstructions were performed on a per-
sonal computer with 2:33 GHz Intel Core2 duo CPU
and 2 Gbytes of RAM.

Figure 3 shows the reconstruction results, which
are presented by using cross sections in the z ¼ 0
plane, for the three different fluorescent source con-
figurations. From these results, it can be seen that
both algorithms could obtain satisfactory fluorescent
source localizations. But the reconstructed intensi-
ties were different. Table 2 presents the relative in-
tensity errors for both algorithms, which are defined
as the absolute difference between the true intensity
and the maximum reconstructed intensity divided by
the true intensity. From Table 2, we can see that the
relative intensity errors for the proposed method
were smaller. To compare the running time of the
two algorithms, we set the starting point at the time
when A and Φ were just obtained. Then the running
time of the IS-L1 method for three different source
configurations was 7.39, 6.75, and 5:07 s, respec-
tively. Computing ATA took up a large portion of the
total reconstruction time. For the three configura-
tions, the proposed method stopped after 3, 5, and
1 iteration, respectively. The running time of the pro-
posed method was 0.046, 0.066, and 0:022 s, respec-
tively. The proposed method was at least 2 orders of
magnitude faster than the IS-L1 method.

Next, the proposed method was further tested
using a mouse-mimicking heterogeneous cylindrical
phantom that contained regions resembling muscle

Table 2. Relative Intensity Errors of the Results from the
StOMP-Based and IS-L1 Algorithms

Source Depth (mm) StOMP IS-L1

4 34.9% 74.7%
6 44.7% 73.2%
8 65.9% 75.1%

Fig. 4. (Color online) Cylindrical heterogeneous phantom with
regions resembling muscle (M), lung (L), heart (H), and bone
(B). (a) 3D view of the phantom. (b) Cross section of the phantom
in the z ¼ 0 plane.

Fig. 5. (Color online) Two different fluorescent source configura-
tions. The left column is the 3D views of the configurations, and the
right column is the cross sections in the z ¼ 0 plane. All the fluor-
escent sources were spherical with a diameter of 2 mm centered in
the z ¼ 0 plane. The black dots in the cross sections represent the
excitation point sources. For each excitation point source, fluores-
cence was collected from the opposite cylindrical surface within a
160° field of view.

Fig. 6. (Color online) Reconstruction results from the IS-L1meth-
od (first row) and the proposed method (second row) for one sphe-
rical fluorescent source. The left column is the isosurfaces for 30%
of the maximum value. The right column is the cross sections in
the z ¼ 0 plane. The small circles in the left lung regions of the
cross sections denote the real positions of the fluorescent sources.
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(M), lung (L), heart (H) and bone (B), which has been
used in [15]. The optical parameters adopted in [15]
were assigned to each of the four regions; see Table 1.
This phantom was 20 mm in diameter and 20 mm in
height. Figure 4 shows the 3D view of the phantom
and its cross section in the z ¼ 0 plane. Two fluores-
cent source configurations were designed to test the
proposed method, which are illustrated in Fig. 5. The
size and the fluorescent yield of the sources were the
same with the ones in the previous experiments.
Still, only three different excitation point sources
were used. This phantom was discretized into 2710
nodes and 13,316 tetrahedron elements. In this case,
there were 2710 unknowns, and the total number of
measurement nodes was 839.

Figures 6 and 7 present the reconstruction results
for the two different fluorescent source configura-
tions. Both isosurfaces for 30% of the maximum va-
lue and cross sections in the z ¼ 0 plane are provided.
Still, both algorithms could obtain satisfactory loca-
lizations. As can be seen in Table 3, the relative in-
tensity errors for the proposed method were smaller.
The running time of the IS-L1 method for two differ-
ent configurations was 3.69 and 4:15 s, respectively.
For the two configurations, the proposed method
stopped after three and five iterations, respectively.

The running time was 0.023 and 0:032 s, respec-
tively. The proposed method was at least 2 orders
of magnitude faster.

B. Physical Experiments

In this subsection, a physical phantom experiment
was conducted by employing a noncontact, continu-
ous wave imaging system in the transillumination
mode, which has been adopted in [15]. A sketch of
the system is shown in Fig. 8. When performing re-
constructions of the experimental data, the emitted
fluorescence distribution on the surface of the physi-
cal phantom should first be calculated based on the
captured fluorescence image. To avoid the errors in
this procedure, a cubic phantom was used in this ex-
periment. In this case, there was a point-to-point cor-
respondence between the surface of the phantom and
the captured fluorescence image, and the errors
could be minimized then. The cubic phantom with a
side length of 20 mmwasmade of polyoxymethylene.
A cylindrical hole of 2:5 mm in diameter filled with
Cy5.5 solution was used as the fluorescent source;
see Fig. 9. The height of the cylindrical fluorescent
source was 2 mm, and the center was at ð2:5; − 2:5;
1 mmÞ. The optical parameters of this phantom for
both the excitation and emission wavelengths, which

Fig. 7. (Color online) Reconstruction results from the IS-L1
method (first row) and the proposed method (second row) for
two spherical fluorescent sources. The left column is the isosur-
faces for 30% of the maximum value. The right column is the cross
sections in the z ¼ 0 plane. The small circles in the left lung
regions of the cross sections denote the real positions of the
fluorescent sources.

Table 3. Relative Intensity Errors of the Results in the
Heterogeneous Simulation Experiments

Configuration Source No. StOMP IS-L1

One Source S 27.9% 72.4%
Two Sources S1 20.1% 34.4%

S2 44.8% 59.8%

Fig. 8. (Color online) Sketch of the imaging system.

Fig. 9. (Color online) Cubic phantom with one cylindrical fluor-
escent source. (a) 3D view of the phantom and the source. (b) Cross
section in the z ¼ 0 plane. The black dots in (b) represent the
excitation point sources.

Table 4. Optical Parameters of the Cubic Phantom

Wavelength (nm) μa (mm−1) μ0s (mm−1)

671 0.00029 1.08
700 0.00051 1.11
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were determined by diffuse optical tomography, are
presented in Table 4. Four different excitation point
sources in the z ¼ 0 plane, which are illustrated in
Fig. 9(b), were used to generate the fluorescence
measurements. The emitted fluorescence was cap-
tured from the opposite side. For the reconstruction
of the fluorescent source, this phantom was discre-
tized into 2705 nodes and 11,239 tetrahedron ele-
ments. In this case, there were 2705 unknowns, and
the total number of measurement nodes was 1054.

Figure 10 shows the reconstruction results from
the two methods. Both isosurfaces for 30% of the
maximum value and cross sections in the z ¼
1 mm plane are provided. As can be seen in Fig. 10,
both methods could obtain satisfactory fluorescent
source localizations, though some insignificant arti-
facts existed. This demonstrates the applicability of
the two methods under badly ill-posed situations.
The running time of the IS-L1 method was 3:82 s.
However, only three iterations were needed for the
proposed method, and the running time was 0:022 s.
The proposed method was at least 2 orders of mag-
nitude faster when compared with the IS-L1 method.

4. Discussion and Conclusion

In this paper, the FMT problem with sparsity-
promoting L1-norm regularization is treated as the
basis pursuit problem, and a reconstruction algo-
rithm based on the StOMP is proposed. At each itera-
tion, this algorithm seeks a small index set that
indicates those atoms that are best for reducing the
current residual. Then the current supporting (per-
missible) index set is updated by merging the newly
selected index set. This can be considered as a kind of
a posteriori permissible region strategy. Based on
this, a new least-squares problem, with a greatly re-

duced order compared to the original problem, is
formed between the observations and the permissi-
ble coefficients. The conjugate gradient algorithm
is adopted to solve the least-squares problem. Then
the new solution can be constructed from the
permissible coefficients. To evaluate the proposed
algorithm, we compare it to the IS-L1 algorithm. Re-
construction results show that the proposed method
could obtain comparable or even slightly better re-
sults. More importantly, in these experiments, the
proposed method was at least 2 orders of magnitude
faster than the IS-L1 algorithm, which makes it a
practical FMT reconstruction algorithm.

In the proposed method, the regularization para-
meter is the threshold parameter α. Besides, there
are two other parameters in this method, the maxi-
mum number of the permissible coefficients Pmax and
the maximum iteration number Nmax. In this paper,
Pmax was set to be 100, which was much smaller than
the total number of unknowns. This is based on the
assumption that the fluorescent sources should be
sparse. In our experiments, the numbers of the non-
zero coefficients in the reconstruction results were
still much smaller than 100. In fact, we did not try to
optimize Pmax, and we found that the reconstruction
results were not sensitive to the change of Pmax. Be-
cause different FMT experiments have different
numbers of unknowns, we can set Pmax to be a certain
portion of the total number of unknowns when the
proposed method is taken into practical use. For
the parameterNmax, we set it to be 10, which was the
same with the value used in [17]. In our experiments,
all the reconstructions stopped within 10 iterations.
Still, we did not try to optimize Nmax. In our experi-
ence, 10 iterations are sufficient for most cases. For
the threshold parameter α, although we have not pro-
vided a way to determine it automatically, we have
found that 0.8 is a proper value for most cases. From
the above analysis, we can see that although there
are three parameters in the proposed method, we
generally do not need to change them. From this
point of view, the proposed method is more stable
than the IS-based method.

For optical tomography problems, the diffusion ap-
proximation to radiative transfer equation has been
extensively applied to model the light transport in
biological tissue. The advantage of the diffusion equa-
tion is that it is computationally efficient. Besides, it
has an explicit physical meaning. However, the diffu-
sion equation is not applicable in the regions with
high absorption. To resolve the problem, several im-
proved models have been adopted in recent years, for
example, the simplified spherical harmonics approx-
imation (SPN). The proposedmethod can beapplied in
these improved models with little modifications.

In conclusion, we have proposed an efficient
reconstruction algorithm for FMT based on the
StOMP algorithm. Future work will be focused on
in vivo mouse studies using the proposed algorithm.
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plane. The small circles in the cross sections denote the real posi-
tions of the fluorescent sources.

6936 APPLIED OPTICS / Vol. 49, No. 36 / 20 December 2010



grant 2011CB707700, the Knowledge Innovation
Project of the Chinese Academy of Sciences (CAS)
under grant KGCX2-YW-907, the National Natural
Science Foundation of China (NSFC) under grants
81027002 and 81071205, the Hundred Talents Pro-
gram of the CAS, and the Science and Technology
Key Project of the Beijing Municipal Education Com-
mission under grant KZ200910005005.

†These authors contributed equally to this work.

References
1. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder,

“Looking and listening to light: the revolution of whole-
body photonic imaging,” Nat. Biotechnol. 23, 313–320
(2005).

2. J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S.
Gambhir, “Molecular imaging in drug development,”Nat. Rev.
Drug Discov. 7, 591–607 (2008).

3. J. Tian, J. Bai, X. Yan, S. Bao, Y. Li, W. Liang, and X. Yang,
“Multimodality molecular imaging,” IEEE Eng. Med. Biol.
Mag. 27, 48–57 (2008).

4. V. Ntziachristos, “Fluorescence molecular imaging,” Annu.
Rev. Biomed. Eng. 8, 1–33 (2006).

5. W. Bangerth and A. Joshi, “Adaptive finite element methods
for the solution of inverse problems in optical tomography,”
Inverse Probl. 24, 034011 (2008).

6. Y. Tan and H. Jiang, “Diffuse optical tomography guided
quantitative fluorescence molecular tomography,” Appl. Opt.
47, 2011–2016 (2008).

7. F. Gao, H. Zhao, L. Zhang, Y. Tanikawa, A. Marjono, and Y.
Yamada, “A self-normalized, full time-resolved method for
fluorescence diffuse optical tomography,” Opt. Express 16,
13104–13121 (2008).

8. X. Song, D. Wang, N. Chen, J. Bai, and H. Wang, “Reconstruc-
tion for free-space fluorescence tomography using a novel
hybrid adaptive finite element algorithm,” Opt. Express 15,
18300–18317 (2007).

9. P. Mohajerani, A. A. Eftekhar, J. Huang, and A. Adibi, “Opti-
mal sparse solution for fluorescent diffuse optical tomography:
theory and phantom experimental results,” Appl. Opt. 46,
1679–1685 (2007).

10. I. F. Gorodnitsky and B. D. Rao, “Sparse signal reconstruction
from limited data using FOCUSS: a re-weighted minimum
norm algorithm,” IEEE Trans. Signal Process. 45, 600–616
(1997).

11. E. J. Candes, J. K. Romberg, and T. Tao, “Stable signal
recovery from incomplete and inaccurate measurements,”
Commun. Pur. Appl. Math. 59, 1207–1223 (2006).

12. D. L. Donoho and X. Huo, “Uncertainty principles and
ideal atomic decomposition,” IEEE Trans. Inf. Theory 47,
2845–2862 (2001).

13. Y. Lu, X. Zhang, A. Douraghy, D. Stout, J. Tian, T. F. Chan,
and A. F. Chatziioannou, “Source reconstruction for
spectrally-resolved bioluminescence tomography with
sparse a priori information,” Opt. Express 17, 8062–8080
(2009).

14. N. Cao, A. Nehorai, and M. Jacob, “Image reconstruction for
diffuse optical tomography using sparsity regularization and
expectation-maximization algorithm,” Opt. Express 15,
13695–13708 (2007).

15. D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang,
“A fast reconstruction algorithm for fluorescence molecular to-
mography with sparsity regularization,” Opt. Express 18,
8630–8646 (2010).

16. M. Elad, B. Matalon, and M. Zibulevsky, “Coordinate and
subspace optimization methods for linear least squares with
non-quadratic regularization,” Appl. Comput. Harmon. Anal.
23, 346–367 (2007).

17. D. L. Donoho, Y. Tsaig, I. Drori, and J. L. Starck, “Sparse solu-
tion of underdetermined linear equations by stagewise ortho-
gonal matching pursuit,” Tech. Rep. 2006-02 (Stanford
Department of Statistics, 2006).

18. J. A. Tropp and A. C. Gilbert, “Signal recovery from random
measurements via orthogonal matching pursuit,” IEEE
Trans. Inf. Theory 53, 4655–4666 (2007).

19. Y. Tan and H. Jiang, “DOT guided fluorescence molecular
tomography of arbitrarily shaped objects,” Med. Phys. 35,
5703–5707 (2008).

20. D. Wang, X. Liu, Y. Chen, and J. Bai, “A novel finite-element-
based algorithm for fluorescence molecular tomography of
heterogeneous media,” IEEE Trans. Inf. Technol. Biomed.
13, 766–773 (2009).

21. G. Y. Panasyuk, Z. Wang, J. C. Schotland, and V. A. Markel,
“Fluorescent optical tomography with large data sets,” Opt.
Lett. 33, 1744–1746 (2008).

22. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The
finite element method for the propagation of light in scatter-
ing media: boundary and source conditions,” Med. Phys. 22,
1779–1792 (1995).

23. A. X. Cong and G. Wang, “A finite-element-based reconstruc-
tion method for 3D fluorescence tomography,” Opt. Express
13, 9847–9857 (2005).

20 December 2010 / Vol. 49, No. 36 / APPLIED OPTICS 6937


