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Abstract: Obesity has become a serious epidemic and one of the leading global health problems. However, much of the current debate 
has been fractious, and etiologies of obesity have been attributed to eating behavior (i.e. fast food consumption), personality, depression, 
addiction or genetics. One of the interesting new hypotheses for explaining the development of obesity involves a food addiction model, 
which suggests that food is not eaten as much for survival as pleasure and that hedonic overeating is relevant to both substance-related 
disorders and eating disorders. Accumulating evidence has shown that there are a number of shared neural and hormonal pathways as 
well as distinct differences in these pathways that may help researchers discover why certain individuals continue to overeat despite 
health and other consequences, and becomes more and more obese. Functional neuroimaging studies have further revealed that pleasant 
smelling, looking, and tasting food has reinforcing characteristics similar to drugs of abuse. Many of the brain changes reported for he-
donic eating and obesity are also seen in various types of addictions. Most importantly, overeating and obesity may have an acquired 
drive similar to drug addiction with respect to motivation and incentive craving. In both cases, the desire and continued satisfaction occur 
after early and repeated exposure to stimuli. The acquired drive for eating food and relative weakness of the satiety signal would cause an 
imbalance between the drive and hunger/reward centers in the brain and their regulation. In the current paper, we first provide a summary 
of literature on food addition from eight different perspectives, and then we proposed a research paradigm that may allow screening of 
new pharmacological treatment on the basis of functional magnetic resonance imaging (fMRI). 

Keywords: Obesity, overeating, dopamine, food addiction, pharmacological treatment development, reinforcement, neuroimaging. 

INTRODUCTION 

 The United States is facing a pervasive and devastating obesity 
epidemic. In the United States, approximately 90 million Ameri-
cans are obese; more than 400,000 deaths related to obesity or asso-
ciated diseases occur annually in the States [1]. While much atten-
tion has been given to obesity in the Western world, developing 
countries are not immune to the globesity epidemic either [2]. 
Lately, the prevalence of obesity is leveling off in woman but is 
increasing in men, children and adolescents [1]. Obesity is associ-
ated with an increased risk of morbidity and mortality, which places 
a sense of urgency to understand the processes that have contrib-
uted to this epidemic. More recently, the notion that obesity might 
be a form of addiction originating from a variety of psychological 
and physiological causes has been gaining popularity [3]. Advo-
cates of this theory claim that the study of drug addiction may also 
inform our understanding of obesity and help predict newer and 
more effective treatment approaches [4]. As an addictive process, it 
can be defined as a chronic relapsing problem caused by various 
fundamental factors that increase craving for food or food-related 
substances leading to a state of heightened pleasure, energy or ex-
citement. Food addiction most often results in the loss of control, 
impulsive and compulsive behavior that arises from emotional and 
environmental conditions and a dependence on the feelings that 
food produces in the brain. Americans eat out often and are exposed 
to increasingly large food portions are served in restaurants and fast 
food outlets. Advertisements on the television and internet elicit 
cravings by food cues thereby encouraging children and adults to 
snack or seek food despite lack of hunger signals. In the present 
paper we first provide a summary of literature on food addition 
from the perspectives of definition, human and animal models, 
neuroendocrinological, hypothalamic signaling and reward systems, 
food cues, and neuroimaging studies. Finally, we proposed a 
 

*Address correspondence to this author at the University of Florida 
McKnight Brain Institute Department of Psychiatry 100 Newell Drive, P.O. 
Box 100256, Gainesville, FL 32610, USA; Tel: +1 352 2940414;  
Fax: +1 352 3922579; E-mail: yijunliu@ufl.edu 

paradigm that conducts fMRI scanning of young healthy subjects of 
normal weight to measure different brain activation by visual im-
ages of highly rewarding foods (high caloric food like hamburger, 
chips) compared with images of non-food in resting states. It may 
allow screening of new pharmacological treatment on the basis of 
fMRI. 

FOOD ADDICTION 

 Traditional addiction research focuses on drugs of abuse, such 
as cocaine, nicotine, morphine and alcohol. It implies psychological 
dependence, and thus is a mental or cognitive problem that is often 
referred to as ‘substance dependence,’ which is defined by the Di-
agnostic and Statistical Manual of Mental Disorders (DSM-IV-TR) 
[5]. However, a variety of addictions to non-drug entities, including 
gambling, sex and food have been investigated recently [6-14]. In 
general, food addiction is associated with substance related disor-
ders [15] as well as eating disorders, although there is no clear defi-
nition for such condition. It has been noted in DSM V’s proposed 
revision (http: //www.dsm5.org) that a recommendation for binge 
eating disorder [16] to be recognized as a free-standing diagnosis. It 
is also being recommended that the category of Eating Disorders be 
renamed as Eating and Feeding Disorders to reflect the proposed 
inclusion of feeding disorders. From a scientific standpoint, food 
addition can be defined as a chronic relapsing problem caused by 
various fundamental factors that increase craving for food or food 
related substance leading to a state of heightened pleasure, energy, 
or excitement [17-21]. There are also clinical accounts in which 
self-identified food addicts used food to self-regulate in order to 
escape a negative mood state [22]. One of the most commonly stud-
ied food cravings is carbohydrate craving, and the authors found 
that the combination of increased liking for carbohydrates in the 
context of decreased mood effects paralleled other addiction proc-
esses [23, 24]. Most food addiction results in the loss of control, 
impulsive and/or compulsive behavior arising from emotional and 
environment conditions and a psychological dependence on food 
[25, 26]. Eating behaviors are similar to those of other addiction 
behaviors since both affect the levels of dopamine (DA) in the 
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mesolimbic dopaminergic system [20, 27]. For example, DA D2 
receptors have a high prevalence of Tag1A1 allele [28, 29] and this 
allele has been linked to low levels of these receptors in obese indi-
viduals [29, 30]. Thus, these individuals use food to raise their DA 
levels through positive reinforcement [31]. The findings disclosed 
that the mesolimbic dopamine system plays a critical role in prefer-
ence for high energy diets and results in abnormal eating behavior 
(i.e. hyperphagia), eating disorders and dietary obesity [32-34].  

EVIDENCE FROM PRADER-WILLI SYNDROME 

 Prader-Willi Syndrome (PWS) is a genetic imprinting disorder 
that results in profound hyperphagia and early childhood obesity. 
One characteristic of the disease is a marked obsessive compulsive 
drive to overeat not only food but also inanimate objects, which can 
result from excessive, pathologic, reinforcement produced by the 
ingested items themselves [35]. PWS is associated with substance 
dependence and was chosen as a well defined genetic model since it 
may help explain certain neurophysiologic mechanisms that affect 
appetite and food addiction [36]. Thus, it can be more thoroughly 
investigated and applied to human obesity conditions than animal 
models. 

 PWS patients are identified as being genetically obese since 
childhood. About 70% of cases are caused by a paternal genetic 
deletion on chromosome 15 (15q11-13), whereas 25% are from a 
maternal uniparental disomy of chromosome 15 [37]. The remain-
ing 1-5% of PWS cases results from certain imprinting defects, 
which have a 50% risk potential to recur in future offspring [35, 38, 
39]. There is a loss of specific brain genes such as MAGEL2, 
MKRN3, NDN, SNURF-SNRPN and sno-RNA that are misrouted 
or lost resulting in abnormal cortical development in patients diag-
nosed with PWS [40]. These genetic anomalies can be detected by 
DNA methylation analysis and in situ hybridization of the alleles 
[35]. 

 Individuals with PWS are characterized as having doli-
chocephaly, almond-shaped eyes, small mouth, hands, and feet, 
decreased muscle tone [41], infantile hypotonia, hypogonadia, short 
stature, and early onset of obesity due to central dysfunction 
(around 18 to 36 months of age) [42]. They also show major distur-
bances in appetite, sleep, breathing, and metabolism regulation. 
Abnormal eating behavior is manifested by delayed satiety, prema-
ture return of hunger after eating a meal, seeking and hoarding food 
and food-related objects, and ingesting inanimate items [43] as well 
as excessive daytime drowsiness, poor ventilation, hypercapnia, and 
dental cavities [44]. Overall, many systems are affected by PWS 
such as the central nervous system (CNS), gastrointestinal, urogeni-
tal, cardiovascular, respiratory, and integumentary resulting in nu-
merous medical conditions and disorders [35].  

 Miller et al. [43] hypothesized that the irregular reward process-
ing of food stimuli in brain pathways caused the aberrant appetite, 
and these pathways involve the hypothalamus, frontal cortex, in-
sula, and limbic/paralimbic areas. Furthermore, postmortem analy-
ses have shown a decreased number of cells in the paraventricular 
nucleus (PVN) [45]. This is a crucial evidence for explaining why 
satiety is difficult to attain, since PVN is the hunger center of the 
brain that controls appetite [46]. Using the conditioned Granger 
causality method, Zhou et al. [47] found that there is strong influ-
ence of the amygdala (AMY) on the anterior cingulated cortex 
(ACC), which is more highly activated during an emotional task 
associated with feeding [43] compared to the brain activation of 
normal subjects during the resting state. 

EVIDENCE OF FOOD ADDICTION FROM ANIMAL STUD-

IES 

 Animal studies have shown that the predisposition to food ad-
diction in offspring can be caused by feeding rat mothers junk food 
consisting of fatty, sugary, and salty snacks during pregnancy and 
lactation [48]. Rodent offspring showed increased weight gain and 

body mass index (BMI) compared to controls, whereas their moth-
ers displayed bingeing and overeating of junk food [48]. Thus, 
these findings may be applied to the diets of pregnant women in 
order for them to have healthy children with normal appetites and 
weight. Avena has developed a rat model of sucrose bingeing, rats 
are maintained on a diet of 12-h access to a 10% sucrose solution 
(or 25% glucose in earlier studies) and standard rodent chow and 
then followed by 12-h of sucrose and chow deprivation for a period 
of about one month. The findings of this model relate to a variety of 
factors associated with addictive behavior and with sugar classified 
as an addictive substance [9, 13, 49] because it follows the typical 
stages of the human addiction pathway of bingeing, withdrawal, 
craving, bingeing in a never-ending cycle.  

 Bingeing is defined as an “escalation of intake with a high pro-
portion of intake at one time, usually after a period of voluntary 
abstinence or forced deprivation”[9]. Avena showed that after a 
month of binge eating (sugar or glucose), rats displayed a series of 
behaviors similar to the effects of drug abuse, including the escala-
tion of everyday intake and increase in sugar intake during the first 
hour of daily access. Sucrose bingeing rats regulate their caloric 
intake by decreasing their chow consumption, which compensates 
for the extra calories obtained from sugar and thus resulting in a 
normal body weight [50]. Withdrawal is known to be caused by 
alteration in the opioid system [51], where DA decreases and ace-
tylcholine (ACh) is released from the nucleus accumbens (NAC). 
Signs of opiate-like withdrawal also emerge when the abused sub-
stance is removed; signs include production of DA, ACh and 
opioids similar in response to naloxone [51], often characterized by 
anxiety [52] and depressive behavior [9]. The third stage of de-
pendence is craving, which happens after a prolonged period of 
abstinence and is defined by “increased efforts to obtain a substance 
of abuse or its associated cues as a result of dependence and absti-
nence” [9]. Craving is measured during sugar abstinence as en-
hanced responding for sugar [53]. During the study performed by 
Avena, rats with the binge access lever pressed for 23% more sugar 
than they ever did before and after two weeks of forced abstinence 
from sugar [53], which indicated the change in the motivational 
impact of sugar, leading enhanced intake. Except for the above 
diagnostic criteria, cross-sensitization is predominantly defined as 
“an increased locomotor response to a different drug or sub-
stance”[9]; or more simply stated, animals sensitized to one drug 
may show increased intake of a different drug. For example, rats 
previously bingeing on sugar will drink more than 9% alcohol 
compared to control groups with access to ad libitum sugar, ad 
libitum chow, or binge (12 h) chow only [53]. In terms of similari-
ties to other forms of addiction, this data suggests that one drug acts 
as a gateway to another [9]. All of these definitions play a critical 
role in helping define and classify food (especially sugar) as a true 
addictive substance in comparison to the criteria for drug depend-
ence as shown at least in rats [54]. In addition, other studies of rats 
suggest that the rats developed a dopamine-mediated addiction to 
palatable food [34, 55-57]. 

NEUROENDOCRINOLOGICAL EVIDENCE 

 Defining the endocrinology behind obesity is crucial to under-
standing food addiction and overeating behavior. A great deal of 
evidence suggests a similarity in the neurochemical response to 
drugs and to food. Both palatable food and drugs appear to activate 
the same mesolimbic dopamine reward system in the brains of hu-
mans and animals [14, 36, 58-60]. DA is a neurotransmitter known 
to play a critical role in motivation that is involved with reward 
processing and positive behavior reinforcement [20, 61, 62]. The 
mesolimbic DA projections from the ventral tegmental area (VTA) 
to the NAC are well known for reinforcement behavior such as feed-
ing [63]. The NAC is important for several components of reward 
processing including increased food seeking behavior, in the learn-
ing of incentives, in the sense of motivation, in the feeling of sati-
ety, and in stimulus salience processing [64]. Volkow [65] found 
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that when DA deficient mice were treated with DA in the dorsal 
striatum, feeding behavior was restored and the mice chose to eat 
more palatable food. Rats that were treated with DA in the NAC also 
chose to eat more palatable food, even though they had no motiva-
tion to eat enough food to maintain normal function and stay alive. 
In another study, DA agonists were used to increase the portion size 
of meals and length of feeding, while long-term administration of 
DA increased body mass and feeding behavior [66]. In a condi-
tioned response study, food deprived subjects that were pretreated 
with methylphenidate (MP) (20 mg orally) were scanned while 
stimulated with a neutral or food-related cues, and results demon-
strated that food stimulation significantly increased DA in the dor-
sal striatum which correlated with the increases in self-reports of 
hunger and desire for food [65]. In addition, morbidly obese sub-
jects have shown a higher level of baseline metabolism than normal 
in the somatosensory cortex [67], and this evidence demonstrated 
that the somatosensory cortex regulated DA activity in the human 
brain [68-70]. DA D2 receptors, which have been associated with 
feeding and addictive behaviors, play a role in reward seeking, 
prediction, expectation and motivation related behavior [71]. DA 
D2 receptor antagonists block food seeking behaviors that depend 
on reinforcement between the cues and the rewards that they predict 
as well as on palatable foods they like [72]. Stice [29] conducted a 
study that compared obese to lean individuals in response to receipt 
of a chocolate milkshake versus a tasteless solution. The results 
indicated that obese relative to lean humans have fewer DA D2 
receptors in the striatum and that obese relative to lean rats have 
lower basal dopamine levels and reduced DA D2 receptor density. 
One study on healthy normal weight subjects showed that the ten-
dency of the individuals with negative emotions to eat was nega-
tively correlated with DA D2 receptor availability [73]. Wang [74] 
and Haltia [75] discovered that the lower DA D2 receptors had 
higher BMI in morbidly obese (BMI>40) and obese subjects re-
spectively. Their findings are consistent with the results that block-
ing DA D2 receptors increases food intake and raises the risk for 
obesity [76].  

 In addition, many peripheral metabolic signals, such as insulin, 
leptin and ghrelin, directly or indirectly interact with midbrain DA 
pathways [77-79]. Most childhood obesity is the result of genetic 
defects in leptin, receptors of leptin, pro-opiomelanocortin 
(POMC), pro-hormone convertase-1, melanocortin-4 receptors 
(MC4), and ghrelin genes [80]. This evidence further supports PWS 
as the first and foremost genetic model for obesity and demon-
strates leptin resistence as one of the primary causes of obesity. In 
PWS cases, leptin levels are increased causing an inability to pro-
duce an anorexigenic effect [80], whereas other studies have indi-
cated hormonal and metabolic disorders that may be associated with 
hyperphagia including impaired growth hormone secretion and low 
insulin production [80-83]. People in the process of becoming ad-
dicted to food may have leptin resistance as well that leads to over-
eating [84]. An fMRI study showed that leptin could diminish food 
reward and enhance the response to satiety signals generated during 
food consumption through the modulation of neuronal activity in 
the striatum in leptin deficient human subjects [85], leptin also 
plays a role in regulating eating behavior partially via regulation of 
the DA pathway. The restriction of food increases circulating ghre-
lin released from the stomach and activates the mesolimbic system 
increasing DA release in the NAC, while leptin and insulin inhibit 
them [79]. A study showed that food cues activated the brain re-
gions involved in hedonic and incentive response when the healthy 
subjects were infused with ghrelin [86]. A positron emission tomo-
graphy (PET) study showed that insulin resistance in the striatum 
and insula may require much higher levels of insulin to experience 
the reward and the interoceptive sensations of eating [87]. Thus, 
leptin and insulin can modify the DA pathway and change eating 
behavior. Leptin and insulin resistance in the brain DA pathways 
makes food intake a more potent reward and promotes palatable 
food intake [88]. Continuous stimulation of neuropeptide Y (NPY) 

receptors is the principal cause of hyperphagia [89]. An imbalance 
of NPY signaling at a local level (PVN and the arcade nucleus 
(ARC)) results in unregulated eating [46]. The neurotransmitter -
aminobutyric acid (GABA) has also been known to enhance feed-
ing behavior through its receptors or directly in the ARC. It can 
lead to decreased melanocortin signaling to the PVN, which in turn 
results in hyperphagia [90].  

 Solinas and Goldberg [91] studied how cannabinoid and opioid 
interaction affect the motivational aspects of food reinforcement, 
increased appetite and food consumption. Their findings showed 
that delta-9-tetrahydrocannabinol (THC) and morphine increased 
the reinforcement effects of food. Their study also confirmed that 
mu receptors were involved in the effects of THC and that cannabi-
noid 1 receptors were involved in the effects of morphine. Because 
of the high amount of endocannabinoide and opioid peptides lo-
cated in the hypothalamus, THC and morphine have orexigenic 
effects that promote appetite and food consumption [92, 93]. These 
results indicated that THC and morphine not only responded to 
food stimuli, but also enhanced the palatable quantities of the food 
[94].  

 These central and peripheral signaling pathways are highly 
interconnected. Ghrelin stimulates dopaminergic reward pathways, 
while leptin and insulin inhibit these circuits. Moreover, signaling 
circuits in both the hypothalamus and the ARC receive peripheral 
signals that project to other regions of the brain, including midbrain 
dopaminergic centers [20].  

HYPOTHALAMIC SIGNALING FOR APPETITE 

 The hypothalamus is a critical component in controlling appe-
tite. It consists of the ventromedial hypothalamus (VMH), lateral 
hypothalamus (LH), dorsomedial nucleus (DMN) and PVN, and 
regulates feeding behavior and metabolism [89]. These sites receive 
appetite-stimulating impulses from referring organs and systems 
that are involved in nutrient and metabolite consumption and distri-
bution, as well as in hyperphagia and obesity [95]. Ghrelin and 
leptin have been known to target the hyporhalamus in regulating 
feeding behavior. Leptin activates its receptors so that NPY, orexin 
(ORX), -endorphin and -melanocyte-stimulating hormones 
(MSH) can decrease appetite stimulation. The role of leptin and 
ghrelin feedback on the appetite regulating network (ARN) is cru-
cial for maintaining homeostasis [96]. If there is a drop in leptin 
levels, the ARN is stimulated to release orexigenic NPY, agouti-
related peptide (ArgrP) and GABA along with an inhibition of 
anorexigenic -MSH [89]. If an animal consumes too many en-
ergy-laden calories and becomes inactive, then hyperleptinemia is 
promoted and fat accumulates in the body [89]. Hence, leptin trans-
port and production in the hypothalamus is limited, and excess 
leptin circulation is unable to control appetite [97]. This may be an 
important factor to investigate in regard to food addiction and obe-
sity. 

 The orexigenic and anorexigenic interactive pathways in the 
hypothalamus have critical roles in regulating appetite and craving. 
The ARN has appetite enhancing and reducing circuits that are 
located in the ARC-PVN axis of the hypothalamus, and it is af-
fected by signaling from the LH and VMH [46]. These pathways 
may provide insight on the mechanisms underlying obesity and 
food addiction; because they have their components synthesized in 
the ARC and are targeted at the parvocellular PVN (pPVN) and 
magnocellular PVN (mPVN). The findings of Kalra [89] showed 
that if there was a disruption between the VMH and LH, then the 
affected individuals would overeat and gain weight. It indicated that 
the VMH is responsible for inhibiting signals to the ARC. On the 
other hand, certain areas in the LH which express ORX or melanin 
concentrating hormone (MCH) increase NPY release, thereby 
stimulating appetite. If there is nonstop stimulation of NPY recep-
tors, then the satiety signal to the hypothalamus is inhibited result-
ing in continuous eating [89]. NPY levels rise in the ARC in order 
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to stimulate appetite during the absence or decrease of food intake. 
It has been shown that GABA can decrease melanocortin signaling 
to the PVN in order to stimulate appetite [90]. Overall, LH neurons 
that express ORX, MCH, and ARC neurons that coexpress NPY 
and GABA are the key components of the hypothalamus orexigenic 
pathway [46]. Manipulation of this pathway may provide novel 
insight for the treatment of food addiction as well as obesity in 
general. However, anorexigenic pathways are responsible for con-
trolling the inhibition of appetite. The most important component in 
the melanocortin pathway is the ARC-PVN axis where POMC neu-
rons coexpress -MSH and cocaine- and amphetamine-regulating 
transcript (CART), that acts upon the PVN to curb appetite [89]. 
Another anorexigenic pathway consists of corticotrophin releasing 
hormone (CRH) neurons in the PVN, which release CRH due to 
stress to inhibit NPY-induced food intake [98]. Feeding regulation 
by anorexigenic neurochemical signals consists of the links be-
tween NPY and POMC and between NPY and CRH [94].  

THE REWARD SYSTEM 

 In drug-related addiction, it has been shown that the ventral 
striatum and midbrain were associated with immediate rewards and 
that the hippocampus responded to reward consequences. The hip-
pocampus is likely to reflect its involvement storing and retrieving 
the memories for the desired food [99]. It was also discovered that 
the globus pallidus, thalamus and subgenual cingulated were asso-
ciated with immediate rewards, while the caudate, insula and ven-
tral prefrontal cortex (vPFC) responded to reward consequences 
[100]. The mesolimbic reward system is a common pathway in 
response to food intake (consummatory food reward) [101], which 
may reinforce craving behavior and increase risk for overeating [18, 
102, 103]. This is similar to the reinforcement sensitivity model of 
substance abuse, which postulates that certain people show greater 
reactivity of reward circuitry to psychoactive drugs [103]. Thus, 
reward processing is linked to addiction, and it is processed only if 
it can promote the craving of seeking food as a positive reward 
rather than facing the consequences of the reward behavior [96]. On 
the other hand, obesity is a “reward deficiency syndrome” [104] 
since DA D2 receptors are mediators of reinforcement and compul-
siveness, and obese subjects were found to have lower levels of 
these receptors in the striatum [74]. In a study with subjects of nor-
mal weight, DA D2 availability in the striatum modulated eating 
behavioral patterns and DA D2 receptor availability negatively 
correlated with the tendency to eat when exposed to negative emo-
tion [73]. Another hypothesis postulates that greater anticipated 
reward from food intake (anticipatory food reward) [101] increases 
the risk for overeating. Stice tested the hypothesis that obese indi-
viduals experience greater reward from food consumption (con-
summatory food reward) and anticipated consumption (anticipatory 
food reward) than lean individuals. Results suggested that individu-
als with increased activation in the gustatory cortex and somatosen-
sory regions and decreased activation in the striatum in response to 
anticipation and consumption of food may be at risk for overeating 
and consequent weight gain [101]. In addition, Stice investigated 
the difference between emotional and nonemotional eaters during 
negative versus neutral mood states. Results indicated that emo-
tional eating is related to increased anticipatory and consummatory 
food reward, but only during the negative mood state [101]. Most 
importantly, the common pathway for addiction involves the 
mesolimbic frontocortical dopamine (MFD) system, which is a 
reward pathway that controls eating behavior. Addictive behaviors 
cause the release of DA in the reward pathway causing almost im-
mediate positive reinforcement [3]. Increased activation in the so-
matic parietal areas in food-addicted individuals suggests that en-
hanced activity in these regions involves sensory processing of 
food, which may make food even more rewarding [105, 106]. Mor-
ria and Dolan [106] showed that the state of hunger can influence 
the memory associated with food-related stimuli in fasting indi-
viduals. Joranby and colleagues [107] found that the localization of 

brain activation was dependent on the stimulus received. For exam-
ple, the right anterior OFC had a variable response to all stimuli, 
despite hunger, while the right posterior OFC had different re-
sponse only with food related stimuli during hunger. Thus, the pos-
terior area was associated with general rewards, while the anterior 
part was associated with abstract and goal-oriented rewards.  

FOOD CUES: INTERNAL AND EXTERNAL APPETITE 
TRIGGERS 

 In both developed and developing countries, people are con-
stantly surrounded by food and motivational cues, which serve to 
enhance food consumption of not necessarily healthy foods [108, 
109].  

 Certain brain networks are responsible for cue-induced eating 
and appetite induction. A specific food-associated environment to 
induce eating in healthy humans can shed light on why individuals 
became addicted to food overeat and obese. The predominant re-
gions that have been associated with the drive to eat in both animal 
and human studies are the hypothalamus, striatum, OFC, insula, 
ACC, and AMY [110]; and brain regions consisting of the baso-
lateral amygdala (BLA), LH and medial prefrontal cortex (mPFC) 
acting as a network to regulate eating by learned, motivational cues 
[45, 111, 112]. AMY has been shown to play a critical role in cue-
enhanced eating [113], in appetite activation, and in maintaining a 
homeostatic balance [114-117]. When food-deprived individuals 
are shown food items compared to non-food items, greater activa-
tions of the AMY and medial orbitofrontal cortical area (mOFC) 
are observed [113, 117]. Visual cues for foods that have a higher 
incentive value produce greater activation in the AMY than foods 
that were recently eaten to satisfy hunger signals [114]. 

 Normal eating signaling results from a response to decreased 
energy, but it can be triggered from environmental or learned cues, 
which in turn can alter the motivation for food consumption. Pet-
rovich [118] found that neural connections between the BLA and 
LH are responsible for processing learned cues in order to forego 
the satiety signal and promote eating in satiated rats. The BLA 
shares anatomical connections with the hypothalamus in order to 
control feeding behavior [112]. A portion of the BLA that origi-
nates in the basolateral nucleus directly innervates the LH and 
sends vital projections to the LH, which together with the BLA 
forms part of the feeding circuit associated with the initiation of 
feeding [112]. The BLA-LH system is crucial for allowing learned 
cues to override satiety signals and stimulate eating during satia-
tion. It is specifically associated with controlled eating via learned 
signals, because the system does not regulate baseline eating or the 
rate at which rats gain weight when fed ad libitum. This occurred 
primarily due to an associative process in which food ingestion was 
directed by a cue paired previously with food but not an unpaired 
one [109]. In a neurohormonal study, it may be plausible that poten-
tial feeding mechanisms involve direct glutamatergic connections 
from the BLA to LH, although the exact LH neurons involved in 
this process remain unidentified. Nevertheless, it may be safe to 
assume that BLA output could influence LH subsystems required 
for feeding initiation, and most importantly, the BLA-LH junction 
must be intact in order to initiate food cue-related eating [119]. 
Hunger caused by food cues is an adaptive mechanism for survival, 
and the learned cues can serve as a harmful force to promote over-
indulgence in food despite satiety, These particular learned cues can 
overcome specific satiety in order to promote continued eating 
[120]. 

 Petrovich [109] investigated that cellular activation markers in 
the ventral medial PFC (vmPFC) neurons were activated following 
exposure to a newly-conditioned cue that stimulated eating in sati-
ated rats. It caused impaired food consumption as a result of condi-
tioned motivational cues when neurontoxic lesions were created in 
the vmPFC. Thus, the vmPFC plays a significant role in appetite 
influence by motivational cues. Interestingly, brain lesions did not 
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affect eating in the pretest baseline sessions or the rate at which rats 
gained weight when fed freely. However, lesions in the basolateral, 
basomedial and lateral nuclei of the AMY as well as the LH re-
sulted in decreased food consumption and nonresponsiveness to 
appetite stimulation cues [121]. Given its important role in goal-
oriented behavior, the orbital and medial prefrontal cortex (omPFC) 
could play a pivotal role in regulating the impulse to eat in response 
to highly appetitive cues in subjects with food addiction [122].  

 Metabolic factors and nonhomeostatic signals control motiva-
tional eating. Cravings for food in humans can be elicited by food 
cues and are often associated with hedonic overeating [123, 124]. 
Food craving is a learned appetite for energy through the reinforc-
ing effects of eating a specific food when hungry [125]. Cue-
induced eating could be considered binging, since it has been 
shown that sated rats consume more food pellets in a short period of 
time [109]. A human study [126] showed that food cues elicited 
specific cravings for the cued food, as opposed to a general desire 
to partake in undesired food in diet-restricted eaters. Most impor-
tantly, as the craving for the desire food increased, the restricted 
dieters consumed more of the cued food [126]. Lesions of the lat-
eral OFC impair expectancy learning but not conditioned stimulus-
potentiated feeding in rats [127]. Thus, the ventral areas within the 
rat vmPFC could represent a functional counterpart for the mOFC 
in humans [128]. DA also plays a critical role in food consumption 
stimulated by unpredictable cues [129]. DA efflux within the 
vmPFC resulting from signal-induced satiety was correlated with 
decreased consumption of high caloric, sweet and fatty foods; this 
may also be the case in PWS. Likewise, human OFC activation 
decreased in response to an olfactory cue of food eaten to satiety 
but not to an odor of uneaten food [122]. This observation may 
suggest a key point as to why obese individuals who are addicted to 
food continue to overeat despite satiety. 

 The environment in which food is consumed has been changing 
over the past 30 years in the United States. Increasingly dispropor-
tional food portions are served and eaten in restaurants and fast 
food places [130]. Advertising on television further elicits food 
cues encouraging even normal weight children and adults to seek 
out food despite lack of hunger signals. On the other hand, external 
food cues can be depicted in a much simpler fashion than the inter-
nal cues described above. In PWS patients, obsession and preoccu-
pation with food, lack of satiation and incessant food seeking are 
typical behaviors as compared to normal obese humans [131, 132]. 
PWS adults show preference for sweet or high carbohydrate foods 
over any other type of food and often first eat the most desired 
foods, such as sweet, high caloric foods and will then eat the least 
preferred foods last. Since PWS cases are often highly affected by 
visual cues, even more so than normal obese adults, environmental 
cues are of much greater relevance. PWS patients will often have 
tantrums and aberrant behavior after seeing or smelling delicious, 
inviting food [133]. In PWS, the simple appearance of food cues 
(visual) has a very high emotional attachment and significance as 
opposed to those found in normal obesity that leads to bingeing 
episodes [134]. 

NEUROIMAGING STUDIES 

 Neuroimaging studies using PET and MRI have shown that 
aberrant eating behaviors and obesity have altered the brain func-
tion as well as neuroanatomy. In an fMRI study by Shapira [102], 
PWS patients showed much delayed blood oxygen level dependent 
(BOLD) response after glucose ingestion in the frontal cortex while 
viewing food pictures. Similar results in PWS adults showed an 
increased BOLD response in the vmPFC [43]. This data is best 
explained by the fact that PWS subjects have defects in the hypo-
thalamus resulting in abnormal reward processing that leads to calo-
rie overloading. It is well known in fMRI studies that the frontal 
cortex is involved in linking food and other rewarding objects with 
hedonism [122]. Wang et al found that when subjects viewed deli-

cious food, the anterior insula and right OFC brain regions that are 
involved in the DA system were activated. FMRI studies have 
shown activation of the AMY with food-related stimuli, tastes and 
odor [103, 135, 136], and the activation response to gastric disten-
tion showed an association between activation in the AMY and 
subjective feeling of fullness [102, 137]. In two fMRI studies, Stice 
investigated striatal activation in response to receipt of chocolate 
milkshake versus a tasteless solution. The results suggested that 
individuals may overeat to compensate for a hypofunctioning dorsal 
striatum, particularly with genetic polymorphisms thought to at-
tenuate dopamine signaling in this region [29]. A study by Smeets 
[103] showed that obese individuals experience greater reward from 
food consumption and anticipated consumption than lean subjects. 
This data indicated that individuals with greater activation in the 
gustatory cortex and somatosensory regions have a stronger re-
sponse to anticipation and consumption of food, while weaker acti-
vation in the striatum may signal risk for overeating and consequent 
weight gain [101]. Another study by Stice et al tested the differ-
ences between emotional and nonemotional eaters response to food 
intake and anticipated food intake, and the results demonstrated that 
emotional eating is related to increase anticipatory and consumma-
tory food reward during negative mood [138].  

 To test their hypothesis, Volkow [62] used PET and a multiple 
tracer approach to assess the DA system in the human brain in 
healthy controls as well as in subjects that are addicted to drugs and 
in those that are morbidly obese. The results of this study showed 
that the availability of DA D2 receptors in the striatum is shown to 
modulate the reinforcing responses to both drugs and food. Drugs 
and food compete for the reward pathway. The association with 
prefrontal metabolism suggests that decreases in DA D2 receptors 
in obese subjects contribute to overeating in part through deregula-
tion of prefrontal regions implicated in inhibitory control and emo-
tional regulation [62]. A human PET study with [11C]raclopride 
measured DA release in the striatum after consumption of a favorite 
food showed that the amount of DA release was correlated with the 
ratings of meal pleasantness [60]. Several areas of the PFC includ-
ing OFC and cingulated cortex (CG) have been implicated in food-
related motivational behavior [139], and the mPFC involved in food 
craving [140, 141]. Volkow tested her hypothesis that food cues 
would increase extracellular DA in striatum and that these increases 
would predict the desire for food [65]. Using PET and 
[18F]fluorodeoxyglucose (FDG) to measure regional brain glucose 
metabolism, Wang showed that morbidly obese subjects had a 
higher than normal baseline metabolism in the somatosensory cor-
tex [67]. Taken together, these findings indicate that the brains of 
obese individuals may change in ways which not only reinforce 
food consumption but that also impair their ability to derive pleas-
ure from activities other than eating. 

PROPOSED PARADIGM  

 Food addiction is influenced by a complex regulatory system 
involving the integration of a wide variety of sensory inputs by 
multiple brain areas. Mesolimbic dopaminergic and opioid signal-
ing pathways from the midbrain VTA and the NAC play a key role 
in establishing these rewarding properties [142]. In addition, cogni-
tive factors such as social environment, emotional state, or inten-
tional efforts to control consumption can also influence food intake. 
Most of what we know about these regulatory systems derives from 
animal models, but our understanding of the control of eating be-
havior in humans is very limited.  

 Consistent with the biological imperative to identify and con-
sume food, neuroimaging studies have begun to document the re-
sponsiveness of human brain to food cues such as odors and/or taste 
samples of food [29, 141], videos of people with food, photographs 
of food [85], and visual presentation of actual food [143]. Food 
cues have been contrasted directly with non-food stimuli [143] or 
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chosen to represent foods with high hedonic value and energy con-
tent [85].  

 FMRI is ideal for investigating the concerted activity among the 
ensemble of regions involved in a specific function, because scans 
can detect all regions of brain activation simultaneously. The tem-
poral-spatial resolution and anatomical accuracy of fMRI tech-
niques are now sufficient to allow a description of the properties of 
the major components in the CNS and most importantly, their func-
tional interaction. In this case the dynamic activity of the brain 
reacting to visual stimuli can be monitored appropriately. There-
fore, to elucidate the neural basis of obesity, we have proposed a 
method that measures brain response to visual food cues. Using 
fMRI, we can observe brain response to viewing photographs of 
food and non-food objects, and we looked specifically at brain re-
gions important to the regulation of obese appetite and food intake. 
We propose to conduct an fMRI study to scan young healthy sub-
jects of normal weight to measure different brain activation by vis-
ual images of highly rewarding-foods (such as high caloric food 
like hamburger, chips) compared with images of non-rewarding 
objects during various physiological states, in particular, we are 
interested in effects of fast food-branding on the brain and the ef-
fects in Chinese children with and without exposure to the Golden 
Arches (McDonald®) or the Kentucky Colonel (KFC®). The 
study tests the hypothesis of ‘food addiction’ that the fast food 
brands such as McDonald may have reinforcing effects in the brain 
and such effects may be related to children’s drive to eat. Using the 
Chinese populations who have never been exposed to such food 
brands (as this CANNOT be done in the USA) as control, this study 
would have a strong impact in the areas of addiction and obesity.  

 Another research paradigm proposed is mostly based on a bot-
tom-up approach to test the relationship between chronic subcuta-
neous recombinant leptin injections and weight loss [84]. In animal 
models, leptin sensitivity is positively correlated with the ability to 
resist dietary obese compared to those that have a tendency to re-
main lean on fattening diets. The fMRI techniques is a powerful 
tool to probe leptin neurological function in modulation of human 
ingestive behavior and ideal for investigating the concerted activity 
among the ensemble of regions involved in a specific function, 
because scans can detect all regions of brain activation simultane-
ously. Many recent studies have employed the fMRI techniques to 
gain neuroanatomical insights into the effects of leptin on the brain 
processing of hunger, satiety and food reward in obese human sub-
jects [85, 144], in subjects with normal leptin production, and in 
subjects suffering congenital leptin deficiency in the presence or 
absence of chronic leptin supplement (4 to 52 weeks treatment). 
The results linked with brain regions that are also active to hunger 
(insula, parietal and temporal cortex) and to inhibition and satiety 
(prefrontal cortex) [85]. Other studies also showed that leptin re-
sponses to visual food stimuli differ in the obese versus lean sub-
jects [145, 146] and differ before and after weight loss in obese 
subjects, but they also showed that leptin supplement can restore 
these leptin response altered with the lost pounds in weight-reduced 
individuals [146]. 

 Therefore, we will conduct an fMRI study to help establish a 
diagnostic protocol susceptibility to diet-induced obesity in young, 
healthy humans of normal weight. We propose to assess the brain 
activation in response to acute subcutaneous leptin injection by 
examining the resting-state and exposure to stimuli consisting of 
food cues using an fMRI experiment. We will also attempt to corre-
late the fMRI leptin brain response with weight gain on a cafeteria 
diet. Positive results from this study will provide an invaluable 
diagnostic guideline for initiating early adulthood nutritional and 
behavioral intervention on an individualized basis to temper obesity 
development. This would constitute a realistic and meaningful cost-
effective Obesity-Prevention strategy and will help curb rising obe-
sity treatment-related health expenditures. Positive study outcomes 
will also highlight a technological breakthrough for fMRI investiga-

tion of region-specific neural activity in an acutely stimulated brain 
reactive state rather than in a chronically adapted state following 
long-term drug treatment or other types of intervention. 

 Thus, we hope to illuminate promising methods that use visual 
food cues to investigate mechanisms of human eating behavior, and 
to facilitate a more unified and reproducible approach to neuroi-
maging studies of food addiction and obesity. Results from this 
study can go far beyond obesity studies and could extend to the 
field of pharmacological research. 
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