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Background: In the clinical management of advanced gastric cancer (AGC), preoperative identification of
early recurrence after curative resection is essential. Thus, we aimed to create a CT-based radiomic model
to predict early recurrence in AGC patients preoperatively.
Materials and methods: We enrolled 669 consecutive patients (302 in the training set, 219 in the internal
test set and 148 in the external test set) with clinicopathologically confirmed AGC from two centers.
Radiomic features were extracted from preoperative diagnostic CT images. Machine learning methods
were applied to shrink feature size and build a predictive radiomic signature. We incorporated the radio-
mic signature and clinical risk factors into a nomogram using multivariable logistic regression analysis.
The area under the curve (AUC) of operating characteristics (ROC), accuracy, and calibration curves were
assessed to evaluate the nomogram’s performance in discriminating early recurrence.
Results: A radiomic signature, including three hand crafted features and six deep learning features, was
significantly associated with early recurrence (p-value <0.0001 for all sets). In addition, clinical N stage,
carbohydrate antigen 199 levels, carcinoembryonic antigen levels, and Borrmann type were considered
useful predictors for early recurrence. The nomogram, combining all these predictors, showed powerful
prognostic ability in the training set and two test sets with AUCs of 0.831 (95% CI, 0.786–0.876), 0.826
(0.772–0.880) and 0.806 (0.732–0.881), respectively. The predicted risk yielded good agreement with
the observed recurrence probability.
Conclusions: By incorporating a radiomic signature and clinical risk factors, we created a radiomic nomo-
gram to predict early recurrence in patients with AGC, preoperatively, which may serve as a potential tool
to guide personalized treatment.

� 2019 Elsevier B.V. All rights reserved. Radiotherapy and Oncology 145 (2020) 13–20
Gastric cancer (GC) is the fourth most common type of malig-
nant disease, and it ranks as the second leading cause of cancer-
related death worldwide, with 77% of cases occurring in developing
countries [1]. Although the diagnostic procedures and multidisci-
plinary treatment strategies for patients with resectable locally
advanced GC (AGC) have been greatly improved, the survival
remains unsatisfactory owing to a high incidence of recurrence
[2,3]. More than 50% of recurrences and tumor-related deaths
occurred within 1 year after surgery [4,5] with the median
recurrence-free survival of approximately 10.8 months [6]. For this
reason, the preoperative estimation of the risk of early recurrence
is relevant in clinical practice. Although surgical resection is
regarded as the primary curative treatment for AGC, more aggres-
sive treatment regimens, including preoperative and postoperative
chemotherapy and chemoradiation therapy, are effective in pro-
longing relapse-free survival and overall survival [7–9]. However,
not all patients benefit from these aggressive treatments [10,11],
which may be due to failure in identifying groups at high risk for
early recurrence. Additional adjuvant therapies and more frequent
follow-up would also provide an enduring benefit for patients at
high risk for recurrence [9,12]. Therefore, to improve prognosis,
there is a critical need to develop better biomarkers to predict
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14 Radiomics for early recurrence prediction in advanced gastric cancer
the risk of early recurrence in order to stratify and identify those
who may benefit from aggressive treatment.

Several risk factors, such as pathological characteristics, bio-
logic/genetic biomarkers, and tumor-node-metastasis (TNM) stag-
ing [13,14] have been demonstrated to be associated with the
recurrence of AGC after curative resection. However, there has
been shown to be large difference in the clinical outcomes of the
patients with same disease stage who undergo similar treatment
strategies [14,15]. These findings revealed the limitation of the
TNM staging system in providing adequate prognostic information.
Moreover, preoperative pathological characteristics and biologic/-
genetic biomarkers can only be collected through biopsy, which
has not been recommended in routine clinical care due to the
potential risk of tumor cell dissemination and seeding and incon-
sistencies with the final pathology [16].

Non-invasive computed tomography (CT) has been widely used
for differential diagnosis, preoperative assessment, and therapeutic
evaluation in patients with GC [17,18]. In contrast to conventional
imaging features, ‘‘radiomics” has been introduced because it is
considered to have the potential ability to reveal disease character-
istics invisible to the naked eye [19]. Radiomics is a process that
quantifies medical images as high-dimensional, mineable data
through advanced feature extraction procedures (e.g. hand-
crafted texture features and deep learning features); subsequent
data analysis is then performed to support the clinical decision
[20,21]. Radiomics has been widely used to for tumor detection,
tumor subtype classification, prognosis prediction, and therapeutic
response evaluation [16,19–21]. Recently, several studies have
explored the value of radiomics in the prognosis of GC. Giganti
et al. [22] investigated the association between preoperative CT
textures and overall survival in 56 GC patients and found that CT
textures were significantly associated with overall survival. Li
et al. [23] and Jiang et al. [24] investigated the prognostic signifi-
cance of radiomic signature in GC patients who underwent radical
resection. Their findings indicated that the radiomic signature
could predict overall survival. Jiang’s study [24] also demonstrated
radiomic could predict which patients with stage II and III GC ben-
efited more from chemotherapy. However, to the best of our
knowledge, there are currently no reports of radiomics and deep
learning study on predicting early recurrence in AGC.

The objective of this retrospective study was to create a prog-
nostic model, which incorporates radiomic features and clinical
risk factors that can preoperatively predict early recurrence in
patients with AGC who undergo curative surgery; such a tool
would help identify high-risk patients who require aggressive
treatment and close follow-up.
Materials and methods

Patients

Ethical approval was obtained for this retrospective analysis
(from the Ethics Committees at Lanzhou University Second Hospi-
tal [approval date: 11 March, 2017] and Jiangsu University [ap-
proval date: 16 September, 2018]), and the informed consent
requirement was waived. The protocol conducted in accordance
with the ethical principles of the Declaration of Helsinki and also
the Good Clinical Practice guidelines, as defined by the Interna-
tional Conference on Harmonisation. This study included 521 con-
secutive patients who were pathologically diagnosed with AGC and
who underwent radical gastrectomy with D2 lymphadenectomy
between January 2013 and March 2017 at center 1 (Lanzhou
University Second Hospital). Detailed descriptions of the inclusion
and conclusion criteria, and the recruitment process are shown in
Fig. S1. These patients were divided into a training set and an inter-
nal test set. The training set contained 302 patients treated from
January 2013 to December 2015, with 120 (39.74%) patients having
early recurrence. The internal test set included 219 patients treated
between January 2016 and March 2017, which included 84
(38.36%) patients with early recurrence. Furthermore, we also col-
lected an external test set from another center (center 2, Affiliated
People’s Hospital of Jiangsu University), including 148 patients (52
[35.14%] with early recurrence) who were treated between Febru-
ary 2014 and November 2016. Noted that we also used the ran-
domized assignment of the training and testing sets (ratio 3:2) to
assess the reproducibility of our method. Therefore, the model in
this paper was trained and evaluated further 5 times on different
patient assignments. The details on clinical characteristics of
patients were described in Supplementary Material.

Follow-up

The time to recurrence (<1 year) was chosen as the endpoint for
early recurrence. All patients underwent follow-up at least 1 year
following radical gastrectomy. Patients were monitored every 3–
6 months during the first 2 years and every 6–12 months for the
subsequent 3–5 years. The median follow-up times were
20 months for center 1 and 26 months for center 2, respectively.

Recurrence of gastric cancer was categorized as: locoregional,
hematogenous, peritoneal, and distant lymphatic. At every
follow-up visit, we obtained a medical history and performed a
physical examination, which included routine blood tests to check
liver function and several tumor markers; chest X-ray, abdominal
ultrasound, CT scan, other imaging work-ups, and upper endoscopy
were also conducted at regular intervals. Recurrence was con-
firmed by clinical imaging, gastroscopic biopsy, cytological exami-
nation of ascites, or intraoperative findings of reoperation.

Image acquisition and segmentation

We retrieved CT images from the picture archiving and commu-
nication system (PACS) (Carestream, Langley, British Columbia,
Canada). Analysis was done on portal venous-phase CT images,
considering its well differentiation between tumor and the adja-
cent normal tissue. Manual tumor segmentation was performed
on ITK-SNAP software (version 3.6.0; www.itksnap.org) on
venous-phase CT images. CT scanner, acquisition parameters,
image segmentation and construction of two additional sets (i.e.
the re-segmentation set and the simulated slice-thickness set)
are described in Supplementary Material.

Radiomic features extraction

Two-step image standardization was implemented before fea-
ture extraction: bicubic resampling was used to standardize the
image scale in the slice, resulting in a pixel size of 0.5 mm � 0.5
mm; the pixel intensity translation was used to minimize the dis-
crepancy of intensity distributions among patients. As shown in
Fig. S2, both hand-crafted features and deep learning features were
extracted from the ROIs to quantify the tumor phenotype. For each
patient, 115 hand-crafted and 112 deep learning radiomic features
were extracted from the two-dimensional largest tumor region.
The feature extraction algorithms were standardized by referring
to the Image Biomarker Standardisation Initiative (IBSI) [25]. The
hand-crafted features contained four different groups of features:
shape, histogram, gray-level co-occurrence matrix (GLCM), and
gray-level run-length matrix (GLRLM). Additionally, a deep convo-
lutional neural networks (DCNN) containing 8 weighted layers was
constructed and trained to extract deep learning features (Figs. S2b
and S3) based on the training set. The detailed introduction of the
features is described in Supplementary Material. All the extracted
features of each patient were normalized by z-score method based
on the parameters calculated in the training set.



Table 1
Clinical characteristics of patients in the training and test sets.

Training set Internal test set External test set

Overall Non-
recurrence

Recurrence p-value Overall Non-
recurrence

Recurrence p-value Overall Non-
recurrence

Recurrence p-
value

Age 54.90 ± 9.32 54.86 ± 10.00 54.97 ± 8.22 0.9174 55.19 ± 10.27 54.78 ± 10.00 55.86 ± 10.71 0.4580 62.08 ± 9.11 62.35 ± 9.30 61.58 ± 8.82 0.6166
Sex Female 74 50 24 0.1396 57 40 17 0.1235 40 29 11 0.2364

Male 228 132 96 162 95 67 108 67 41
Histological

grade
Well differentiated 21 16 5 0.1768 16 14 2 0.0010 1 0 1 0.1675
Moderately
differentiated

135 84 51 100 70 30 53 38 15

Poorly differentiated 146 82 64 103 51 52 94 58 36
Borrmann I/II 79 61 18 0.0003 67 59 8 <0.0001 52 40 12 0.0237

III/IV 223 121 102 152 76 76 96 56 40
Lauren Intestinal 124 77 47 0.8592 91 64 27 0.0049 43 33 10 0.1484

Diffuse 109 64 45 73 34 39 64 39 25
Mixed 69 41 28 55 37 18 41 24 17

Tumor location Antrum 143 83 60 0.7223 106 73 33 0.1025 63 38 25 0.6041
Body 85 52 33 59 32 27 37 25 12
Cardia 74 47 27 54 30 24 48 33 15

CEA Normal 234 151 83 0.0050 156 104 52 0.0162 102 72 30 0.0299
Abnormal 68 31 37 63 31 32 46 24 22

CA199 Normal 237 157 80 0.0001 173 112 61 0.0876 114 78 36 0.0970
Abnormal 65 25 40 46 23 23 34 18 16

CA724 Normal 214 135 79 0.1185 161 104 57 0.1344
Abnormal 88 47 41 58 31 27

CA125 Normal 280 171 109 0.3069 197 128 69 0.0024 136 91 45 0.1497
Abnormal 22 11 11 22 7 15 12 5 7

cN stage N0/N1 146 114 32 <0.0001 112 93 19 <0.0001 91 69 22 0.0004
N1/N2 156 68 88 107 42 65 57 27 30

cT stage T2 57 49 8 <0.0001 60 55 5 <0.0001 19 11 8 0.0171
T3 159 101 58 111 57 54 80 60 20
T4a/T4b 86 32 54 48 23 25 49 25 24

cTNM stage I 38 34 4 <0.0001 31 30 1 <0.0001 13 8 5 0.0375
II 19 15 4 29 25 4 6 3 3
III 41 32 9 27 19 8 25 22 3
IVa/IVb 204 101 103 132 61 71 104 63 41

CEA, carcinoembryonic antigen; CA199, carbohydrate antigen 199; CA724, carbohydrate antigen 724; CA125, carbohydrate antigen 125; cN stage, clinical N stage; cT stage, clinical N stage; cTNM stage, clinical TNM stage.

W
.Zhang

et
al./R

adiotherapy
and

O
ncology

145
(2020)

13–
20

15



16 Radiomics for early recurrence prediction in advanced gastric cancer
Feature selection and radiomic signature building

Based on the training set, we performed feature selection and
built a radiomic signature as an independent predictor for early
recurrence.

Firstly, based on the re-segmentation set and the simulated
slice-thickness set respectively, we calculated the intra-/inter-
class correlation coefficients (ICCs) and the coefficient of variation
(CV) to evaluate the reproducibility and robustness of feature
extraction. Only the features which yielded ICCs of greater than
0.8 and CVs of less than 15% were entered in the process of signa-
ture building [26]. Secondly, we used the consensus clustering
[27] with Pearson correlation as the distance metric and performed
10,000 resampling iterations to separate the features into several
groups [28]. To eliminate redundant features, only the featureswith
the highest average consensus index in each cluster, named the
most representative medoid features, were retained. We chose
the number of clusters which made the medoid features yielding
significant correlation with all the intra-cluster features (Pearson
correlation coefficients >0.8). Finally, the remaining features were
used to construct the radiomic signature based on the logistic
regression model. Backward step-wise selection was conducted
with Akaike’s information criterion (AIC). The variance inflation fac-
tor (VIF) was used to check the degree of multi-collinearity of each
variable in the regression model. The variables with VIF > 5 were
excluded [29].
Statistical analysis

We used univariate analysis to assess the relationship between
patients’ characteristics and early recurrence. Differences in
patient characteristics between the different groups were assessed
using the Mann–Whitney U test or independent t-test for continu-
ous variables, and the chi-square test or Fisher’s exact test for cat-
egorical variables. Noted that the categorical variables were
grouped to eliminate sparse categories and to meet the clinical rea-
soning. These decisions were made before modelling.

Using the clinical characteristics and radiomic signature as
input, multivariable logistic regression analysis with variable
selection was implemented to identify the powerful combination
of these predictors. Then, we built a quantitative radiomic nomo-
gram to predict the individual probability of post-operation pro-
gression. For comparison, this multivariable analysis procedure
was also performed to build a clinical model with only the clinical
characteristics.

The calibration curves, with the Hosmer–Lemeshow test, were
used to assess the agreement between the predicted risks and
the actual results. We evaluated the radiomic nomogram using
the area under the curve (AUC) of operating characteristics (ROC)
with 95% confidence interval (95% CI) and used the DeLong test
to compare different ROCs. We selected the point which yielded
the highest Youden’s index (i.e. specificity + sensitivity � 1) on
the ROC curve of the training set as the optimal cut-off value,
and used it to classify the patients into the high-risk group or the
low-risk group. Accuracy was calculated to assess the prediction
performance. Kappa test was used to determine intra-/inter-
reader agreement for the models.

The software used for modeling and statistical analysis is
reported in Supplementary Material.
Fig. 1. Radiomic nomogram based on radiomic signature and clinical factors.
Results

Clinical characteristics of the three sets are listed in Table 1.
Borrmann type, CEA, CA199, clinical T stage (cT), clinical N stage
(cN), and overall stage, differed significantly between the non-
early recurrence group and the early recurrence group in the train-
ing set (p-value <0.05).

Most of the radiomic features (130/227) were demonstrated to
have inter-/intra-reader agreement and robustness for the varying
slice-thickness. A heatmap of these features and unsupervised
cluster partitioning are shown in Fig. S4. A significant association
between these features and early recurrence was observed. We
obtained 22 distinct feature clusters using the consensus clustering
(Fig. S5). Based on the medoid features, we built the radiomic sig-
nature using the logistic regression model. After the backward
elimination and the multi-collinearity analysis, the final radiomic
features in our signature contained three hand crafted features
and six deep features (Table S1). The radiomic signature showed
a good performance for discriminating early recurrence with AUCs
of 0.785 (95% CI, 0.733–0.837) in the training set, 0.764 (0.701–
0.827) in the internal test set and 0.769 (0.686–0.852) in the exter-
nal test set.

Beginning with the radiomic signature and the clinical charac-
teristics, multivariable analysis demonstrated that the radiomic
signature, Borrmann type, CEA, CA199, and cN stage remained
important predictors after adjustment for cofactors (Table S2). A
radiomic nomogram was then built by using the regression coeffi-
cients for prediction of early recurrence (Fig. 1). Meanwhile, the
clinical model incorporated sex, Borrmann type, CEA, CA199, cN
stage, and cT stage (Table S3).

The nomogram had powerful prognostic ability in all the three
sets with AUCs of 0.831 (95% CI, 0.786–0.876), 0.826 (0.772–0.880)
and 0.806 (0.732–0.881) (Fig. 2). The DeLong test indicated that no
statistical difference existed between the ROCs of the nomogram in
the two test sets and the training set (p-value = 0.8840 and 0.5736).
Furthermore, we randomly split our dataset into paired training
(60%) and test sets (40%) to generate 5 training/test set pairs. We
trained our predictive model and evaluated it repeatedly, generat-
ing a total of 5 validated AUCs ranging from 0.792 to 0.841. By
using the cut-off value of 0.3488, the nomogram yielded accuracies
of 0.748 (95% CI, 0.695–0.796; sensitivity, 0.800; specificity, 0.714)
in training set, 0.726 (0.662–0.784; 0.750; 0.711) in internal test
set and 0.723 (0.644–0.793; 0.827; 0.667) in external test set.
The radiomic nomogram had better prognostic performance than
the radiomic signature and the clinical model, which are listed in
Table 2 in detail. The results of Kappa tests demonstrated there
were substantial intra-/inter-reader agreement for the radiomic
signature (Kappa values, 0.780 and 0.615). Moreover, the radiomic
nomogram yielded even more excellent agreement as Kappa val-
ues equaled to 0.932 in both conditions.

The stratified analysis is shown in Supplementary Material. The
results indicated that the performance of radiomic nomogram was
not affected by patient age, sex, tumor location, histological grade,
operative type, surgical approach, postoperative chemotherapy, or



Fig. 2. ROC curves in the training (A), internal test (B) and external test set (C), and patients’ radiomic nomogram scores (D). The scores have been subtracted by the cut-off
value.

Table 2
Prognostic performances of models on the training and test sets.

Training set Internal test set External test set

AUC
(95% CI)

Accuracy
(95% CI)

Sensitivity Specificity AUC
(95% CI)

Accuracy
(95% CI)

Sensitivity Specificity AUC
(95% CI)

Accuracy
(95% CI)

Sensitivity Specificity

Radiomic
nomogram

0.831
(0.786–
0.876)

0.748
(0.695–
0.796)

0.800 0.714 0.826
(0.772–
0.880)

0.726
(0.662–
0.784)

0.750 0.711 0.806
(0.732–
0.881)

0.723
(0.644–
0.793)

0.827 0.667

Radiomic
signature

0.785
(0.733–
0.837)

0.709
(0.654–
0.759)

0.808 0.643 0.764
(0.701–
0.827)

0.708
(0.643–
0.767)

0.679 0.726 0.769
(0.686–
0.852)

0.676
(0.594–
0.750)

0.885 0.563

Clinical
model

0.784
(0.733–
0.836)

0.725
(0.671–
0.775)

0.783 0.687 0.785
(0.726–
0.845)

0.722
(0.657–
0.780)

0.762 0.696 0.709
(0.618–
0.799)

0.655
(0.573–
0.732)

0.673 0.646

AUC, area under the curve; CI, confidence interval.
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Fig. 3. Calibration curves of the radiomic nomogram in each set.

18 Radiomics for early recurrence prediction in advanced gastric cancer
a recurrent pattern (DeLong test p-value > 0.05) (Figs. S6 and S7),
which implied its great generalization ability.

The calibration curve of the radiomic nomogram showed good
agreement between the predictive risk and the observed recur-
rence probability in the three sets (Fig. 3). The Hosmer–Lemeshow
test was not significant (p-value = 0.4667, 0.1372 and 0.0937), sug-
gesting there is no significant departure.

The performance of each risk score is shown in Figs. 4 and S8. In
these figures, we separated patients into two groups—high-risk
and low-risk—according to the corresponding nomogram scores
and the cut-off value. The Kaplan-Meier curves of disease-free sur-
vival (DFS) for the two groups were statistically divergent in all the
three sets.
Discussion

Preoperative prediction of early recurrence in AGC is important
for clinical practice. Thus, we developed and validated a novel, CT-
based radiomic nomogram to preoperatively predict early recur-
rence in patients with AGC following curative resection. The nomo-
gram, incorporating the radiomic signature, Borrmann type, CEA,
CA199, and cN stage, successfully identify patients at high risk of
Fig. 4. Two-year Kaplan-Meier curves for the radiomic nomogram
early recurrence. Furthermore, the nomogram provided better pre-
dictive accuracy than the clinical factor-based model and radiomic
signature alone, demonstrating the incremental value of the radio-
mic nomogram to the current diagnostic management of AGC.
Moreover, our nomogram is easy to use, and it could serve as a pre-
operative tool for individualized prediction of prognosis and for
guiding treatment in patients with AGC.

The radiomic signature consisted of three hand crafted features
and six deep learning feature. The hand crafted textural features
measure the second-order or the high-order intensity patterns in
the image, and therefore are able to reflect the heterogeneity of
the tumor imaging phenotype. Deep learning models can learn
high-level image features hierarchically, which are built upon
low-level features, layer-by-layer (Fig. S2b). Six deep learning fea-
tures were selected and incorporated into our radiomic signature.
They were calculated based on the corresponding deep learning
feature maps, which were generated from the trained convolu-
tional architecture (Fig. S3). As shown in Fig. S9, the feature maps
might highlight the region at high risk for recurrence. Considering
the operability and practicability, we chose the two-dimensional
features (rather than the three-dimensional features) to quantify
the tumor phenotype characteristics. Experimental results demon-
strated that the features, as well as the developed predictive mod-
els, had satisfactory reproducibility and prognostic ability.
Furthermore, based on the CT images of 30 randomly selected
patients, we compared the radiomic features extracted from the
single slice and the three-dimensional multiple slices, and found
that the values of most features (170/227) had high correlations
(Pearson correlation coefficients >0.8) between the two
approaches. This implied that the two-dimensional features might
be able to in a certain extent reflect the whole tumor. In radiomics
pipeline, the process of image interpolation is needed before fea-
ture extraction to increase the stableness of features and models
on different cohorts. A lot of researches have been done on the
advanced interpolation algorithms and the performance analysis
of different interpolation strategies [25,30–32]. Mackin et al.
implemented Butterworth filtering following interpolation to
reduce the variability in features [32]. Whybra et al. investigated
the sensitivity of radiomic features to different interpolation algo-
rithms and scales, and developed a correction technique to
increase features’ robustness [31]. In this study, to avoid introduc-
ing a large number of artificial information, which might be pro-
duced in three-dimensional isotropic interpolation when the
spacing between slices is too large, we implemented the in-slice
interpolation to coordinate the two-dimensional feature extrac-
tion. Meanwhile, we utilized a simulated slice-thickness set to
remove the features sensitive to the varying slice-thickness. The
developed nomogram showed stable prognostic performance in
the validation experiment. It should be noted that, since many
in the training (A), internal test (B) and external test set (C).
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radiomic features are susceptive to the parameters of imaging and
interpolation, more advanced isotropic interpolation and feature
selection should be designed and evaluated in the future.

In this study, CEA, CA199, cN stage and Borrmann type were
demonstrated as important risk predictors and incorporated into
our radiomic nomogram. Previous studies have indicated that
TNM staging is the most commonly used system to predict out-
come for AGC patients [13,33]. The cumulative recurrence rates
at 5 years for peritoneal, hematogenous, and lymphatic metastases
of T2/3 and T4 are 8.0% and 53.6%, 13.0% and 33.1%, 7.7% and 31.2%,
respectively [34]. In our study, patients with cT4a/T4b and/or cN2/
N3 were at greater risk of experiencing early recurrence compared
with whose with T2/T3 and/or cN0/N1 in univariate analysis, all of
which is consistent with that of previous studies. However, cT
stage was not included in our radiomic nomogram, which might
be because it was associated with other risk factors.

Pre-operative serum CEA, CA199 and CA724 levels were
reported to be significantly associated with the invasiveness of
GC and survival [35]. CEA is known as an independent risk factor
for predicting hematogenous recurrences of GC, especially liver
metastasis relapse. CA199 was evaluated significantly in the gastric
patients with later N stage, the prognosis of N1 stage gastric
patients with high level of CA199 was significantly poorer than
that of patients with lower level [36]. Macroscopic type (Borrmann
classification) is also a simple and valuable predictor for lymph
node metastasis and survival in AGC patients, and it is a known risk
factor for peritoneal dissemination [37]. Borrmann types III and IV
GC were common when tumors were found to invade deep into the
gastric wall. In this study, all the above mentioned factors were
associated with early recurrence.

As a preoperative tool, our nomogram included only preopera-
tive factors and did not use postoperative factors such as operative
type, surgical approach, or postoperative chemotherapy. However,
the surgical approach and postoperative therapy may influence the
prognosis in AGC patients. The Japanese gastric cancer treatment
guidelines [38] recommend distal gastrectomy with D2 lymph
node dissection as the standard surgical treatment for locally
AGC because of the confirmed feasibility and safety. One random-
ized controlled trial showed that the compliance rates of D2 lym-
phadenectomy, postoperative morbidity, and mortality rate were
similar between laparoscopic distal gastrectomy and open gastrec-
tomy [39]; moreover, no significant statistical difference existed in
the overall survival for patients in either group [40]. Besides surgi-
cal management, postoperative chemotherapy was found to be an
independent predictor of early recurrence. Adjuvant chemotherapy
with capecitabine plus oxaliplatin, fluorouracil, or leucovorin after
D2 gastrectomy improved the outcome of the patients with resect-
able GC and should be considered as a treatment option [7,9]. In
this study, to further validate the consistency of our nomogram,
we performed stratified analysis on operative type, surgical
approach, and postoperative chemotherapy. The results showed
that the nomogram was not affected by these factors and it
remained consistent, thus implying that our method can be
generalized.

Our study has several limitations. Selection bias occurred when
strict criteria were used (randomization hypothesis is compro-
mised), which may affect the model training. In our study, the cri-
teria introduced selection bias by removing patients with the best
prognosis (e.g., those of early gastric cancer) as well as the worst
prognosis (e.g., those were lost in follow up at all and those of
IVb stage). The selection bias thus limits our model only accurate
in AGC patients in a common condition. Therefore, while our
results clearly showed the potential of radiomics approach in the
prognosis of AGC patients, it is needed to increase the patient sam-
ple size and include other patient population in the future. More-
over, our method was developed based on the patients of Asian
race/ethnicity. As the epidemiology of gastric cancer in Eastern
countries is very different from that in Western countries, further
validation on patients of different ethnicity should be studied.
While the prognostic ability and generalization of the two-
dimensional feature-based models were assessed in this study,
the performance of the three-dimensional features remains to be
further investigated. Finally, although satisfactory independent
validation results were obtained in this study, many key tech-
niques in radomics pipeline (such as automated segmentation,
advanced isotropic interpolation, stable feature selection) deserve
further research to improve the robustness and performance of
radiomic model.

In conclusion, we were able to develop a radiomic nomogram
that incorporates a radiomic signature and clinical risk factors to
effectively predict early recurrence in patients with AGC following
curative resection; the nomogram was validated through diverse
methods showing powerful prognostic ability. We expect that
the radiomic nomogram may serve as a potential tool for guiding
individual care for these patients.
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