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Objectives: To develop a radiomic model based onmultiparametric magnetic resonance

imaging (MRI) for predicting treatment response prior to commencing concurrent

chemotherapy and radiation therapy (CCRT) for locally advanced cervical cancer.

Materials and methods: The retrospective study enrolled 120 patients (allocated to

a training or a test set) with locally advanced cervical cancer who underwent CCRT

between December 2014 and June 2017. All patients enrolled underwent MRI with

nine sequences before treatment and again at the end of the fourth week of treatment.

Responses were evaluated by MRI according to RECIST standards, and patients were

divided into a responder group or non-responder group. For every MRI sequence, a total

of 114 radiomic features were extracted from the outlined tumor habitat. On the training

set, the least absolute shrinkage and selection operator method was used to select key

features and to construct nine habitat signatures. Then, three kinds of machine learning

models were compared and applied to integrate these predictive signatures and the

clinical characteristics into a radiomic model. The discrimination ability, reliability, and

calibration of our radiomic model were evaluated.

Results: The radiomic model, which consisted of three habitat signatures from sagittal

T2 image, axial T1 enhanced-MRI image, and ADC image, respectively, has shown good

predictive performance, with area under the curve of 0.820 (95% CI: 0.713–0.927) in

the training set and 0.798 (95% CI: 0.678–0.917) in the test set. Meanwhile, the model

proved to perform better than each single signature or clinical characteristic.

Conclusions: A radiomic model employing features from multiple tumor habitats held

the ability for predicting treatment response in patients with locally advanced cervical

cancer before commencing CCRT. These results illustrated a potential new tool for

improving medical decision-making and therapeutic strategies.

Keywords: cervical cancer, MRI, radiomics, treatment response prediction, concurrent chemotherapy and

radiation therapy, precision medicine
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INTRODUCTION

Cervical cancer is one of the leading causes of cancer-related
mortality in women, among which locally advanced cervical
cancer has poor prognosis (1, 2). According to National
Comprehensive Cancer Network (NCCN) guidelines, concurrent
chemotherapy and radiation therapy (CCRT) with cisplatin-
based chemotherapy is a primary treatment for patients with
locally advanced cervical cancer (3); the 5-years survival rate can
reach 60–80% (4). However, if first-line CCRT fails, the extended
CCRT treatment period inevitably delays the commencement
of other potentially effective treatments (5). In addition, CCRT
has many side effects. Extra-pelvic irradiation affects the bones
that contain more than half the body’s proliferative active bone
marrow volume and may cause myelosuppression. Platinum-
based CCRT can aggravate myelosuppression, but treatment
delay or interruption affects its efficacy (6). Therefore, the
prediction of response to CCRT before treatment commences
may help us to decide whether to choose CCRT as first-line
treatment. Moreover, response prediction can guide personalized
medicine by selecting patients who are most sensitive to CCRT.

In clinical practice, assessing response to CCRT is often based
on tumor biopsy histology during or after treatment, which
provides no value in predicting the outcome for a CCRT decision.
Magnetic resonance imaging (MRI) is routinely used for non-
invasive diagnosis, treatment planning, and assessing treatment
response of locally advanced cervical cancer (7). There are
numerous MRI sequences, such as T1 and T2, dynamic contrast
enhanced MRI, and diffusion-weighted MRI (DWI). Although
these MRI sequences could assess the likely response based on
morphological changes after treatment (8), this is still a lagging
indicator (9). Pretreatment methods for predicting the response
of CCRT are still lacking.

Radiomics is an emerging field that aims to extract large
amounts of quantitative information from medical images that
may not be easily obtained or quantified by traditional means
(10–13). This kind of technique is able to capture features
that reflect intratumoral heterogeneity, which is thought to be
related to sensitivity to chemotherapy, radiotherapy, and other
treatments (14). Therefore, it has been widely used to predict
treatment response in nasopharyngeal carcinoma (15), rectal
carcinoma (16), and lung cancer (17).

In this study, we aimed to develop and validate a
radiomic model for predicting treatment response to CCRT in
locally advanced cervical cancer using pre-treatment MRI data
(Figure 1).

Abbreviations: ADC, apparent diffusion coefficient; AIC, Akaike’s information

criterion; AUC, area under the curve; CCRT, concurrent chemotherapy and

radiation therapy; CI, confidence interval; CR, complete response; DWI, diffusion-

weighted MRI; FIGO, International Federation of Gynecology and Obstetrics;

GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run-length matrix;

IBSI, Image Biomarker Standardization Initiative; ICC, inter-class correlation

coefficient; LASSO, least absolute shrinkage and selection operator; MRI, magnetic

resonance imaging; NCCN, National Comprehensive Cancer Network; PD,

progressive disease; PR, partial response; ROC, receiver operator characteristics;

SD, stable disease; VIF, variance inflation factor.

MATERIALS AND METHODS

Ethical approval for this retrospective study was granted by
the ethics committee of the Cancer Hospital of China Medical
University, and the informed consent for patients was waived.

Patients
One hundred and forty consecutive patients with cervical
carcinoma, treated between December 2014 and June 2017,
were enrolled according to the following inclusion criteria: (1)
histologically proven (biopsy) cervical carcinoma and clinical
diagnosis of locally advanced cervical cancer according to
the International Federation of Gynecology and Obstetrics
(FIGO) classification (FIGO stage IB2-IIB) (18); (2) no medical
treatment or CCRT prior to the pre-treatment MRI; (3) no other
malignancies during the study; (4) CCRT administered based
on the NCCN Clinical Practice Guidelines in Oncology-Cervical
Cancer Guideline) (3); and (5)MRI performed again at the end of
the fourth week of treatment for response evaluation. 20 patients
were excluded from the study according to the exclusion criteria:
(1) missing clinical data (i.e., the clinical characteristics listed
in Table 1; n = 5); (2) image artifacts (n = 3); (3) >3 slices of
tumor volume (the slice thickness = 4mm; n = 4); and (4) more
than 1 week between performing the pre-treatment MRI and
commencing CCRT (n= 8). Therefore, a total of 120 patients met
these criteria. Computer random number generation was used to
split half of patients into the training set [n = 60, mean age, 51.5
± 9.2 (range, 27–76) years], and the rest patients into the test set
[n= 60, mean age, 53.7± 9.0 (range, 34–75) years].

All patients underwent standard CCRT according to NCCN
guidelines (3). The detailed treatment schemes are shown in
Supplementary Material.

MRI Protocols
All patients underwent the pre-treatment multiparametric MRI
examinations before CCRT (within 1 week) and had a follow-up
MRI. The MRI images were acquired using a 3.0T MR system
(Siemens Magnetom Verio, Erlangen, Germany). The scanning
range was set to cover the whole pelvis, and the scanning
positioning line was consistent. The detailed MRI scanning
protocols are shown in Supplementary Material and Table S1.
Patients were scannedwith sagittal T2, axial T1, axial T2-FS, DWI
with b = 0, and b = 800, apparent diffusion coefficient (ADC),
and enhanced-MRI (sagittal, axial, and coronal directions). The
follow-up MRI scans used the same parameters with the pre-
treatment MRI. In this study, we retrieved the pre-treatment
MRI images from a picture archiving and communication system
(PACS; Neusoft, Shenyang, China) for segmentation and analysis.

Evaluation of Treatment Outcome
Referring to Response Evaluation Criteria in Solid Tumors
standards, two highly experienced radiologists in gynecological
MRI jointly analyzed treatment response (19). Responses can
be classified into groups of CR (Complete response, absence of
residual tumor), PR (partial response, the longest diameter of the
tumor was <70% of the original size), PD (progressive disease,
at least a 20% increase in the longest tumor diameter compared
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FIGURE 1 | Radiomics pipeline for the prediction of CCRT response in locally advanced cervical cancer. (A) Nine tumor habitat segmentations. (B) 3D radiomic

feature extraction. (C) Development of habitat signatures and radiomic model.

TABLE 1 | Clinical characteristics of patients in the training and test sets.

Characteristics Training set P Test set P

Responder group Non-responder group Responder group Non-responder group

Age (Mean ± SD) 50.6 ± 9.1 52.6 ± 9.3 0.401 52.1 ± 8.9 56.1 ± 8.9 0.098

Pregnancy Num (Mean ± SD) 3.4 ± 1.6 3.0 ± 2.0 0.228 2.9 ± 1.6 3.0 ± 1.0 0.578

Parturition Num (Mean ± SD) 1.3 ± 0.7 1.4 ± 1.0 0.250 1.5 ± 0.7 1.5 ± 0.7 0.703

Abortion Num (Mean ± SD) 2.1 ± 1.6 1.5 ± 1.7 0.053 1.5 ± 1.6 1.4 ± 1.1 0.930

First age of sexual intercourse (Mean ± SD) 23.0 ± 2.7 23.4 ± 2.7 0.641 22.4 ± 4.6 23.5 ± 3.3 0.461

Family history of cancer, n (%) 0.506 0.634

YES 2(5.7%) 0(0.0%) 4(11.1%) 1(4.2%)

NO 33(94.3%) 25(100.0%) 32(88.9%) 23(95.8%)

n, number; P-value was derived from the univariate association analysis between each characteristic and responses.

to the original size), and SD (stable disease, neither sufficient
shrinkage for PR nor sufficient increase for PD). Patients were
thus divided into a responder group, including CR and PR, or
a non-responder group, including PD and SD in this study. The
pre-treatment MRI before CCRT was used to predict responder
or non-responder in this study.

Tumor Habitat Segmentation and Feature
Extraction
Habitats are the tumor regions/subregions in different image
sequences (11). In this study, the highlighted tumor volume
in one MRI sequence was defined as a tumor habitat. Three-
dimensional (3D) regions of interest (ROI) of tumor habitat was
segmented manually by a radiologist with 10 years’ experience
(radiologist 1) using ITK-SNAP software (version 3.6.0; http://
www.itk-snap.org). In details, the ROI were drawn on each of the
2D slices to include the entire tumor volume. Nine tumor habitats
were delineated on the nine pre-treatment MRI sequences. In
addition, we randomly chose 25 patients from the training set and
asked another radiologist (radiologist 2) with 15 years’ experience
to segment habitats for analyzing the reproducibility of features.

We normalized image intensity and calculated quantitative
radiomic features from these habitats. The radiomic features
contained 114 3D descriptors for each habitat, including shape
features, histogram features, gray-level co-occurrence matrix
(GLCM) features, and gray-level run-length matrix (GLRLM)
features. Referring to the Image Biomarker Standardization
Initiative (IBSI) (20), the features were extracted using an in-
house developed toolbox performed in MATLAB (version 2017a;
MathWorks, Natick, MA, USA). The details of radiomic feature
extraction are described in Supplementary Material.

Habitat Signature and Radiomic Model
Building
Based on the training set, we built nine habitat signatures and
a radiomic model in this study. For each habitat, a three-
step feature selection procedure was used to remove the non-
reproducible or redundant features and find the most predictive
ones in the training set. First, we analyzed the stability of
radiomic features from the re-segmentation data using inter-
class correlation coefficient (ICC). Features with ICCs< 0.8 were
removed. Second, Pearson correlation coefficients between every
pair of features were calculated tomeasure the linear correlations.
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To reduce redundancy, for the pairs that yielded correlation
coefficients > 0.6, we only retained the more stable one (i.e.,
with high ICC). Then, the least absolute shrinkage and selection
operator (LASSO) logistic regression model (21) was utilized to
assess the importance of features and obtain the most predictive
combination as the habitat signature. Therefore, we obtained
nine habitat signatures from the nine MRI sequences.

To build the radiomic model, we compared three kinds of
machine learning models, including support vector machine,
random forest, and logistic regression model, with the habitat
signatures and clinical characteristics as input variables. To select
the best model as well as the optimized hype-parameters, and to
remove the meaningless or redundant variables, multiple three-
fold cross-validation with the grid search was implemented on
the training set. The average accuracy was used as the evaluation
criteria. We then obtained the final radiomic model by re-
training the selected model with the whole training set.

Statistical Analysis and Performance
Evaluation
Clinical characteristics with potential prognostic outcomes were
identified in univariate analysis on the basis of the chi-square
test or Fisher’s exact test for categorical variables and the t-test
or Mann-Whitney U test for continuous variables. Multivariable
logistic regression analysis was implemented to identify the
independent predictors. The statistical significance used P< 0.05.

The quantitative discrimination performance was assessed
using the receiver operator characteristics (ROC) analysis. The
area under the curve (AUC) with 95% confidence interval (95%
CI) was calculated. The point on the ROC curve of the training
set yielding the highest Youden’s index was selected as the
cut-off value. Then, the accuracy of the model was assessed.
We implemented calibration curve analysis with the Hosmer-
Lemeshow test to measure the agreement between the predicted

probability of treatment response and the observed results.
The consistency test for the radiomic model was conducted
by comparing its outputs based on the segmentation of the
two radiologists (i.e., the re-segmentation data). Furthermore,
to fully investigate the performance and robustness of the
proposed multi-habitat based radiomics, we randomly split the
120 patients into training sets or test sets 20 times. Then,
the model was built and validated repeatedly. The methods of
statistical analysis were conducted using the R software (version
3.5.0; http://www.rproject.org).

RESULTS

Clinical Characteristics
The clinical characteristics of patients are summarized inTable 1.
There were no significant differences between the responder
and non-responder groups in the training or test sets in

TABLE 3 | AUCs of the habitat signatures and radiomic model in the training and

test sets.

Models Training set Test set

Sagittal T2 signature 0.713 0.704

Axial T1 signature 0.653 0.631

Axial T2-FS signature 0.680 0.683

Axial DWI b=0 signature 0.675 0.594

Axial DWI b=800 signature 0.741 0.676

ADC signature 0.704 0.678

Sagittal T1 enhanced-MRI signature 0.611 0.650

Axial T1 enhanced-MRI signature 0.734 0.713

Coronal T1 enhanced-MRI signature 0.679 0.567

Radiomic model 0.820 0.798

TABLE 2 | The remaining features after a three-step feature selection methodology.

Habitats Number of features after step 1 Number of features after step 2 Selected features in habitat signature

Sagittal T2 96 11 X_GLRLM_LRHGLE

Axial T1 93 9 X_GLRLM_RP

Axial T2-FS 97 11 XLL_GLRLM_SRLGLE

Axial DWI b=0 102 14 X_GLRLM_LRHGLE

Axial DWI b=800 99 13 X_GLRLM_LRE,

X_GLRLM_SRLGLE

ADC 95 10 X_GLCM_variance

Sagittal T1

enhanced-MRI

97 8 XLL_GLRLM_RLN

Axial T1

enhanced-MRI

103 9 XHH_GLRLM_RP,

Surface_area,

XLL_H_skewness,

X_GLCM_dissimilarity

Coronal T1

enhanced-MRI

73 10 X_GLCM_homogeneity2

X, original image; XLL, original image filtered directionally with low-pass filter along x and y directions; XHH, original image filtered directionally with high-pass filter along x and y directions;

H, histogram; LRHGLE, long run high gray level emphasis; RP, run percentage; SRLGLE, short-run low-gray level emphasis; LRHGLE, long-run high-gray level emphasis; LRE, long-run

emphasis; RLN, run length non-uniformity.
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terms of any of the clinical characteristics, based on univariate
analysis (P > 0.05).

Feature Selection and Modeling
Among the 114 original radiomic features normalized by z-
score transformation in each habitat, key features were obtained
after the three-step feature selection methodology (Table 2).
The selected features captured the intensity, shape, and texture
pattern of the tumors. Then, nine habitat signatures were built via
LASSO logistic regression, respectively. All the signatures showed
significant associations with the treatment response, yielding
AUCs ranging from 0.611 to 0.741 in the training set. Beginning
with the habitat signatures and the clinical characteristics, grid
search was implemented on three machine learning models,
respectively. The random forest combining the habitat signatures
from sagittal T2 image, axial T1 enhanced-MRI image, and ADC

image yielded the highest average accuracy in multiple cross-
validations, and therefore was selected to construct the radiomic
model. The radiomic scores, which represented the predicted
possibility of response to CCRT, were calculated via radiomic
model for all the patients.

Performance Evaluation of Radiomic
Model
In the ROC analysis, the radiomic model yielded satisfactory
prediction performance in the training set (AUC = 0.820, 95%
CI: 0.713–0.927) and test set (AUC = 0.798, 95% CI: 0.678–
0.917). It had better predictive performance than any single
habitat signature in both training and test sets, which are listed
in Table 3 in detail. The radiomic model was the only factor that
reached statistical significance for predicting treatment response
in the multivariable analysis including the clinical characteristics.
The distribution of radiomic model score and the treatment

FIGURE 2 | The performance of radiomic model in predicting the response to treatment. The radiomic model scores in the training set (A) and test set. (B) The ROC

curves of radiomic model and selected three single signatures in the training set (C) and test set (D).
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response for each patient, as well as the ROC curves, are shown
in Figure 2. With the cut-off value of 0.520, the classification
accuracies were 0.750 in both the training and test sets. The
calibration curves of the radiomicmodel showed good agreement
between the predicted and actual probabilities of treatment
response in the two sets (Figure 3). The Hosmer-Lemeshow test
suggests that there is no significant departure (P = 0.368 and
0.437, respectively). The radiomic scores of the re-segmentation
data demonstrated that there was substantial inter-radiologist
agreement for the model (ICC = 0.809). Meanwhile, the model’s
performances were relatively consistent on the segmentations
of the two radiologists (AUCs = 0.903 and 0.803, respectively;
Delong test P = 0.116). Moreover, we repeatedly randomly split
the whole data into paired training and test sets (n = 60 in both
sets), and used each of the training/test sets to completely rebuild
and evaluate a model. In 20 cross-validation experiments, the
AUCs on the holdout test set ranged from 0.776 to 0.849 with
a mean value of 0.804.

DISCUSSION

In this study, a MRI radiomic model was built based on
multi-habitat signatures to predict response to CCRT in
locally advanced cervical cancer. The radiomic model, which
consisted of three habitat signatures, had good predictive
performance in both training and test sets. Moreover, our model
performed better than those with single habitat signature or
clinical characteristics.

We used multi-habitat signatures from different MRI
sequences. These sequences reflected different characteristics of
tumors, including morphological, physiological, and metabolic
characteristics. DWI MRI sequence uses ADC for quantification
and comparison in functional imaging (22), which may reflect
the biological heterogeneity of tumors. DWI-ADC changes
early during radiotherapy for cervical cancer, predicting tumor
responses on MRI (23). The signatures from DWI scans
apparently conflict with the observations on routine MRI. This
could be the result of DWI scans being assessed only qualitatively
(e.g., signal intensity, texture), as there is no established ADC
value that is a diagnostic for lesion tissue. T2 MRI images can
detect tumor intensity, and T1 enhanced-MRI images may reflect
intratumoral heterogeneity (15).

Intratumor heterogeneity was thought to influence the CCRT
response (14, 24). Most locally advanced cervical tumors
present with high intratumoral heterogeneity in virtually all
distinguishable phenotypes, such as proliferation, vascularity,
metabolism, oxygenation, etc., which directly suggests tumor
resistance to therapy (25). Although histopathological samples
can be acquired by surgery or biopsy, tumor heterogeneity
may lead to sampling errors. Such data are available only after
completion of all pre-operative treatment and surgery and cannot
be used as guidance for adjusting the therapeutic approach
before or during treatment. Identification of a biomarker that
could illuminate the individual’s biological behavior and aid in
identifying those who are less likely to benefit from CCRT and
should thus undergo alternative treatment or intensive follow-
up regimens would help with further classifications of locally
advanced cervical cancers. Predicting tumor response to CCRT

FIGURE 3 | Calibration curves of the radiomic model in the training and test

sets.

accurately before treatment has been a major challenge in the era
of personalized medicine, and no generally accepted biomarker
for cervical cancer has been reported (26). Being a non-invasive
and low-cost method, radiomics may offer an innovative solution
to this problem.

In this study, we explored 1,026 quantitative features to
uncover the tumor characteristics (27, 28). A main challenge
of this study is to reduce high dimensional feature set to a
representative subset that is most closely associated with the
responses. For each habitat, we reduced the 114 radiomic features
to a signature with a few key features. Multiple cross-validation
with three machine learning methods was then applied to the
nine signatures and three signatures were selected for model
building. These steps could reduce the complexity of the model
and avoid overfitting.

The incidence of cervical carcinoma is related to certain risk
factors, such as early sexual intercourse, frequent pregnancies,
abortion, births, and a family history of cancer (29). We
included these factors into the model, but they proved to be less
significant (P > 0.05).

This study had some limitations. First of all, our study may
carry some degree of selection bias. All data were obtained
from a single research center, and patients may not have been
randomized strictly. Further validation of the method based on
external centers and large-scale cohorts is needed. Secondly, the
selection of patients in the advanced clinical stage may limit the
generalizability of our findings to other stages. Additionally, to
ensure the reproducibility and stability of the radiomic model,
the same scanning sequences and parameters were used for all
patients. Therefore, the model needs to be tested on data with
different MRI machines and scanning parameters.
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In summary, we have identified an association between the
habitat signatures and responses to CCRT in locally advanced
cervical cancer. This association may have a clinical impact
on selecting individualized therapies for patients with a rather
reliable predicted outcome, before or during treatment.
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