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Deep neural networks (DNNs) have provably enhanced the state-of-the-art natural language process (NLP)
with their capability of feature learning and representation. As one of the more challenging NLP tasks, neural
machine translation (NMT) becomes a new approach to machine translation and generates much more fluent
results compared to statistical machine translation (SMT). However, SMT is usually better than NMT in
translation adequacy and word coverage. It is therefore a promising direction to combine the advantages of
both NMT and SMT. In this paper, we propose a deep neural network based system combination framework
leveraging both minimum bayes-risk decoding and multi-source NMT, which take as input the N-best outputs
of NMT and SMT systems and produce the final translation. In particular, we apply the proposed model to both
RNN and self-attention networks with different segmentation granularity. We verify our approach empirically
through a series of experiments on resource-rich Chinese⇒English and low-resource English⇒Vietnamese
translation tasks. Experimental results demonstrate the effectiveness and universality of our proposed approach,
which significantly outperforms the conventional system combination methods and the best individual system
output.
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1 INTRODUCTION
Due to the powerful capacity of modeling complex functions and capturing complex linguistic
structures, deep neural networks (DNNs) have made big breakthroughs in natural language process
(NLP). Specifically, in machine translation (MT), deep learning-based methods have made significant
progress in recent years and quickly become the new de facto paradigm of MT in both academia
and industry.
In the past seventy years, several paradigms have been developed to solve the MT problem,

including phrase-based [22], hierarchical phrase-based [7], RNN-based [41], CNN-based [13], self-
attention (Transformer) based [44] approaches. Unlike conventional statistical machine translation
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(SMT) which contains multiple separately tuned components, neural machine translation (NMT) is a
single, large neural network which heavily relies on an encoder-decoder framework. Since NMT and
SMT systems are two kinds of translation models with large differences, each approach has some
advantages and limitations. For example, most sentences in NMT are more fluent than translations
by SMT [7, 22], but NMT has a problem to address translation adequacy [21, 43] especially for the
rare and unknown words even using subword method [40]. The strength of NMT lies in that the
semantic and structural information can be learned by considering global context. At the same
time, it suffers from over-translation and under-translation to some extent [43, 52]. Compared to
NMT, SMT does not need to limit the vocabulary and can guarantee translation coverage of source
sentences. Obviously, the outputs obtained from NMT and SMT may be dissimilar, and they have
different strengths and weaknesses, so system combination can be a good choice.
System combination is a method for combining the output of multiple machine translation

engines in order to take benefit of the strengths of each of the individual engines. Traditionally,
system combination has been explored respectively in sentence-level, phrase-level, and word-
level [6, 9, 23]. Among them, word-level combination approaches that adopt a confusion network
for decoding have been quite successful [2, 11, 37]. However, these approaches are mainly designed
for SMT without considering the features of NMT results. NMT opts to produce diverse words
and free word order, which are quite different from SMT. And this will make it hard to construct a
consistent confusion network. Furthermore, traditional system combination approaches cannot
guarantee the fluency of the final translation results.

We focus on system combination via a deep neural network in this article. We propose a neural
system combination (NSC) framework for machine translation, which is adapted from the multi-
source NMT model [54] with minimum bayes-risk decoding. Specifically, to address the N-best
translation results which have been proven to have more potential than the top-1 output [24, 28, 39],
we first introduce minimum bayes-risk decoding to select the translation hypothesis with the lowest
bayesian expectation risk for every translation systems. Then, different encoders are employed to
model the semantics of the source language input and each previously selected translation produced
by different NMT and SMT systems. Finally, we propose four combination modules, which integrate
the multiple context vector representations produced by the encoders into the decoder, to generate
the final output token by token. It is worth noting that the proposed neural combination method
can combine the outputs of any kind of MT systems.
To test the generalization capacity of our model, we apply the proposed model into two rep-

resentative seq2seq frameworks using the shallow recurrent neural network (RNN) and deep
self-attention network. Moreover, we explore system combination performance at different segmen-
tation granularity, such as word and subword [40]. We extensively evaluate the proposed approach
on resource-rich Chinese⇒English (NIST and WMT) and low-resource English⇒Vietnamese
(IWSLT) language pairs.

The neural system combination has been presented in our previous paper [51]. In this article, we
make the following significant extensions to our previous work.

• We introduce a non-parameter minimum bayes-risk decoding method to select the best
translation from N-best results, which can be reviewed as a reranking approach and is very
effective for subsequent system combination.
• In addition to the shallow RNN model, we also apply the NSC framework to the deep self-
attention model, which is much more powerful and achieves the state-of-the-art performance
in MT. And we introduce and compare several combination strategies for Transformer-based
NSC model, which is capable of combining the fluency of NMT and adequacy of SMT.
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• We further verify the effectiveness of our methods on subword segmentation granularity
and a low-resource translation task. Moreover, we explore the effect of model average, model
ensemble, and bidirectional inference combination.

Experimental results demonstrate that our RNN-based NSC model achieves significant im-
provement by 5.3 BLEU points over the best single system output and 3.4 BLEU points over the
state-of-the-art traditional system combination methods. In addition, the extensive experiments
on resource-rich and low-resource translation task with different segmentation granularity show
that our Transformer-based NSC model achieves significant improvement over the state-of-the-art
Transformer.

2 BACKGROUND
2.1 Statistical Machine Translation
Given a source language sentence 𝑥 , SMT searches through all the sentences𝑦 in the target language
and finds the one 𝑦∗ which maximizes the posterior probability 𝑝 (𝑦 |𝑥). This posterior probability
is usually decomposed into two parts using the bayes rule as follows:

𝑦∗ = argmax
𝑦

𝑝 (𝑦 |𝑥)

= argmax
𝑦

𝑝 (𝑦) · 𝑝 (𝑥 |𝑦)
𝑝 (𝑥)

= argmax
𝑦

𝑝 (𝑦) · 𝑝 (𝑥 |𝑦)

(1)

In which, 𝑝 (𝑦) is called target language model and 𝑝 (𝑥 |𝑦) is named translation model. This kind of
decomposition must adhere to rigid probability constraints and cannot make use of other useful
translation features. To solve this problem, Och and Ney [33] advocated the use of log-linear models
for statistical machine translation to incorporate arbitrary knowledge sources:

𝑃 (𝑦 |𝑥) =
𝑒𝑥𝑝 (∑𝐾

𝑘=1 _𝑘 · ℎ𝑘 (𝑥,𝑦))∑
𝑦
′ 𝑒𝑥𝑝 (∑𝐾

𝑘=1 _𝑘 · ℎ𝑘 (𝑥,𝑦
′))

(2)

where ℎ𝑘 (𝑥,𝑦) is a set of features, and _𝑘 is the feature weight corresponding to the 𝑘-th feature.
As shown in Figure 1 (a), the translation process of phrase-based SMT can be divided into three

steps: (1) segmenting the source sentence into a sequence of phrases, (2) transforming each source
phrase to a target phrase, and (3) rearranging target phrases in an order of target language. The
concatenation of target phrases forms a target sentence. Meanwhile, hierarchical phrase-based
machine translation [7], syntax-based machine translation [48] have been proposed to improve
MT quality. However, SMT still suffers from some key questions, such as data sparsity and feature
engineering problems.

2.2 Neural Machine Translation
End-to-end neural machine translation [3, 41] aims to directly map natural languages using neu-
ral networks. The major difference from conventional SMT is that NMT is capable of learning
representations from data, without the need to design features to capture translation regularities
manually.
Generally, NMT follows the encoder-decoder framework. The encoder encodes the source

language sentence into semantic representations from which the decoder generates the target
language sentence word by word from left to right. Figure 1 (b) illustrates an example of RNN-
based NMT (RNMT). Given a source language 𝑋 = (𝑥1, 𝑥2, ..., 𝑥𝑚) and a target language sentence
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Fig. 1. Translation examples for (a) phrase-based SMT and (b) RNN-based NMT. (𝑥1, 𝑥2, 𝑥3, 𝑥4) and (𝑦1, 𝑦2,
𝑦3) are source language and target language, respectively.

𝑌 = (𝑦1, 𝑦2, ..., 𝑦𝑛), standard NMT decomposes the sentence-level translation probability as a product
of context-dependent word-level translation probabilities:

𝑃 (𝑦 |𝑥 ;\ ) =
𝐽∏
𝑗=0

𝑃 (𝑦 𝑗 |𝑥,𝑦< 𝑗 ;\ ) (3)

The word-level translation probability can be defined as

𝑃 (𝑦 𝑗 |𝑥,𝑦< 𝑗 ;\ ) =
𝑒𝑥𝑝 (𝑔(𝑥,𝑦 𝑗 , 𝑦< 𝑗 , \ ))∑
𝑦 𝑒𝑥𝑝 (𝑔(𝑥,𝑦,𝑦< 𝑗 , \ ))

(4)

where 𝑔(𝑥,𝑦 𝑗 , 𝑦< 𝑗 , \ ) is a real-valued score that indicates how well the 𝑗-th target word 𝑦 𝑗 is given
the source context 𝑥 and target context 𝑦< 𝑗 .
There are many design choices in the encoder-decoder framework based on different types

of layers, such as RNN-based [41], CNN-based [13], and self-attention based [44] approaches.
Particularly, relying entirely on the attention mechanism, the Transformer introduced by [44] can
improve the training speed as well as model performance. Although NMT outperforms SMT in
terms of BLEU points, NMT still has some drawbacks, such as rare word problems, under-translation,
and over-translation.

3 NEURAL SYSTEM COMBINATION FOR MACHINE TRANSLATION
Our goal in this work is to find a way to combine the merits of different translation systems.
Macherey and Och [30] gave empirical evidence that these systems to be combined need to be
almost uncorrelated in order to be beneficial for system combination. Since NMT and SMT are two
kinds of translation models with large differences, we attempt to build a neural system combination
model, which can take advantage of the different systems. We will first present our RNN-based
system combination model (§3.1) and Transformer-based system combination model (§3.2). Then,
we introduce the minimum bayes-risk decoding (§3.3) strategy to select the best translation from
top-N hypotheses, which will be sent to our NSC model.

3.1 RNN-based System Combination
Figure 2 illustrates the RNN-based neural system combination framework, which can take as input
the source sentence and the results of MT systems. By using bidirectional recurrent neural network
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Fig. 2. The architecture of RNN-based system combination model. It is adapted from the multi-source NMT
model, which consists of M encoders and one decoder. The hierarchical attention models (Attention I and
Attention II) are proposed to access the encoder hidden states of different system outputs.

(Bi-RNN) encoders, translation candidates are encoded to multiple context vector representations,
from which the decoder generates the final output word by word. Here, we use MT results as inputs
to detail the decoder process.
Formally, the encoders read the translation candidate hypotheses of different MT systems and

encode them into a sequence of hidden states 𝐻𝑘 = (ℎ𝑘1 , ℎ𝑘2 , ..., ℎ𝑘𝑚), and ℎ𝑘𝑖 is a concatenation of a
left-to-right

−→
ℎ 𝑘𝑖 and a right-to-left

←−
ℎ 𝑘𝑖 :

ℎ𝑘𝑖 =

[−→
ℎ 𝑘𝑖←−
ℎ 𝑘𝑖

]
=

[
𝑓 (−→ℎ 𝑘𝑖−1, 𝑧𝑘𝑖 )
𝑓 (←−ℎ 𝑘𝑖−1, 𝑧𝑘𝑖 )

]
(5)

where 𝑓 (·) denotes recurrent neural network, such as GRU [8] and LSTM [18], and 𝑧𝑘 is the inputs
of 𝑘-th translation system. Given the hidden states 𝐻 (𝐻 1, 𝐻 2,..., and 𝐻𝐾 ) of 𝐾 MT systems for
the same source sentence and previously generated target sequence 𝑌< 𝑗 = (𝑦1, 𝑦2, ..., 𝑦 𝑗−1), the
probability of the next target word 𝑦 𝑗 is

𝑝 (𝑦 𝑗 |𝑌< 𝑗 , 𝑍 ) = softmax(𝑔(𝑐 𝑗 , 𝑦 𝑗−1, 𝑠 𝑗 )) (6)

Here 𝑔(·) is a non-linear function, 𝑦 𝑗−1 represents the word embedding of the previous prediction
word, and 𝑠 𝑗 is the state of decoder at time step 𝑗 , calculated by

𝑠 𝑗 = 𝑓 (𝑠 𝑗−1, 𝑐 𝑗 ) (7)

𝑠 𝑗−1 = 𝑓 (𝑠 𝑗−1, 𝑦 𝑗−1) (8)

where 𝑠 𝑗−1 is previous hidden state, 𝑠 𝑗−1 is an intermediate state. And 𝑐 𝑗 is the context vector of
system combination obtained by our proposed hierarchical attention mechanism.
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Next, we will introduce how to calculate the context vector 𝑐 𝑗 . Following standard NMT model,
we calculate 𝑘-th MT system context 𝑐 𝑗𝑘 as a weighted sum of the source annotations:

𝑐 𝑗𝑘 =

𝑚∑
𝑖=1

𝛼𝑘𝑗𝑖ℎ𝑖 (9)

where ℎ𝑖 = [
−→
ℎ 𝑖 ;
←−
ℎ 𝑖 ] is the annotation of 𝑧𝑖 from a bidirectional GRU, and its weight 𝛼𝑘𝑗𝑖 is computed

by

𝛼𝑘𝑗𝑖 =
𝑒𝑥𝑝 (𝑒 𝑗𝑖 )∑𝑚
𝑙=1 𝑒𝑥𝑝 (𝑒 𝑗𝑙 )

(10)

where 𝑒 𝑗𝑖 = 𝑣𝑇𝑎 𝑡𝑎𝑛ℎ(𝑊𝑎𝑠 𝑗−1 +𝑈𝑎ℎ𝑖 ) scores how well 𝑠 𝑗−1 and ℎ𝑖 match. Equation 9 and Equation 10
are called Attention I in Figure 2.
Given the context vector 𝑐 𝑗𝑘 of different MT outputs, 𝑐 𝑗 is computed as the weighted sum of

the context vectors of different MT systems, just as illustrated in the middle part (Attention II) of
Figure 2.

𝑐 𝑗 =

𝐾∑
𝑘=1

𝛽 𝑗𝑘𝑐 𝑗𝑘 (11)

where 𝐾 is the number of MT systems, and 𝛽 𝑗𝑘 is a normalized item calculated as follows:

𝛽 𝑗𝑘 =
𝑒𝑥𝑝 (𝑠 𝑗−1 · 𝑐 𝑗𝑘 )∑
𝑘
′ 𝑒𝑥𝑝 (𝑠 𝑗−1 · 𝑐 𝑗𝑘′ )

(12)

3.2 Transformer-based System Combination
Previous works verified their methods based on shallow recurrent neural network models. However,
to obtain state-of-the-art performance, it is essential to leverage recently derived deep models [13,
44], which are much more powerful. Hence, we apply our NSC framework to the deep Transformer
model.

For Transformer-based neural system combination model, the neural encoder is identical to that
of the dominant Transformer model, which is modeled using the self-attention network [44]. But
we use a multi-source framework in which different Transformer encoders are used to capture the
semantic of different translation hypotheses. Each encoder is composed of a stack of N identical
layers, each of which has two sub-layers:

�̃�𝑙
𝑘
= LayerNorm(𝑧𝑙−1

𝑘
+MHAtt(𝑧𝑙−1

𝑘
, 𝑧𝑙−1
𝑘
, 𝑧𝑙−1
𝑘
))

𝑧𝑙
𝑘
= LayerNorm(�̃�𝑙

𝑘
+ FFN(�̃�𝑙

𝑘
))

(13)

where the superscript 𝑙 indicates layer depth, 𝑧𝑙
𝑘
denotes the hidden state of 𝑙-th layer of 𝑘-th MT

system output, FFN means feed-forward networks, and MHAtt denotes the multi-head attention
mechanism [44].
For each layer in our decoder, the lowest sub-layer is the masked multi-head self-attention

network:
𝑠𝑙1 = LayerNorm(𝑠𝑙−1 +MHAtt(𝑠𝑙−1, 𝑠𝑙−1, 𝑠𝑙−1)) (14)

The second sub-layer is the combination modules (ComMod) that integrates sequence contexts
of different MT outputs into the decoder:

𝑠𝑙2 = LayerNorm(𝑠𝑙1 + ComMod(𝑠𝑙1, 𝑧𝑁 )) (15)
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Fig. 3. The extended Transformer translation model that exploits global information produced by additional
encoders. Combination modules with blue markers, which uses different strategies to combine the advantages
of each system, are the core of the model.

where 𝑧𝑁 = (𝑧𝑁1 , 𝑧𝑁2 , ..., 𝑧𝑁𝐾 ). We will introduce the four combination modules in detail in Section
3.2.1.
Our preliminary experiments show that the source language is critical to the performance of

system combination. So, the decoder stacks another two sub-layers to seek task-relevant input
semantics to bridge the gap between the input and output language:

𝑠𝑙3 = LayerNorm(𝑠𝑙2 +MHAtt(𝑠𝑙2, ℎ𝑁 , ℎ𝑁 ))
𝑠𝑙 = LayerNorm(𝑠𝑙3 + FFN(𝑠𝑙3))

(16)

Finally, we use a linear transformation and softmax activation to compute the probability of the
next tokens based on 𝑠𝑁 :

𝑝 (𝑦 𝑗 |𝑦< 𝑗 , 𝑥, \ ) = softmax(𝑠𝑁𝑊 ) (17)

where \ is model parameters and𝑊 is the weight matrix.

3.2.1 Combination Modules. The strength of Transformer-based system combination model lies in
that the original mask multi-head self-attention and encoder-decoder multi-head cross-attention
are preserved, and the newly added model is able to make full use of strengths of multiple MT
hypotheses. Inspired by [26, 27], we introduce four strategies for the combination modules: (a)
serial; (b) parallel; (c) flat; (d) hierarchical, as illustrated in Figure 4.

(a) The serial module computes the cross-attention one by one for each input encoder. The query
set of each subsequent cross-attention is the output of the preceding sub-layer. (b) The parallel
module attends to each encoder independently and then sums up the context vectors. (c) The flat
module uses all the states of all input encoders as a single set of keys and values. Thus, the attention
models a joint distribution over a flattened set of all encoder states. (d) The hierarchical module
first computes the attention independently over each input. The resulting contexts are then treated
as states of another inputs and the attention is calculated once again over these states.
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Fig. 4. Four combination modules: (a) serial; (b) parallel; (c) flat; (d) hierarchical. We omit the residual
connection and layer normalization in each sub-layer for simplicity.

3.3 Minimum Bayes-Risk Decoding
In the above sections, we propose a neural system combination framework to combine the outputs
of different MT systems. However, one MT system may produce N-best translation hypotheses,
which have much more potential than 1-best hypothesis but are difficult to employ the above
models. Because each translation candidate needs an encoder, this will lead to a more complex
and inefficient model. To address this problem, inspired by previous work [23, 42], we propose a
minimum bayes-risk decoding strategy, whose role is to select the best one from N-best hypotheses
for each MT system.

Given a source language sentence, minimum bayes-risk decoding selects the translation hypoth-
esis with the lowest Bayesian expectation risk from the list of translation hypotheses as the final
translation of each translation system.

𝐸𝑚𝑏𝑟 = argmin
𝑌
′

𝑅(𝑌 ′) = argmin
𝑌
′

∑
𝑌

𝑃 (𝑌 |𝑋 )𝐿(𝑌,𝑌 ′) (18)

where 𝑅(𝑌 ′) denotes the bayes risk of candidate translation𝑌 ′ . 𝑃 (𝑌 |𝑋 ) is the conditional probability
for the source language sentence 𝑥 to be translated into the target language sentence 𝑦. 𝐿(𝑌,𝑌 ′)
is the loss function, when the minimum bayes risk is calculated by using the BLEU score of the
automatic evaluation index of translation quality, it can be expressed as:

𝐿𝐵𝐿𝐸𝑈 (𝑌,𝑌
′) = 1 − 𝐵𝐿𝐸𝑈 (𝑌,𝑌 ′) (19)

where 𝐵𝐿𝐸𝑈 (𝑌,𝑌 ′) is a sentence-level BLEU score. It is worth to note that the minimum bayes-risk
decoding method does not require additional parameters and can be directly applied to the inference
step.

4 EXPERIMENTS
We evaluate our proposed model on the resource-rich Chinese-English (NIST and WMT) and low-
resource Vietnamese-English (IWSLT) translation tasks. The evaluation metric is case-insensitive
BLEU [35].

4.1 Data Preparation
For NIST Chinese-English translation, we use the training data from LDC containing 2M bilingual
sentence pairs1. We choose NIST 2003 (MT 03) Chinese-English dataset as the validation set, NIST
2004 (MT04), 2005 (MT05), 2006 (MT06) datasets as our test sets. We limit both Chinese and English
vocabulary to 30k in our word-level experiments. We also use BPE [40] to encode Chinese and
1The corpora includes LDC2000T50, LDC2002T01, LDC2002E18, LDC2003E07, LDC2003E14, LDC2003T17 and LDC2004T07.
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English respectively in sub-level experiments. We learn 30K merge operations and limit the source
and target vocabularies to the most frequent 30K tokens.

For WMT Chinese-English translation, the models were trained using the parallel corpus without
UN dataset from WMT 20172, consisting of about 9 million sentence pairs. We use newsdev2017
and newstest2017 as development and test sets, respectively. We segment each word into subword
units using BPE, and vocabulary sizes are 50K for Chinese and English.
For Vietnamese-English translation, we use the provided parallel data (133K sentence pairs)

from IWSLT 20153. We use the TED tst2012 as a valid set and report BLEU scores on TED tst2013.
Sentences are encoded using BPE, which has a shared vocabulary of about 20K tokens.

The neural system combination framework should be trained on the outputs of multiple transla-
tion systems and the gold target translations. In order to keep consistency in training and testing,
we design a strategy to simulate the real scenario. We randomly divide the training corpus into
two parts, then reciprocally train the MT system on one half and translate the source sentences of
the other half into target translations. The MT translations and the gold target reference can be
available.

We list all the translation methods which participate in system combination as follows:

• PBMT: It is the start-of-the-art phrase-based SMT system. We use its default setting and
train a 4-gram language model on the target portion of the bilingual training data.
• HPMT: It is a hierarchical phrase-based SMT system, which uses its default configuration
as PBMT in Moses. Without losing the strength of PBMT, HPMT uses hierarchical phrases
consisted of both words and subphrases, and has s stronger ability of reordering.
• RNN-based NMT: RNMT is an attention-based NMT system with the default setting. It
adapts the encoder-decoder framework with recurrent neural network as the core component.
• Self-Attention based NMT: Transformer has obtained the state-of-the-art performance on
machine translation, which predicts target sentence from left to right relying on self-attention
mechanism.

4.2 Training Details
Both RNN-based baseline and NSC model are implemented on the open-source toolkit dl4mt4,
with most default parameter settings kept the same. The dimension of word embedding is set to
500 and the size of the hidden layer is 1000. The network parameters are updated with Adadelta
algorithm. Dropout is also applied to the output layer to avoid over-fitting. We adopt beam search
with beam size b=10 at test time. As to confusion-network-based system Jane [11], we use its
default configuration and train a 4-gram language model on target data and 10M Xinhua portion of
Gigaword corpus.
We implement our Transformer-based NSC model based on the open-sourced tensor2tensor5

toolkit for training and evaluating. For Chinese-English translation task, we use the hyperparameter
settings of base Transformer model as [44] , whose encoder and decoder both have 6 layers, and
512 dimension sizes, 8 attention-heads, 2048 feed-forward inner-layer dimensions. At such a small
scale of Vietnamese-English translation, we opt for small Transformer models with 5 layers, 256
dimensional size, 2 attention-heads, and 1024 inner-layer dimensions. In minimum bayes-risk
decoding, we use top-10 translation results for each system. Additionally, we use a single model

2http://www.statmt.org/wmt17/translation-task.html
3https://wit3.fbk.eu/
4https://github.com/nyu-dl/dl4mt-tutorial.
5https://github.com/tensorflow/tensor2tensor.
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System MT03 MT04 MT05 MT06 AVE
PBMT 37.47 41.20 36.41 36.03 37.78
HPMT 38.05 41.47 36.86 36.04 38.10
RNMT 37.91 38.95 36.02 36.65 37.38
Jane [11] 39.83 42.75 38.63 39.10 40.08
NSC 40.64 44.81 38.80 38.26 40.63
NSC+Source 42.16 45.51 40.28 39.03 41.75
NSC+Ensemble 41.67 45.95 40.37 39.02 41.75
NSC+Source+Ensemble 43.55 47.09 42.02 41.10 43.44

Table 1. Translation results (BLEU score) for different machine translation and system combination methods
on NIST Chinese-English translation. Jane is a open source machine translation system combination toolkit
that uses confusion network decoding. Best and important results per category are highlighted. All results
of our model are significantly better than the single model (p < 0.01).

System MT03 MT04 MT05 MT06 AVE
RNMT 1086 1145 1020 708 989.8
Our Model 869 1023 909 609 852.5

Table 2. The number of unknown words in the results of RNMT and our RNN-based NSC model.

obtained by averaging the last 5 checkpoints for model average, and adopt 4 combination models
in the ensemble model for both RNN-based and Transformer-based NSC.

4.3 Results on RNN-based System Combination
4.3.1 Main Results. Table 1 shows the translation results of different systems on word level. The
outputs of PBMT, HPMT and RNMT are used as the input to the combination framework. We
compare our neural combination system with the best individual engine, and the state-of-the-art
traditional combination system Jane, which focuses on system combination via confusion network
decoding. The BLEU score of the multi-source neural combination model is 2.53 higher than the best
single model HPMT. It is worth noting that the source language input gives a further improvement
of +1.12 BLEU points. Hence we will also leverage the source language in subsequent experiments.

As listed in Table 1, Jane outperforms the best single MT system by 1.92 BLEU points. However,
our neural combination system with source language gets an improvement of +1.67 BLEU points
over Jane. Furthermore, when augmenting our neural combination system with ensemble decoding,
it leads to another significant boost of +1.69 BLEU points. In brief, the best result of our proposed
model obtains significant improvement by 5.34 BLEU points over the best single system and 3.36
BLEU points over the confusion-network-based system Jane, which demonstrates the superiority
of neural network based system combination methods.

4.3.2 Rare and Unknown Words Translation. In order to control the computational complexity,
NMT has to employ a small vocabulary, and massive rare words outside the vocabulary are all
replaced with a single UNK symbol. Moreover, it is difficult for NMT systems to handle rare words,
because low-frequency words in training data cannot capture latent translation mappings in the
neural network model. However, we do not need to limit the vocabulary in SMT, which is often able
to translate rare words in training data. We count the number of unknown words in translation
results for original NMT and our neural combination model. As shown in Table 2, the number of
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Fig. 5. Translation results (RIBES score) for different machine translation and system combination methods.

System MT03 MT04 MT05 MT06 AVE
RNMT 37.91 38.95 36.02 36.65 37.38
Enhanced-RNMT 39.14 40.78 37.31 37.89 38.78
Jane [11] 40.61 43.28 39.05 39.18 40.53
Our Model 43.61 47.65 42.02 41.17 43.61

Table 3. Translation results (BLEU score) when we replace original NMT with strong Enhance-NMT, which
uses ensemble strategy with four NMT models. All results of system combination are based on strong outputs
of Enhanced-RNMT.

# Strategies DEV
1 PBMT 37.47
2 HPMT 38.05
3 Transformer 43.41
4 NSC (Serial) 45.51
5 NSC (Parallel) 44.99
6 NSC (Flat) 42.57
7 NSC (Hierarchical) 45.92

Table 4. Performance of different combination strategies including serial, parallel, flat, and hierarchical
modules.

unknown words of our proposed model is 137 fewer than the original NMT model, which shows
the power of our methods in dealing with rare and unknown words.

4.3.3 Translation Fluency. Fluency is the superiority of NMT, and we want to know whether the
fluency of combination output has improved. We evaluate fluency (word order) by the automatic
evaluation metrics RIBES [19], whose score is a metric based on rank correlation coefficients with
word precision. RIBES is known to have a stronger correlation with human judgments than BLEU
for English as discussed in [19].

Figure 5 illustrates the experimental results of RIBES scores, which demonstrates that our neural
combination model outperforms the best result of the single MT system and Jane. Additionally,
although BLEU point of Jane is higher than the single NMT system, the word order of Jane is worse
in terms of RIBES. Experiments show that our proposed model can further improve the fluency of
NMT.
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Segmentation System MT03 MT04 MT05 MT06 AVE

word-level

Transformer 43.41 44.34 42.63 42.88 43.31
+Average 44.06 44.85 43.13 43.23 43.82

+Ensemble 44.37 45.36 43.54 43.35 44.15
NSC 45.92 46.95 44.06 42.43 44.84
+MBR 46.19 48.80 45.38 43.54 45.97

+Average 46.52 49.15 45.88 43.89 46.36
+Ensemble 46.92 49.43 46.26 44.32 46.73

subword-level

Transformer 47.82 46.57 45.29 45.66 46.33
+Average 48.27 47.27 46.17 45.59 46.82

+Ensemble 48.96 47.54 46.26 46.76 47.38
NSC 48.87 50.44 47.87 45.55 48.18
+MBR 49.56 50.87 47.80 46.33 48.64

+Average 50.19 51.34 48.44 46.76 49.18
+Ensemble 50.37 51.96 49.11 47.42 49.71

Table 5. Results for different Transformer-based systems with word-level and subword-level, respectively.

4.3.4 Effect of Ensemble Decoding. In theory, the higher the performance of a single MT system, the
higher the performance of system combination. We use ensemble strategy with four NMT models
to improve the performance of the original NMT system. As shown in Table 3, the Enhanced-NMT
with ensemble strategy outperforms the original NMT system by 1.40 BLEU points, and it has
become the best system in all MT systems, which is 0.68 BLEU points higher than HPMT.

After replacing original NMT with strong Enhanced-RNMT, Jane outperforms original result by
+0.45 BLEU points, and our model gets an improvement of +3.08 BLEU points over Jane. Experiments
further demonstrate that our proposed model is effective and robust for system combination.

4.4 Results on Transformer-based System Combination
4.4.1 Effect of Combination Modules. We first evaluate the proposed four combination strategies
including serial, parallel, flat, and hierarchical modules. Table 4 lists the experimental results in
Chinese-English development set. Among the combination strategies, the flat strategy is significantly
worse than the other three strategies. One possible reason is that concatenating different translation
hypotheses results in excessively long source-side encoding, and it is more difficult to handle
by encoder-decoder model. In contrast, the hierarchical combination has shown to be the best-
performing strategy, and we will use hierarchical strategies in subsequent experiments.

4.4.2 Main Results. The experimental results on NIST Chinese-English translation are depicted in
Table 5. In Transformer-based NSC experiments, the single systems involved in the combination
are PBMT, HPMT, and Transformer without model average and model ensemble techniques. Com-
pared with other single machine translation systems, Transformer in word-level achieves the best
translation quality and significantly outperforms RNMT (Table 1) by +5.93 BLEU points. Based on
state-of-the-art Transformer architecture, our NSC model still achieves substantial improvements
over the best single model (44.84 vs. 43.31).

4.4.3 Effect on Subword Granularity. Previous work states that neural machine translation models
perform particularly poorly on rare words due in part to the smaller vocabularies used by NMT
systems. In the past few years, there have been many approaches to deal with rare words and
unregistered words. Byte pair encoding (BPE) [40] is the most popular and effective method, which

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 1, No. 1, Article 1. Publication date: January 2020.



Deep Neural Network Based Machine Translation System Combination 1:13

[0,10) [10,20) [20,30) [30,40) [40,50) [50,60)

Length of Source Sentence

0

10

20

30

40

50

60

70

B
LE

U
 S

co
re

45.10

61.57
58.00

48.37

44.92
37.8843.03

52.53

50.40

47.67
45.46

37.3932.81

51.59 47.29

32.17 32.04

30.2831.36

51.76

47.06

31.28 31.68
30.29

Ours
Transformer
HPMT
PBMT

Fig. 6. Length Analysis - performance of translations with respect to the lengths of the source sentences.

is capable of encoding open vocabularies with a compact symbol vocabulary of variable-length
subword units.
Hence, we apply BPE to our Transformer baseline and neural system combination models,

whose results are shown in Table 5. Although using BPE significantly improves the performance of
Transformer baseline (46.33 vs. 43.31), our NSCmodel in subword-level still obtains an improvement
of +1.85 BLEU points than the strong Transformer.

4.4.4 Effect of MBR. The purpose of the MBR is to select the best result from the N-best candidate
results of every single system as the inputs of the system combination model. Different from other
reranking methods which need more models and parameters to score the candidate hypotheses, our
MBR approach only uses N-best results provided by the MT systems, so it requires no additional
models or parameters. We perform MBR experiments on both word level and subword level.
Experimental results of Table 5 show that MBR leads to another significant boost of +1.13 and +0.46
BLEU points, respectively.

4.4.5 Effect of Model Average and Ensemble. Model average is to average trainable parameters
which are saved at last timesteps in a single model, when the model is near convergence. We can
get more robust parameters by model average. Besides, model ensemble is a method to integrate the
probability distributions of multiple models before predicting the next target word. Model average
and model ensemble can also be viewed as a system combination technique that takes advantage
of different NSC models.
Table 5 lists the performance of model average and model ensemble in both word level and

subword level. Experiments demonstrate the effectiveness of both model average and model
ensemble. In particular, two methods of subword level achieve an improvement of +0.54 and +0.53
BLEU points than standard NSC model, respectively.

4.4.6 Length Analysis. Based on the length of source sentences, we divide our test sets into
different groups and then compare the system performances in each group. Figure 6 illustrates
the BLEU scores on these groups of test sets. NMT (Transformer) performs very well on short
source sentences, but degrade on long source sentences. The system combination model has
the most obvious improvement in medium-length sentences, where NMT and SMT have similar
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Source 巴姆大地震受伤的人数大约三万人。
Reference about 30,000 were injured in the bam earthquake .
PBMT the number of people were injured in the bam earthquake approximately

30,000 .
HPMT the number of bam earthquake wounded about 30,000 .
Transformer about 30,000 people were injured in the baram earthquake .
NSC about 30,000 people were injured in the bam earthquake .
Source 罗斯将这一九九五年事件告诉调查员 ;该案为美国拳坛舞弊案接

受二十个月调查的一部份。
Reference rose has spoken to investigators about the 1995 incident as part of a 20-month

probe of corruption in american boxing circles .
PBMT rose has spoken to investigators about the 1995 incident ;

:::
the

:::::
cases

:::
of

:::::::::
corruption

::
in

::::::::
american

::::::
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::::::
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::
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:::
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:
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:::::
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.

Transformer rose told investigators the 1995 incident as part of a 20-month investigation in
the us boxing community .

NSC rose has spoken to investigators about the 1995 incident as part of a 20-month
probe of corruption in american boxing circles .

Table 6. Translation examples of single system and our proposed Transformer-based NSC model.

System MT03 MT04 MT05 MT06 AVE
Transformer 47.82 46.57 45.29 45.66 46.33
Transformer (R2L) 45.57 45.62 44.04 44.62 44.96
NSC 48.87 50.44 47.87 45.55 48.18
NSC + RNMT - SMT 48.23 47.30 45.85 46.43 46.95
NSC + R2L 49.88 50.97 47.74 46.24 48.71

Table 7. Experimental results of ablation study. NSC+RNMT-SMT means that candidate systems of NSC
model are Transformer and RNMT. In NSC+R2L, we add a Transformer (R2L) system as a candidate system
for system combination.

performance. From the experimental results, we draw the following two conclusions: (1) Because
the system combination model still adopts the encoder-decoder framework, it suffers from the
quality degradation of long sentences. (2) The system combination model benefits more from
candidate systems with similar performance.

4.4.7 Case Study. Table 6 gives two examples to demonstrate the benefits of our proposed NSC
model. In the first example, “巴姆” is a rare word for NMT and the baseline NMT (Transformer)
incorrectly translates this word into “baram” . With the help of SMT outputs, the NSC model gets
the correct translation. In the second example, the source words “舞弊” is untranslated in the
output of Transformer. Although PBMT and HPMT translate this word well, they do not conform
to the grammar. By combining the merits of NMT and SMT, our model can remedy the errors and
obtain high-quality translations in these cases.

4.4.8 Ablation Study. In previous sections, PBMT, HPMT and Transformer are used as combinato-
rial systems. In this section, we will test the performance of only using RNMT and Transformer
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System Chinese-English Vietnamese-English

DEV TEST DEV TEST
PBMT 14.44 16.33 21.73 23.66
HPMT 15.14 16.75 18.17 24.11
Transformer 22.17 23.56 21.98 24.37
Our Model 23.37 24.49 23.11 26.08

Table 8. Translation performance for large-scale WMT17 Chinese-English and low-resource IWSLT
Vietnamese-English language pairs.

outputs, without SMT. Besides, previous work has shown that it is beneficial to integrate bidirec-
tional decoding into NMT [52]. Here we also want to explore whether adding reverse translation
as a candidate system can improve the performance of system combination.

The penultimate row of Table 7 shows the experimental results of only using RNMT and Trans-
former as inputs, from which we can draw the following conclusions: (1) SMT outputs are really
useful to NSC model, because NSC with SMT significantly outperforms NSC without SMT; (2) The
improvement of BLUE (46.95 vs. 46.33) demonstrates that our NSC framework can combine any
outputs and work even without SMT. (3) The greater the diversity of candidate systems, the better
the effect of system combination.

To further verify this conclusion, we first train a Transformer model that generates translation
in a right-to-left direction. Then we regard it as a candidate system for system combination model.
Table 7 shows the translation result. Although Transformer (R2L) performs worse than Transformer,
NSC model with R2L obtains +0.53 BLEU points than NSC model without R2L, which shows the
effectiveness of bidirectional inference combination.

4.4.9 Results on Large-Scale Language Pairs. We further demonstrate the effectiveness of our model
in large-scale WMT17 Chinese-English translation tasks. As listed in Table 8, our approach still
significantly outperforms the state-of-the-art Transformer model in development and test sets by
1.20 and 0.93 BLEU points, respectively. Note that NIST Chinese-English datasets contain four
reference translations for each source sentence while the WMT Chinese-English datasets only have
a single reference.

4.4.10 Results on Low-resource Language Pairs. A well-known property of statistical systems is
that increasing amounts of training data lead to better results. We perform additional experiments
on a low-resource language pair to better evaluate our system combination model. Table 8 lists the
translation performance of Vietnamese-English. Unlike the results in resource-rich Chinese-English
translation in which Transformer significantly outperforms PBMT and HPMT, the quality gap
between SMT and NMT has become smaller in low-resource Vietnamese-English translation. As
shown in Table 8, our proposed NSC model obtains higher BLEU scores compared to the best single
system (26.08 vs. 24.37), which demonstrates the universality of neural system combination method.

5 RELATEDWORK
Neural machine translation has drawn much attention due to its promising translation performance
recently [3, 13, 41, 44, 46]. Most NMT methods are based on the encoder-decoder architecture,
which can achieve promising translation performance in a variety of language pairs [20], and rapid
adoption in deployments by, e.g., Baidu [50], Google [46], and Microsoft [15].

One branch of related work is improving NMT with SMT techniques. Arthur et al. [1] proposed
to incorporate discrete translation lexicons into the NMTmodel. He et al. [16] presented a log-linear
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model to integrate SMT features into NMT. Wang et al. [45] proposed a method that incorporates
the translations of SMT into NMT with an auxiliary classifier and a gating function. Zhao et al. [49]
regarded SMT phrase table as recommendation memory for NMT. The main idea is to add bonus to
words worthy of recommendation, so that NMT can make correct predictions. The major difference
between our work and these studies is that basic units and techniques of SMT process are employed
in the previous work, while in our work the SMT outputs are utilized to improve NMT.
Our goal in this work is to take advantage of NMT and SMT by system combination, which

attempts to find consensus translations among different machine translation systems. In past
several years, word-level, phrase-level and sentence-level system combination methods were
well studied [4, 5, 11, 17, 24, 25, 29, 31, 36, 38, 53], and reported state-of-the-art performances in
benchmarks for SMT. Following our previous work [51], we introduce a neural system combination
model which combines the advantages of NMT and SMT efficiently. In this current work, we propose
minimum bayes-risk decoding to utilize the N-best translation results. And this article conducts
more comprehensive experiments and analyses for system combination model. Specifically, besides
RNN-based model, we also explore self-attention network based system combination. Moreover,
we conduct the experiments at different segmentation granularity including word and sub-word
level, and we also verify the effectiveness on low-resource translation.
There are also some work share a somehow similar idea with our work. Niehues et al. [32]

used phrase-based SMT to pre-translate the inputs into target translations. Then the NMT system
generated the final hypothesis using the pre-translation. Moreover, multi-source MT has been
proved to be very effective to combinemultiple source languages [10, 12, 26, 34, 54]. Xia et al. [47] and
Geng et al. [14] used two-pass and multi-pass decoding for neural machine translation, respectively.
Unlike previous works, we adapt the idea of two-pass inference and employ a multi-source encoder-
decoder framework for neural system combination.

6 CONCLUSION
In this work, we propose a simple and effective deep neural network based system combination
framework formachine translation. The basic idea consists of two steps: 1) address N-best translation
candidates by utilizing minimum bayes-risk decoding; 2) take advantage of NMT and SMT by
adapting the multi-source encoder-decoder model. The neural system combination method cannot
only address the fluency of NMT and the adequacy of SMT, but also can accommodate the N-best
translation candidates and the source sentences as input.
We apply the model to both RNN and self-attention networks with different segmentation

granularity. Experiments are conducted on resource-rich Chinese-English and low-resource English-
Vietnamese translation tasks. Results show that our approaches can combine any system outputs
and obtain significant improvements over the best individual system and the state-of-the-art
traditional system combination methods.
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