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In sequence to sequence generation tasks (e.g. machine translation and abstractive 
summarization), inference is generally performed in a left-to-right manner to produce the 
result token by token. The neural approaches, such as LSTM and self-attention networks, 
are now able to make full use of all the predicted history hypotheses from left side 
during inference, but cannot meanwhile access any future (right side) information and 
usually generate unbalanced outputs (e.g. left parts are much more accurate than right 
ones in Chinese-English translation). In this work, we propose a synchronous bidirectional 
inference model to generate outputs using both left-to-right and right-to-left decoding 
simultaneously and interactively. First, we introduce a novel beam search algorithm 
that facilitates synchronous bidirectional decoding. Then, we present the core approach 
which enables left-to-right and right-to-left decoding to interact with each other, so 
as to utilize both the history and future predictions simultaneously during inference. 
We apply the proposed model to both LSTM and self-attention networks. Furthermore, 
we propose a novel fine-tuning based parameter optimization algorithm in addition to 
the simple two-pass strategy. The extensive experiments on machine translation and 
abstractive summarization demonstrate that our synchronous bidirectional inference model 
can achieve remarkable improvements over the strong baselines.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Many tasks in natural language processing, such as machine translation, abstractive summarization and chatbot, can be 
formalized as a sequence to sequence (seq2seq) generation problem which takes a sequence as input (e.g. source language 
sentence) and produces another sequence as output (e.g. target language translation). Generally, the seq2seq framework per-
forms inference in a left-to-right (L2R) manner and predicts the current output token conditioned on previously generated 
tokens. Existing methods mainly focus on how to fully exploit the already predicted outputs on the left. And the recently 
proposed neural architectures for sequence generation including recurrent networks [1,2], convolutional networks [3] and 
self-attention ones (known as Transformer) [4] facilitate the exploration of all the history information during inference.

However, conventional seq2seq models cannot access the future predictions on the right and usually produce unbalanced 
outputs. Take Chinese-to-English translation as an example. Left parts are much more accurate than right ones when ap-
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Table 1
Matching accuracy of the first and last four tokens between model predictions and 
references in NIST Chinese-English machine translation tasks. L2R denotes conven-
tional left-to-right inference while R2L denotes right-to-left inference.

Architecture Direction First four Last four

LSTM
L2R 36.35% 31.64%
R2L 31.22% 34.01%

Transformer (self-attention network)
L2R 40.21% 35.10%
R2L 35.67% 39.47%

Fig. 1. A simple illustration of our synchronous bidirectional inference model in which L2R and R2L models interact with each other. The left part is the 
input sequence and the right part denotes the scheme of synchronous bidirectional inference. Take generating −→y 2 as an example. We cannot only utilize 
the past predictions (−→y 0, −→y 1) of the L2R inference, but also could leverage the future contexts (←−y 0, ←−y 1) which have been already predicted by the R2L 
inference. It is similar when predicting ←−y 2. Note that −→y n−1 is not necessary the same as ←−y 0 and n may be different from n′ . The final output sequence 
will be −→y 0

−→y 1
−→y 2 · · ·−→y n−1 if L2R inference wins. It will be ←−y 0

←−y 1
←−y 2 · · ·←−y n−1 otherwise.

plying left-to-right inference. The phenomenon is similar for right-to-left (R2L) inference where the right parts are much 
better.1 In order to have a more intuitive understanding, we have investigated both L2R and R2L inferences using LSTM [6]
and self-attention networks (SAN) [4] on the typical sequence generation task, namely machine translation. Table 1 shows 
the matching accuracy of the first and last four tokens between model predictions and references for Chinese-to-English 
translation. It is obvious that left-to-right inference performs much better on predictions of head tokens while right-to-
left inference excels in tail token predictions. Intuitively, it is a promising direction to combine the merits of bidirectional 
inferences and make full use of both history and future contexts.

Researchers have made great efforts to take advantages of both L2R and R2L inferences. [7,8] enforce the agreement 
between L2R and R2L predictions during training, and then L2R inference will be improved accordingly. [9,10] employ R2L 
model to rerank the n-best hypotheses of the L2R model. [11] first obtains the R2L outputs and optimizes the L2R inference 
model based on both of the original input and the R2L outputs. Specifically, [11] aims to learn a better L2R inference model. 
They first train a R2L model with the bilingual training data. Then, the optimized R2L decoder translates the input of each 
parallel training instance and generates the outputs (hidden states) which serve as the additional context for L2R prediction 
when optimizing the L2R inference model. Despite the performance improvement, these approaches suffer from two issues. 
On one hand, they have to train two separate seq2seq models for L2R and R2L inferences respectively. And the two-pass 
decoding strategy makes the decoding efficiency much lowered down. On the other hand, the two models cannot interact 
with each other during inference, which limits the potential of performance improvement.

In this article, we generalize the previous work [12] and propose a synchronous bidirectional inference model that pro-
duces outputs using both L2R and R2L decoding simultaneously and interactively. This work has three new contributions. 
First, we generalize the decoding model into synchronous bidirectional inference method for the general sequence-to-
sequence architectures (e.g. LSTM and Transformer) and general sequence generation tasks (e.g. translation and summa-
rization). Second, in addition to the two-pass training method, we further propose and investigate a new fine-tuning based 
algorithm for efficient parameter optimization. Third, we conduct deep analysis about the characteristics of the proposed 
synchronous bidirectional inference model.

Specifically, we first introduce a novel beam search algorithm to accommodate L2R and R2L inferences at the same 
time. At each timestep during inference, each half beam retain the hypotheses from L2R and R2L inferences respectively 
and each hypothesis is generated by utilizing already predicted outputs from both directions. The interaction between 
L2R and R2L inferences is realized through a synchronous attention model that attempts to leverage both the history 
and future sequential predictions simultaneously during inference. Fig. 1 gives a simple illustration of the proposed syn-
chronous bidirectional inference model. The middle part dotted arrows on the right of Fig. 1 is the core of our model. 
L2R and R2L inferences interact with each other in an implicit way illustrated by the dotted arrows. The arrows indi-
cate the information passing flow. Solid arrows show the conventional history context dependence while dotted arrows 

1 It should be noted that the unbalance phenomenon is different for different language pairs. For example, [5] reported that right parts are much better 
translated than left parts when performing left-to-right decoding for Japanese-English translation.
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introduce the future context dependence on the other inference direction. For example, besides the past predictions 
(−→y 0, −→y 1), L2R inference can also utilize the future contexts (←−y 0, ←−y 1) generated by the R2L inference when predicting −→y 2.

As we mentioned above, there are many sequence to sequence models. To test the generalization capacity of our model, 
we apply the proposed synchronous bidirectional inference model into two representative seq2seq frameworks using LSTM 
and self-attention networks. Furthermore, we propose a novel fine-tuning based optimization algorithm for parameter 
training, in addition to a relatively simple two-pass strategy. We choose machine translation and abstractive sentence 
summarization as the testbed to verify the effectiveness of the models. The extensive experiments demonstrate that our 
proposed model remarkably outperforms the strong baselines.

2. Synchronous bidirectional inference

The task of sequence to sequence learning is to find the most probable output sequence y = y0 y1 · · · yn−1 which maxi-
mizes the following conditional probability given the input sequence x = x0x1 · · · xm−1.

P (y|x) = P (y0 y1 · · · yn−1|x0x1 · · · xm−1) (1)

Unlike sequential labeling tasks in which y shares the same length as x, the output length of y is unknown until the 
inference process ends and in most cases the token numbers are different between output and input sequences in seq2seq 
learning tasks. For instance, the result summary (output sequence) should be much shorter than the original text (input 
sequence) in the summarization task.

2.1. Unidirectional inference

Conventionally, Equation (1) is decomposed in a left-to-right manner as follows:

P (y|x) =
n−1∏
i=0

p(yi |y0 · · · yi−1, x) (2)

Since the search space V (yi ∈ V ) is very large and contains tens of thousands of entries in most cases, a beam search 
algorithm is usually employed to approximately find the most probable output sequence according to the history predictions 
y0 · · · yi−1 and the input sequence x. Currently, neural methods such as LSTM, convolutional networks and self-attention 
ones can model the conditional probability p(yi |y0 · · · yi−1, x) more and more accurately, but leaves the future contexts 
unexplored.

In order to leverage the right hand information, Equation (1) can also be decomposed in a right-to-left manner as follows:

P (y|x) =
0∏

i=n−1

p(yi|yi+1 · · · yn−1, x) (3)

Using this decomposition, the right-side hypotheses yi+1 · · · yn−1 are available when predicting yi , while the left-side pre-
dictions are still missing.

2.2. Synchronous bidirectional beam search

Ideally, we expect to utilize both the past and future contexts (y0 · · · yi−1 and yi+1 · · · yn−1) when determining the best 
prediction of yi . However, it is contradictory to some extent. Predicting yi needs yi+1 on the right, while determining yi+1
requires yi on the left. Obviously, it is impractical to use the whole contexts of both sides (y0 · · · yi−1 and yi+1 · · · yn−1) in 
a single inference model. We take a step back and attempt to explore the bidirectional contexts as many as possible if not 
all.

We propose a synchronous bidirectional inference model in which left-to-right and right-to-left inferences perform in 
parallel while keeping interaction with each other. In this way, Equation (1) is decomposed as follows:

P (y|x) =
{∏n−1

i=0 p(
−→yi |−→y 0 · · ·−→y i−1, x,←−y 0 · · ·←−y i−1) if L2R∏n′−1

i=0 p(
←−y i|←−y 0 · · ·←−y i−1, x,−→y 0 · · ·−→y i−1) if R2L

(4)

Equation (4) says that the bidirectional inference model accommodates L2R and R2L decoding at the same time. At timestep 
i, we have already generated the left i − 1 hypotheses −→y 0 · · ·−→y i−1 with L2R inference and the right i − 1 predictions ←−y 0 · · ·←−y i−1 with R2L inference. Thus, different from Equation (2) and Equation (3), both-side predictions can be utilized as 
contexts in the above bidirectional composition.
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Input: Input sequence x = 〈s〉x0 · · · x j · · · xm−1〈/s〉, beam size K , maximum length of output sequence MaxLen
Output: Optimal output sequence y = y0 · · · yi · · · yn−1

1 Initialize complete hypothesis list B = �, left-to-right temporary hypothesis list Bl−tmp = � and partial hypothesis list B0
l−part = {〈l2r〉}, right-to-left 

temporary hypothesis list Br−tmp = � and partial hypothesis list B0
r−part = {〈r2l〉}; //〈l2r〉 and 〈r2l〉 are tags indicating inference direction;

2 for i = 1; i ≤ MaxLen do
3 Bl−tmp =ExpandHypo(Bi−1

l−part , Bi−1
r−part );

4 Br−tmp =ExpandHypo(Bi−1
r−part , Bi−1

l−part );

5 [Bi
l−part , B]=UpdateHypo(Bl−tmp , Bi

l−part , B);

6 [Bi
r−part , B]=UpdateHypo(Br−tmp , Bi

r−part , B);

7 Bl−tmp = �;
8 Br−tmp = �;
9 end

10 if B 
= � then
11 sort B in descending order;
12 y = B[0];
13 else
14 if p(B MaxLen

l−part [0]) ≥ p(B MaxLen
r−part [0]) then

15 y = B MaxLen
l−part [0];

16 else
17 y = B MaxLen

r−part [0];
18 end
19 end
20 if y[0] = 〈l2r〉 then
21 return y;
22 else
23 return reversed y;
24 end

Algorithm 1: Synchronous Bidirectional Beam Search Algorithm.

Input: Partial hypothesis list Bi−1
l−part for current decoding direction and Bi−1

r−part for the opposite decoding direction
Output: temporary hypothesis list Btmp = �

1 for cand in Bi−1
l−part do

2 for y∗
i in T argetV ocab do

3 cand = cand + y∗
i ;

4 p(cand)=SBInfer(cand, Bi−1
l−part , Bi−1

r−part ) ;

5 Btmp = Btmp
⋃{cand};

6 end
7 end
8 sort Btmp in a descending order;
9 Btmp = Btmp [0 : K/2];

10 return Btmp ;

Algorithm 2: ExpandHypo(Bi−1
l−part, Bi−1

r−part).

Algorithm 1 shows the beam search procedure of the synchronous bidirectional inference model. The working flow 
is similar to the unidirectional beam search. We keep three kinds of lists. B is employed to store complete hypotheses. 
(Bl−tmp, Br−tmp) and (Bl−part , Br−part) are used to maintain the temporary and partial hypotheses at each decoding timestep 
for L2R and R2L inferences respectively. Lines 2-9 in Algorithm 1 is the main part of the beam search algorithm. At timestep 
i, L2R and R2L inferences perform in parallel but interactively to expand the partial hypotheses Bi−1

l−part and Bi−1
r−part from the 

previous timestep (lines 3-4). Then, the complete hypothesis list B and the partial hypothesis list (Bi
l−part , B

i
r−part) will be 

updated according to the temporary hypothesis list (Bi−1
l−tmp, Bi−1

r−tmp) (lines 5-6).
Algorithm 2 and Algorithm 3 respectively detail the hypothesis expansion procedure and hypothesis update pro-

cess. Algorithm 3 is trivial and is the same as the conventional unidirectional beam search. The algorithm Expand-
Hypo(Bi−1

l−part, B
i−1
r−part) is the key for synchronous bidirectional inference (SBInfer). In Algorithm 2, for a partial hypothesis 

in Bi−1
l−part , we calculate the probability of each candidate token in the target vocabulary by utilizing both of the history 

context Bi−1
l−part and the future information Bi−1

r−part through the function SBInfer(cand, Bi−1
l−part , B

i−1
r−part).

Obviously, the function SBInfer(cand, Bi−1
l−part , B

i−1
r−part) is the most important part and requires specific design for different 

seq2seq architectures. Next, we introduce how to implement the function SBInfer(cand, Bi−1
l−part , B

i−1
r−part) for both LSTM-based 

and self-attention based seq2seq networks.
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Input: Temporary hypothesis list Btmp = �, partial hypothesis list B part , and complete hypothesis list B
Output: Partial hypothesis list B part and complete hypothesis list B

1 for cand in Btmp do
2 if 〈/s〉 = cand[−1] then
3 B = B ⋃{cand};
4 if K ≥ |B| then
5 break;
6 end
7 else
8 B part = B part

⋃{cand};
9 end

10 end
11 return [B part , B];

Algorithm 3: UpdateHypo(Btmp, B part , B).

3. Synchronous bidirectional inference for LSTM-based Seq2Seq framework

No matter what kind of network architecture is used, most of Seq2Seq frameworks consist of an encoder and a decoder.2

Given an input sequence x = (x0, x2, · · · , xm−1), the encoder transforms x into a sequence of abstract context representa-
tions C = (h0, h1, · · · , hm−1) whose size is the same as the length of the input text. Then, from the context vectors C the 
decoder generates the output sequence y = (

−→y 0, 
−→y 1, · · · , −→y n−1) one token each time by maximizing the probability of 

p(
−→y i |−→y <i, C) with a left-to-right inference model.
Hereafter, we leverage x j and yi to denote the word embeddings corresponding to the input and output tokens x j

and yi . Next, we briefly review the encoder introducing how to obtain C and the decoder addressing how to calculate 
p(

−→y i |−→y <i, C) for the conventional LSTM-based Seq2Seq architecture. Then, we propose to enable synchronous bidirectional 
inference SBInfer(cand, Bi−1

l−part, B
i−1
r−part) in the LSTM-based architecture.

3.1. LSTM-based Seq2Seq framework

The encoder employs L stacked LSTM layers to learn the context vectors C = (h0, h1, · · · , hm−1). In the l-th layer (l > 1), 
hl

j is calculated as follows:

hl
j = LSTM(hl

j−1,hl−1
j ) (5)

In the first layer (l = 1), h1
j is obtained through a bidirectional LSTM:

−→
h 1

j = LSTM(
−→
h 1

j−1,x j) (6)
←−
h 1

j = LSTM(
←−
h 1

j+1,x j) (7)

Given 
−→
h 1

j and 
←−
h 1

j , h1
j is calculated with a feed-forward neural network h1

j = tanh(Wl
h · −→h 1

j + Wr
h · ←−h 1

j + bh).

The decoder computes the conditional probability p(
−→y i |−→y <i, C) with the help of attention mechanism [2] that lever-

ages different input context ci at different decoding time step:

p(
−→y i|−→y <i,C) = p(

−→y i |−→y <i, ci) = softmax(W −→z i) (8)

where −→z i is the attention output:

−→z i = tanh(Wc[−→z L
i ; ci]) (9)

in which −→z L
i is the top hidden state of the decoder network and −→z l

i in the l-th layer is computed using the following 
formula:

−→z l
i = LSTM(

−→z l
i−1,

−→z l−1
i ) (10)

If l = 1, −→z 1
i will be calculated by combining −→z i−1 as feed input [14]:

−→z 1
i = LSTM(

−→z 1
i−1, yi−1,

−→z i−1) (11)

2 There is an exception that [13] proposed a new Seq2Seq model that utilizes a single 2D convolutional neural network across both sequences.
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Fig. 2. Bidirectional inference model for Seq2Seq framework with LSTM architecture.

The dynamic context ci is the weighted sum of the source-side context vectors and is calculated by the attention model:

ci =
m−1∑
j=0

αi jh j (12)

where αi j is a normalized item calculated as follows:

eij = vᵀ
a tanh(Wa

−→z L
i + Uah j) (13)

αi j = exp(eij)∑
j′ exp(eij′)

(14)

The greater the value of the variable αi j , the more contribution of the j-th input token to the generation of the i-th 
output word. The left part in Fig. 2 gives the overall illustration of this unidirectional inference model for LSTM-based 
Seq2Seq framework. Note that residual connections and layer normalizations are employed as well and they are neglected 
in the description for simplicity.

3.2. Synchronous bidirectional inference for LSTM-based architecture

In synchronous bidirectional inference, p(
−→y i) is calculated with both history and future contexts according to Equa-

tion (4): p(
−→yi |−→y 0 · · ·−→y i−1, x, 

←−y 0 · · ·←−y i−1). The previous section introduces the way to use input x and history contexts −→y 0 · · ·−→y i−1 in Equation (8): p(
−→yi |−→y <i, C). The synchronous bidirectional inference adopts the same mechanism as follows:

p(
−→y i|−→y <i,C,

←−y <i) = p(
−→y i|−→y <i, ci,

←−y <i) = softmax(W−→z i) (15)

Different from unidirectional inference, the synchronous bidirectional inference calculates the attention output −→z i with 
both L2R and R2L predictions:

−→z i = tanh(Wc[−→z L
i ; ci;←−cz i]) (16)

where the future context ←−cz i is obtained using another attention model as illustrated with dotted arrows from right part to 
the left part in Fig. 2.

←−cz i =
i−1∑
k=0

←−γ ik
←−z L

k (17)

in which ←−γ ik is a normalized coefficient:

eik = vᵀ
z tanh(Wz

−→z L
i + Uz

←−z L
k) (18)

←−γ ik = exp(eik)∑
k′ exp(eik′)

(19)

It should be noted that L2R and R2L inferences perform simultaneously in parallel. Thus, when calculating p(
−→y i |−→y <i, C,←−y <i), we can as well compute p(

←−y i |←−y <i, C, −→y <i) at the same time in a similar way.
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p(
←−y i|←−y <i,C,

−→y <i) = p(
←−y i|←−y <i, ci,

−→y <i) = softmax(W ←−z i) (20)
←−z i = tanh(Wc[←−z L

i ; ci;−→cz i]) (21)

Where the left context −→cz i is obtained using a similar attention model as illustrated with dotted arrows from the left part 
to the right part in Fig. 2.

−→cz i =
i−1∑
k=0

−→γ ik
−→z L

k (22)

4. Synchronous bidirectional inference for self-attention based framework

The self-attention based Seq2Seq framework is known as Transformer [4]. In this section, we first give an overview of 
Transformer and then propose the implementation of synchronous bidirectional inference SBInfer(cand, Bi−1

l−part , B
i−1
r−part) in 

Transformer.

4.1. Transformer

The Transformer also follows the encoder-decoder architecture. The encoder includes L identical layers and each layer is 
composed of two sub-layers: the self-attention sub-layer followed by the feed-forward sub-layer.

The decoder also consists of L identical layers. Each layer has three sub-layers. The first one is the masked self-attention 
mechanism. The second one is the decoder-encoder attention sub-layer and the third one is the feed-forward sub-layer.3

Obviously, the key component is the attention mechanism.4 The three kinds of attention mechanisms can be formalized 
into the same formula.

Attention(q,K,V) = softmax(
qKT

√
dk

)V (23)

where q, K and V stand for a query, the key list and the value list respectively. dk is the dimension of the key.
For the self-attention in encoder, the queries, keys and values are from the same layer. For example, if we calculate the 

output of the first layer in the encoder at the j-th position. The query is vector x j .5 The keys and values are the same and 
both are the embedding matrix x = [x0 · · ·xm−1]. Using Equation (23) followed by a feed-forward network, we can get the 
representation of the second layer. After L layers, we obtain the input contexts C = [h0, · · · , hm−1].

The masked self-attention in decoder is similar to that of encoder except that the query at the i-th position can only 
attend to positions before i, since the predictions after i-th position are not available in the auto-regressive unidirectional 
inference.

−→z past
i = Attention(

−→q i,
−→
K ≤i,

−→
V ≤i) = softmax(

−→q i
−→
K T

≤i√
dk

)
−→
V ≤i (24)

The decoder-encoder attention mechanism is the same as that of LSTM-based Seq2Seq architecture. The query is the 
output of the masked self-attention sub-layer −→z past

i . The keys and values are the same encoder contexts C. The feed-forward 
sub-layer is then applied to yield the output of a whole layer. After L such layers, we obtain the final hidden state −→z i s. 
Softmax function (Equation (8)) is then employed to predict the output −→y i . Left part in Fig. 3 depicts the overall architecture 
of Transformer.

4.2. Synchronous bidirectional inference for transformer

In synchronous bidirectional inference, the essential difference lies in the improvement over the masked self-attention 
mechanism for decoder. In standard Transformer, the masked self-attention model calculates the output −→z i (−→z past

i ) using 
only the history contexts. In contrast, synchronous bidirectional inference performs L2R and R2L decoding in parallel and 
interactively. At the i-th timestep, L2R and R2L inferences have already generated i − 1 outputs −→z past

≤i = (
−→z past

0 · · ·−→z past
i−1 )

and ←−z past
≤i = (

←−z past
0 · · ·←−z past

i−1 ). Therefore, both −→z past
≤i and ←−z past

≤i can be employed to compute −→z i .

Accordingly, we design two self-attention mechanisms to handle history contexts −→z past
≤i and future contexts ←−z past

≤i re-
spectively. In addition to Equation (24) that utilizes history information, we propose another self-attention mechanism to 
leverage the future information generated by the opposite inference direction.

3 Residual connection and layer normalization are performed for each sub-layer in both encoder and decoder.
4 In fact, multi-head attention is employed and we just introduce basic attention for simplicity.
5 Suppose x j is the sum vector of input token embedding and the positional embedding.
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Fig. 3. Bidirectional inference model for seq2seq framework with self-attention architecture.

−→z f uture
i = Attention(

−→q i,
←−
K ≤i,

←−
V ≤i) = softmax(

−→q i
←−
K T

≤i√
dk

)
←−
V ≤i (25)

where −→q i is the query (i.e. the embedding of the (i − 1)-th output −→y i−1) from the L2R decoder. 
←−
K ≤i and 

←−
V ≤i are keys 

and values (i.e. the embeddings of the previous i predictions ←−y 0, · · · , ←−y i−1) from the R2L decoder. Fig. 3 illustrates how 
synchronous bidirectional inference performs. When producing −→z i , the solid lines denote the original masked self-attention 
with history while the dotted lines indicate the self-attention with future contexts.

Finally, we introduce a function to combine −→z past
i and −→z f uture

i to obtain a new representation −→z i that encodes both 
past and future contexts.

−→z i = f (−→z past
i ,

−→z f uture
i ) = −→z past

i + λ × tanh(
−→z f uture

i ) (26)

In which λ is a hyper-parameter to balance the contribution of the history and future contexts. For R2L decoding, ←−z i can 
be calculated similarly in parallel.

←−z f uture
i = Attention(

←−q i,
−→
K ≤i,

−→
V ≤i) = softmax(

←−q i
−→
K T

≤i√
dk

)
−→
V ≤i (27)

←−z i = ←−z past
i + λ × tanh(

←−z f uture
i ) (28)

5. Training

Since our synchronous bidirectional inference performs L2R and R2L decoding in parallel, L2R decoder aims to generate 
the gold reference −→y during training while R2L decoder attempts to produce the reversed gold reference ←−y at the same 
time. Given the training data consisting of T sentence pairs (x(t), y(t))T

t=1, the objective is to maximize the log-likelihood 
over the training data.

J (θ) =
T∑

t=1

(
logp(

−→y (t)|x(t)) + logp(
←−y (t)|x(t))

)
(29)

When calculating p(
−→y (t)

i ), L2R decoder usually employs the gold reference −→y (t)
<i as the condition p(

−→y (t)
i |−→y (t)

<i, x
(t)). 

In synchronous bidirectional inference, a problem will arise if we directly utilize the gold reference ←−y (t)
<i from the other 

side to compute p(
−→y (t)

i |−→y (t)
<i, 

←−y (t)
<i, x

(t)). For example, in the calculation of p(
−→y (t)

n−1|−→y (t)
<n−1, 

←−y (t)
<n−1, x

(t)), ←−y (t)
<n−1 includes 

←−y (t)
0 = −→y (t)

n−1. It indicates that −→y (t)
n−1 is used to predict itself. Obviously, it is not reasonable. To address this issue during 

training, we propose two optimization strategies to learn network parameters: the two-pass training strategy [12] and the 
fine-tuning algorithm.

5.1. Two-pass training

In the first training pass, we learn independent L2R and R2L inference models on the training data. Then, L2R and R2L 
models are employed to decode the input sentences of the training data, resulting in (x(t), 

−→
y∗(t))T

t=1 and (x(t), 
←−
y∗(t))T

t=1

respectively. During the second training pass, p(
−→y (t)

) is calculated using p(
−→y (t)|−→y (t)

, 
←−
y∗(t)

, x(t)), indicating that the 
i i <i <i
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future context is the model predictions 
←−
y∗(t)

<i rather than gold reference ←−y (t)
<i . Similarly, we calculate p(

←−y (t)
i ) using 

p(
←−y (t)

i |←−y (t)
<i, 

−→
y∗(t)

<i, x
(t)).

5.2. Fine-tuning algorithm

The newly proposed fine-tuning algorithm decouples our synchronous bidirectional inference model into two parts. One 
performs the synchronous inference function, and the other one performs bidirectional interaction function. We first train 
the parallel inference for L2R and R2L without interaction just as Equation (30) shows. Each training instance for this step 
is a triple 〈x, −→y , ←−y 〉.

P (y|x) =
{∏n−1

i=0 p(
−→yi |−→y 0 · · ·−→y i−1, x) if L2R∏n−1

i=0 p(
←−y i|←−y 0 · · ·←−y i−1, x) if R2L

(30)

After this simple training procedure converges, we use this model to decode a small subset of the source sentences in 
the original training data (e.g. 10% of the dataset) and get the new triple 〈x, 

−→
y∗, 

←−
y∗〉. Then, we can fine-tune our synchronous 

bidirectional inference model to enhance the bidirectional interaction function similar to the second pass of the two-pass 
training strategy.

Compared to the two-pass training strategy, the fine-tuning algorithm is much cheaper to implement since there is no 
need to train two separate models, to decode the entire training set and to do the second training over the whole dataset. 
In the experiments, we mainly employ the two-pass strategy and compare these two strategies in the experimental analysis 
part.

6. Experimental setup

In our experiments, two typical Seq2Seq tasks of machine translation and abstractive summarization are employed to 
test the effectiveness of our synchronous bidirectional inference model.

6.1. Machine translation

6.1.1. Dataset
We evaluate the proposed synchronous bidirectional inference model on both Chinese-to-English and English-to-German 

translation tasks. For the Chinese-to-English task, the training data consists of about 2.1M sentence pairs extracted from LDC 
corpora.6 We choose NIST 2002 (MT02) dataset for validation. For testing, we employ NIST 2003-2006 (MT03-06) datasets. 
We apply Byte-Pair Encoding (BPE)[15] with 30K merge operations and maintain the source and target vocabularies to the 
most frequent 30K tokens.

For the English-to-German task, we utilize the same subset of the WMT 2014 training corpus employed by [4,14,16,17]. 
It contains 4.5M sentence pairs.7 The concatenation of news-test 2012 and news-test 2013 is used as the validation set. The 
news-test 2014 is employed as the test set.

6.1.2. Training and evaluation details
For our synchronous bidirectional inference model with LSTM-based architecture, we implement the system by reusing 

and modifying the open source toolkit Zoph_RNN8 which is written in C++/CUDA and provides efficient training across 
multiple GPUs. The encoder includes two stacked LSTM layers and the first layer employs the bidirectional LSTMs. The 
decoder also contains two stacked LSTM layers followed by the softmax layer. The dimension of word embedding and the 
size of hidden layers are all set to 1000. The dropout rate is set to 0.2. At test time, we employ beam search with beam size 
k = 4.

For the synchronous bidirectional inference model with Transformer, we modify the tensor2tensor9 toolkit for training 
and evaluation. We employ the Adam optimizer with β1 = 0.9, β2 = 0.998, and ε = 10−9. The warmup and decay strategy 
for learning rate are the same as [4], with 16,000 warmup steps. During training, we employ label smoothing of value 
εls = 0.1. For evaluation, we use beam search with a beam size of k = 4 and length penalty α = 0.6. Additionally, we use 
6 encoder and decoder layers. In each layer, we employ dmodel = 1024 hidden size, 16 attention-heads, 4096 feed forward 
inner-layer dimensions, and Pdropout = 0.1. Our settings are close to transformer_big setting as defined in [4]. We employ 
three Titan Xp GPUs to train English-to-German translation and one GPU for Chinese-to-English translation pairs. In addition, 

6 LDC2000T50, LDC2002L27, LDC2002T01, LDC2002E18, LDC2003E07, LDC2003E14, LDC2003T17, LDC2004T07.
7 All preprocessed dataset and vocabulary can be directly download in tensor2tensor website https://drive .google .com /open ?id =0B _bZck-

ksdkpM25jRUN2X2UxMm8.
8 https://github.com/isi-nlp/Zoph_RNN.
9 https://github.com/tensorflow/tensor2tensor.

https://drive.google.com/open?id=0B_bZck-ksdkpM25jRUN2X2UxMm8
https://drive.google.com/open?id=0B_bZck-ksdkpM25jRUN2X2UxMm8
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we average the last 20 checkpoints to get the final model for English-to-German but do not perform checkpoint averaging 
for Chinese-to-English.

We evaluate the final translation quality with case-insensitive BLEU [18] for Chinese-to-English and with case-sensitive 
BLEU for English-to-German. Significance test is performed using the pairwise re-sampling approach [19].

6.1.3. Translation systems
We use BI-RNMT to denote our proposed synchronous bidirectional inference model implemented in LSTM-based recur-

rent neural machine translation. The proposed synchronous bidirectional inference model for Transformer is named BIFT.10

We compare the proposed models against the following state-of-the-art NMT systems:

• RNMT [20]: it is a state-of-the-art LSTM-based NMT system with the same setting as BI-RNMT.
• RNMT (R2L): it is a variant of RNMT and produces translations from right to left.
• Transformer: it is the state-of-the-art machine translation system with self-attention mechanism using the default 

left-to-right generation [4].
• Transformer (R2L): it is a variant of Transformer which performs translation in a right-to-left manner.
• Rerank-NMT: following [9], we first run beam search for L2R and R2L inference models independently to obtain two 

k-best lists, and then re-score the union of these two k-best lists. This method assumes that some source sentences 
are appropriate to translate from left to right, while others are better to translate from right to left. It is denoted as
Rerank-RNMT for RNMT architecture and Rerank-Transformer for Transformer framework.

• ABD-Transformer: it is an asynchronous bidirectional inference model under the Transformer framework that performs 
L2R inference with the results generated by R2L inference model [11]. During inference, two-pass decoding scheme is 
employed. First, the R2L inference model generates the backward hidden states and corresponding translation results. 
Then, ABD-Transformer optimizes the L2R inference with the help of the backward hidden states.

6.2. Abstractive summarization

6.2.1. Dataset
Abstractive sentence summarization is a task that generates a title-like summary for a long sentence. Our training 

data is a (text, summary) parallel corpus from the Annotated English Gigaword dataset [21,22]. It contains about 3.8M 
text-summary pairs for training and 189 K pairs for validation. The encoder and decoder share the same vocabulary of 
about 90K word types.

For the test set, we use both DUC 2004 and the English Gigaword. In the test set of DUC 2004, there are 500 examples 
and each example pairs a document with four different human-written reference summaries. For the test set of the English 
Gigaword, we employ the same randomly selected subset of 2000 text-summary pairs as [22,23].

6.2.2. Training and evaluation details
For both LSTM-based architecture and Transformer framework, we use the same model settings as neural machine trans-

lation.
For evaluation, we use ROUGE [24] as the metric. ROUGE measures the quality of summary by computing overlapping 

lexical units, such as unigram, bigram, trigram, and longest common subsequence (LCS). It becomes the standard evalu-
ation metric for DUC shared tasks and popular for summarization evaluation. Following previous work, we use ROUGE-1 
(unigram), ROUGE-2 (bigram) and ROUGE-L (LCS) as our evaluation metrics in the reported experimental results.

6.2.3. Summarization systems
We compare our proposed model with the following strong baselines.
ABS: [22] first proposed the abstractive summarization task and used an attentive CNN encoder and NNLM (neural 

network language model) decoder to perform this task.
LSTM-Sum: it is the abstractive summarization system with the same architecture as RNMT in which the encoder and 

decoder are both LSTM-based recurrent neural networks.
Feats2S: it is also a RNN encoder-decoder model using gated recurrent unit (GRU) [2] and provides more features (e.g. 

POS and NER) to enrich the encoder [25].
Selective-Enc: [23] proposed a selective mechanism to select important information from encoder before generating 

summary.
Transformer: it is a Transformer model which is applied to the abstractive sentence summarization task.

10 Our code is freely available in github https://github.com/ZNLP/sb-nmt.
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Table 2
Translation quality for Chinese-to-English tasks using case-insensitive BLEU scores. Our model BI-RNMT
and BIFT(λ = 0.1) are respectively significantly better than corresponding baselines (p < 0.01).

Model MT03 MT04 M05 MT06 AVE 	

RNMT 42.07 43.40 40.73 41.11 41.83 –
RNMT (R2L) 41.47 43.13 40.62 40.94 41.54 −0.29
Rerank-RNMT 42.66 43.72 41.18 41.71 42.32 +0.49
BI-RNMT 43.50 43.98 41.37 42.48 42.83 +1.00

Transformer 47.63 48.32 47.51 45.31 47.19 –
Transformer (R2L) 46.79 47.01 46.50 44.13 46.11 −1.08
Rerank-Transformer 48.23 48.91 48.73 46.51 48.10 +0.91
ABD-Transformer 49.47 48.01 48.19 47.09 48.19 +1.00
BIFT 51.87 51.50 51.23 49.83 51.11 +3.92

7. Results and analysis

7.1. Machine translation

7.1.1. Effect of hyper-parameter λ
Since BIFT employs a hyper-parameter λ to weigh the contribution of history and future contexts (see equation (26)), 

we need to determine the best setting for this hyper-parameter. We empirically set λ = 0.1, λ = 0.5 and λ = 1.0 to train 
BIFT respectively and get three BIFT models. Finally, we choose the setting that achieves the best performance on the 
development set.

We conduct this experiment on Chinese-to-English translation and the BLEU scores on the development set (NIST02) 
are 50.99, 50.72 and 50.96 for λ = 0.1, λ = 0.5 and λ = 1.0 respectively. Interestingly, the translation quality is not very 
sensitive to the hyper-parameter. Nevertheless, we choose λ = 0.1 in the following experiments due to the best translation 
performance.

7.1.2. Overall translation quality
Table 2 reports the translation performance of different systems on the Chinese-English task. The results are mainly 

divided into two parts. The first part in this table shows the BLEU scores of the systems based on LSTM framework while 
the second part gives the results of various systems based on the Transformer architecture.

Comparing the baselines using different architectures, we can easily see that the self-attention based Transformer remark-
ably outperforms the LSTM-based RNMT, with the average improvement of 5.36 BLEU points (47.19 vs. 41.83), suggesting 
the superiority of the Transformer.

As conventional decoding performs left to right, a question may arise that which inference direction is better. It is easy 
to find from Table 2 that the right-to-left decoding performs worse than the left-to-right style in Chinese-to-English trans-
lation no matter which neural network architecture is adopted (RNMT (R2L) vs. RNMT, Transformer (R2L) vs. Transformer). 
Specifically, the gap under the Transformer architecture is much bigger (1.08 vs. 0.29), indicating that Transformer is more 
sensitive to the inference direction.

We also investigate previous methods that take advantage of two inference directions. The results in Table 2 shows that 
the reranking approach [9] (Rerank-RNMT and Rerank-Transformer) performs much better than the baseline for both RNMT 
and Transformer architecture. We also notice that the asynchronous bidirectional decoding method ABD-Transformer [11]
can slightly outperform the reranking approach. The average gains can be up to 1.0 BLEU point (48.19 vs. 47.19), indicating 
that L2R decoding and R2L decoding can be complementary to each other.

We go step further to exploit synchronous bidirectional inference that makes full use of L2R and R2L decoding. It is 
obvious to see from Table 2 that our proposed method performs best. The first part in Table 2 says that the synchronous 
bidirectional inference model under LSTM framework BI-RNMT can obtain an average improvement of 1.0 BLEU point over 
RNMT. The second part demonstrates that our synchronous bidirectional inference model under the Transformer architec-
ture BIFT achieves promising BLEU gains and the gap can be as large as 3.92 BLEU points on average. The remarkable 
improvements suggest that compared to asynchronous bidirectional decoding, our synchronous bidirectional inference can 
better explore the history and future contexts on the target side. In addition to the evaluation on the NIST data, we fur-
ther test our BIFT model on WMT Chinese-to-English dataset in which we utilize the CWMT subset including about 9.03 
million sentence pairs as the training data. Newstest2017, newstest2018 and newstest2019 are employed as the test sets. 
Table 3 reports the translation results. We can observe that on the large-scale Chinese-to-English dataset, the synchronous 
bidirectional inference model BIFT can also substantially outperform the baselines with average gains of 2.3 BLEU points,11

demonstrating the superiority of the proposed synchronous bidirectional inference model.

11 Note that the performance is not on par with the top one achieved in the evaluation campaign. We believe there are two reasons. From the data 
perspective, we do not employ large-scale monolingual data. From the model perspective, we use the Transformer-base model and do not employ ensemble, 
system combination and other sophisticated techniques.
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Table 3
Translation quality for different systems on WMT Chinese-English machine translation tasks.

Model test2017 test2018 test2019 AVE 	

Transformer 22.92 23.57 24.61 23.70 –
Transformer (R2L) 22.70 22.14 24.21 23.02 −0.68
BIFT 25.69 26.35 25.97 26.00 +2.30

Table 4
Translation results on WMT14 English-to-German task 
using case-sensitive BLEU.

Model TEST (WMT 14)

GNMT [20] 24.61
Conv [3] 25.16
AttIsAll [4] 28.40

RNMT 22.85
RNMT (R2L) 22.17
Rerank-RNMT 23.06
BI-RNMT 23.97

Transformera 27.72
Transformer (R2L) 27.13
Rerank-Transformer 27.81
ABD-Transformer 28.22

BIFT 29.21

a The BLEU score of the Transformer model is re-
produced in our hardware environment and is slightly 
lower than AttIsAll [4]. [26,27] also reported that their 
reproduction is lower than their original result in [4]. 
For example, [27] reported 27.9 BLEU points. In our ex-
periments, we use only 3 GPUs for English-to-German, 
whereas [4,26] adopted TPUs for model training.

Similar phenomena can be observed from the English-German translation results as shown in Table 4. The finding is 
that BI-RNMT outperforms RNMT with 1.12 BLEU points. BIFT performs best12 among all the systems including GNMT [20], 
Conv [3] and AttIsAll [4]. The improvements of BIFT over the baseline Transformer can be up to 1.4 absolute BLEU points. 
Considering that only one reference is available for English-to-German translation, the improvements are very promising.

It should be noted that the reranking approach performs only slightly better than the baseline on English-to-German 
translation, while the improvement on Chinese-to-English translation is significant. We believe that there are three reasons 
behind. First, the beam size is small (e.g. 4, the same as baselines) and the candidate translation hypotheses lack enough 
diversity. Second, we only employ two features (L2R and R2L translation scores) to rerank the candidates, while others adopt 
many features such as large-scale language model, word alignment and sentence similarity. Third, there is only one reference 
for English-to-German translation but there four references for Chinese-to-English NIST translation. It is well known that 
more references can lead to bigger improvements.

7.1.3. Model size and efficiency
Our synchronous bidirectional inference model is slightly complicated than conventional L2R or R2L inference model. It 

is interesting to figure out the model size and efficiency of our system compared to other baseline systems. Table 5 reports 
the corresponding statistics of different NMT models. The model size denotes the total number of network parameters. Since 
the synchronous bidirectional inference model only introduces one parameter λ in Equation (26) for BIFT, the model size is 
the same as that of the Transformer. In contrast, Rerank-Transformer has double the number of parameters compared to the 
Transformer because it requires two individual encoder-decoder models for L2R and R2L decoding respectively. As for the 
asynchronous bidirectional decoding model, ABD-Transformer shares one encoder and has two decoders, and thus contains 
more than a half parameters against the Transformer baseline.

The Train column shows the number of global training steps per second. Because the training procedure of BIFT needs 
to match both of the L2R and R2L references, it takes more time to converge. It is about 40% slower than the baseline 
Transformer. We further calculated the total training time for different systems. Transformer took about 53.7 hours to con-
verge. Our model BIFT consumed about 87.5 hours for convergence. Since BIFT requires to decode the source sentences of 
bilingual training data before parameter optimization, we also collected the decoding time together. Greedy search was em-
ployed when decoding the training data and it took about 10.3 hours to decode all the source sentences of the training data. 

12 In practice, it is not the new state-of-the-art on English-to-German translation. For example, [28] reported 29.7 BLEU points on the same dataset.
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Table 5
Comparison results of model size, training and testing efficiency. 
Train denotes the number of global training steps processed per 
second at the same batch-sized sentences; Test indicates the 
amount of translated sentences in one second.

Model Model size Efficiency

Train Test

Transformer 207.8M 2.07 19.97
Transformer (R2L) 207.8M 2.07 19.81
Rerank-Transformer 415.6M 1.03 6.51
ABD-Transformer 333.8M 1.18 7.20

BIFT 207.8M 1.26 17.87

Fig. 4. BLEU score trends for different intervals of sentence length.

Therefore, BIFT spent a total of 97.8 hours for model training. However, regarding the decoding efficiency, our synchronous 
bidirectional inference model performs on par with the Transformer baseline and is only 10% slowdown (17.87 vs. 19.97 
sentences per second), whereas Rerank-Transformer and ABD-Transformer are much slower. The statistics suggest that BIFT 
is acceptable regarding the decoding efficiency.

7.1.4. Performance trends on sentence length
In previous sections, we argued that BI-RNMT and BIFT can utilize both of the history and future contexts during trans-

lation. A natural question may arise that whether our proposed model would perform much better on the long sentences. 
To answer this question, we group the source sentences of similar lengths in the test set and calculate the corresponding 
BLEU scores for each length interval.

Fig. 4 displays the statistics. The left part of Fig. 4 represents the results of the systems using LSTM-based framework. The 
right one shows the statistics of Transformer-based systems. Overall, no matter which architecture is adopted, our proposed 
models (BI-RNMT and BIFT) are superior to baselines over sentences with all different lengths. Generally, the gap becomes 
bigger and bigger when the length grows. Comparing the two architectures, we find that the Transformer-based BIFT excels 
in long sentence translation. The results indicate that our proposed synchronous bidirectional inference model are better at 
translating long sentences with the help of both the history and future contexts during decoding.



14 J. Zhang et al. / Artificial Intelligence 281 (2020) 103234
Table 6
Matching accuracy of the first and last four tokens between model 
predictions and references in NIST Chinese-English machine trans-
lation tasks for different NMT systems.

Model First four Last four

RNMT 36.35% 31.64%
RNMT (R2L) 31.22% 34.01%
BI-RNMT 36.88% 34.65%
Transformer 40.21% 35.10%

Transformer (R2L) 35.67% 39.47%
Rerank-Transformer 38.98% 38.91%
ABD-Transformer 38.36% 38.11%
BIFT 40.89% 40.08%

Fig. 5. Match precision of translation tokens for different positions.

7.1.5. Translation precision over different positions
We mentioned in introduction that L2R inference is good at predicting prefix while R2L inference is adept at suffix 

prediction. We may wonder that how does our synchronous bidirectional inference model perform on prefix and suffix 
prediction. Furthermore, which part of the translation sentence will be improved most, the prefix, middle part or the suffix?

To figure out these questions, we first analyze the prediction precision of the first-four and last-four tokens of the 
translation compared to the references for different NMT systems. Table 6 reports the comparison results. Obviously, the 
proposed synchronous bidirectional inference model performs best for matching precision of both the first-four and last-four 
tokens, showing the superiority of our methods.

Then, we go step further and conduct a deep analysis. We divide each translation hypothesis and its reference into 
10 equal parts and calculate the average word prediction accuracy for each part. In this way, we attempt to investigate 
the contribution of the synchronous bidirectional inference model over different positions. Fig. 5 illustrates the comparison 
results. It is interesting to see from this figure that both ends of the translation hypothesis are much easier to predict. In 
contrast, the prediction accuracy of the middle part is much lower, suggesting more demands of both the history and future 
contexts. Our proposed BI-RNMT and BIFT facilitate the usage of the left and right predictions, leading to large improvements 
over the middle part (40-80% in Fig. 5).
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Table 7
Translation results of different training strategies for our synchronous bidirectional inference 
model on Chinese-to-English tasks.

Model MT03 MT04 M05 MT06 AVE 	

Transformer 47.63 48.32 47.51 45.31 47.19 –
BIFT (original data) 45.24 45.03 43.35 43.35 44.24 −2.95
BIFT (two-pass) 51.87 51.50 51.23 49.83 51.11 +3.92
BIFT (fine-tuning) 50.76 49.72 48.32 47.91 49.18 +1.99

Table 8
Abstractive summarization quality on DUC 2004 and English Gigaword for 
different methods.

Model DUC-2004 English Gigaword

R1 R2 R-L R1 R2 R-L

ABS 26.55 7.06 22.05 29.55 11.32 26.42
Feats2s 28.35 9.46 24.59 32.67 15.59 30.64
Selective-Env 29.21 9.56 25.51 36.15 17.54 33.63

RNMT 28.22 10.21 25.14 34.54 16.85 32.32
BI-RNMT 29.05 10.90 26.05 35.47 17.62 32.90

Transformer 28.09 9.52 24.91 34.12 16.04 31.46
BIFT 29.17 10.30 26.05 35.68 17.39 32.89

7.1.6. Two-pass training vs. fine-tuning algorithm
In this subsection, we attempt to investigate the effects of different parameter optimization strategies for our syn-

chronous bidirectional inference model. We employ BIFT and Chinese-to-English translation task to compare between the 
two-pass training strategy and the fine-tuning algorithm. In the fine-tuning step, we randomly choose 10% source sentences 
of the training data. In addition to these two training algorithms, we also test the performance if we leave the gap between 
training and inference as is, so as to figure out whether the two-pass training or fine-tuning algorithm is necessary or not. 
Table 7 reports the comparison results.

As shown in the table, if we do not tackle the training-inference inconsistency and utilize the original training data 
directly, namely using the triple (x, −→y , ←−y ) as training instance, the translation quality is much decreased with a drop 
of 2.95 BLEU points in average compared to the baseline (BIFT (original data) vs. Transformer). Obviously, the synchronous 
bidirectional inference model cannot be optimized in such a way that target words are predicted conditioned on themselves.

Fortunately, we observe from the last two rows in Table 7 that both of the proposed training algorithms can remarkably 
improve the translation performance compared to the Transformer baseline. Although the fine-tuning strategy is not as 
powerful as the two-pass training strategy, it can still achieve a remarkable improvement of 2 BLEU points in average over 
the strong baseline. Considering that the fine-tuning strategy is much easier and cheaper for system deployment, we believe 
this strategy will be more popular than the two-pass strategy.

7.2. Abstractive summarization

Abstractive sentence summarization is another well-known testbed for sequence to sequence learning. We then apply 
our synchronous bidirectional inference model into this task. Table 8 presents the results of different systems over two test 
sets DUC-2004 and English Gigaword.

The first three rows show the performances of strong baselines. Among these three baselines, both Feats2s and Selective-
Env aim at improving the summarization quality by enhancing the representation learning of the encoder. Selective-Env 
augments the encoder with key information selection and performs best.

In contrast, our method attempts to improve the decoder (inference module) by enabling synchronous bidirectional 
decoding. The last four rows in Table 8 demonstrate that the LSTM-based RNMT stably outperforms the self-attention based 
Transformer, which is quite different from that for neural machine translation in which Transformer is the better one. 
After applying our synchronous bidirectional inference model, BI-RNMT and BIFT respectively achieve significantly better 
results on two test sets over RNMT and Transformer, despite that these two models cannot outperform Selective-Env on 
the Gigaword test set. The reason behind may be that we just apply BI-RNMT and BIFT into abstractive summarization 
without any special adaptation processing. From another perspective, the two kinds of the models handle encoder and 
decoder respectively, and can be complementary to each other. Nevertheless, the statistics given in the table further show 
the effectiveness of our synchronous bidirectional inference model beyond machine translation.

7.3. Some examples

To better understand the models, we further investigate some specific examples for machine translation and text sum-
marization respectively.
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Fig. 6. Two examples of Chinese-to-English translation.

Fig. 7. Two examples of abstractive summarization.

Fig. 6 shows two examples for Chinese-to-English translation. In the first example, the left-to-right Transformer omits 
a sub-sentence in the right part and the right-to-left Transformer neglects to translate the left sub-sentence. In contrast, 
with the help of both history and future contexts, our synchronous bidirectional inference model BIFT obtains a much 
better translation which covers all the contents of the source input. The phenomenon in the second example is similar. The 
left-to-right baseline forgets to translate display flexibility and narrow down the differences at the end, while the right-to-left 
baseline fails to generate are aware of their peace missions at the beginning part. However, the proposed BIFT model could 
produce all the contents correctly, suggesting the effectiveness of synchronous bidirectional inference.

The summarization examples are displayed in Fig. 7. In each example, the input is a long sentence and the output is a 
title-like summary.
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In the first example, human rights and african national congress are two key contents. The baseline Transformer fails 
to generate african national congress in the tail part and Transformer (R2L) neglects natrail congress in the head part. In 
contrast, our model BIFT renders all of the key points. As for the second example, the baselines have made similar mistakes. 
Transformer omits by state department at the end, and the summary generated by Transformer (R2L) expresses the wrong 
meaning due to the absence of says state department fails to after new york times. However, our model BIFT can generate the 
summary with correct and complete contents. The examples demonstrate the superiority of our synchronous bidirectional 
inference model on the modeling of both history and future contexts.

8. Related work

This work addresses the generalized synchronous bidirectional inference for sequence to sequence learning tasks, aiming 
to take full advantage of history and future predictions on the output. Generally, the related work can be divided into two 
categories, namely bidirectional inference and future context usage.

Bidirectional inference is well studied in sequential labeling tasks [29–31], in which each input token corresponds to 
an output label and the output shares the same length with the input. In general, there are 2n−1 decomposition ways of 
the conditional probability p(yn−1

0 |xn−1
0 ) for an n-token input sequence, since each token is predicted after the left one 

(from left to right) or the right one (from right to left). In this way, bidirectional inference is not difficult for sequen-
tial labeling. However, it is not trivial to leverage bidirectional inference for sequence generation problems mainly due 
to the length nondeterminacy of the output. [9,7,11] added agreement constraints to enforce L2R inference output to be 
consistent with R2L inference output for sequence generation tasks. [32] proposed the twin network that encourages the 
target hidden states of the L2R and R2L inferences at the same position to be as close as possible to predict the same 
token during training. Recently, [11] introduced an asynchronous bidirectional inference model for neural machine trans-
lation. They first obtained the translation hypothesis using R2L inference and then optimized the L2R inference model 
with the help of the R2L inference result. Despite of performance improvement, all these studies require two individual 
inference models, making the architecture more complicated. Furthermore, the interactions between L2R and R2L infer-
ences are not adequate. Taking the asynchronous bidirectional inference model for example, L2R model can utilize the 
information of R2L model but R2L inference cannot use the L2R predictions. In contrast, our synchronous bidirectional 
inference model has only a single decoder in which L2R and R2L inferences interact with each at each decoding time 
step.

Using future contexts has drawn more and more attention in sequence prediction tasks. Intuitively, the R2L inference 
model can be employed to re-rank the n-best hypotheses of the L2R inference model, preferring balanced output [33–38]. 
To use the future context which is unavailable in conventional inference model, [39–41] proposed the reinforcement learning 
methods to estimate the possible future information. To mimic the human cognitive behaviors, [42] presented a delibera-
tion network, which leverages the global information with the help of both forward and backward predictions in sequence 
generation through a deliberation process. [43] introduced two additional recurrent layers to model translated past con-
tents and untranslated future contents. They much improved the sequence generation quality with the cost of model 
complexity. They either employed two-pass decoding strategy or added more layers to the original network. Compared 
to this kind of work, our proposed model uses a smart way to exploit both history and future predictions by allowing 
L2R and R2L inferences to perform in parallel but interactively. In our previous work [12], we address the bidirectional 
decoding for neural machine translation. In this current work, the new contributions are three-fold. First, we general-
ize the decoding model into synchronous bidirectional inference for the general sequence-to-sequence models (e.g. LSTM 
and Transformer) and general sequence generation tasks (e.g. translation and summarization). Second, in addition to the 
two-pass training method, we further propose and investigate a new fine-tuning based algorithm for efficient parameter 
optimization. Third, we conduct deep analysis about the characteristics of the proposed synchronous bidirectional inference 
model.

9. Conclusion and future work

This work proposes a synchronous bidirectional inference model for sequential generation tasks. We first presented a 
synchronous bidirectional beam search algorithm for sequence generation, in which left-to-right and right-to-left decod-
ing perform in parallel but interactively. We have exploited the usage of synchronous bidirectional inference model on both 
LSTM-based and Transformer-based seq2seq architectures. We have also proposed and investigated two parameter optimiza-
tion strategies. The comprehensive experiments on machine translation and abstractive summarization have demonstrated 
that our proposed synchronous bidirectional inference model remarkably outperforms the strong baselines. The deep analy-
sis further shows that our model can indeed take full advantage of both history and future predictions during inference.

In the future, we plan to explore three directions. The first one is to further improve the training algorithm. Currently, 
we need to produce some pseudo training corpus to mimic the test environment and this requirement adds the complexity 
to the training procedure. Accordingly, we attempt to design a more efficient training algorithm to avoid the need of pseudo 
data construction. For example, we will try the method proposed by [44] to bridge the gap between training and inference.
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The second direction is to explore more applications of the synchronous bidirectional inference model. For example, 
we will apply the proposed model into other sequential generation tasks, such as question answering, chatbot and image 
caption.

The third one is to generalize the synchronous bidirectional inference model. The current model handles the synchronous 
interaction between two inference directions. We believe that the synchronous interaction can be leveraged in many multi-
task generation tasks. For instance, speech recognition and speech-to-text translation share the same input and the two 
inference processes can interact with other other to make use of complementary information.
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