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Abstract—As a kind of distributed energy storage system,
ice-storage air conditioning (IAC) system is an effective way
for transferring cooling load. A parallel adaptive critic design
method is constructed for solving the optimal control problem
of IAC systems. Adaptive critic design is also called adaptive
dynamic programming (ADP). The initial value function of
the parallel ADP method is obtained by using particle swarm
optimization (PSO) method to pre-train the weights of the neural
networks. Another PSO algorithm is utilized in each iteration
to achieve the target control, which avoids solving a nonlinear
equation in traditional ADP algorithms. Finally, the efficiency
of the parallel ADP algorithm will be illustrated through the
experiment results.

Index Terms—Parallel adaptive critic design, adaptive dynamic
programming, particle swarm optimization, ice-storage air con-
ditioning.

I. INTRODUCTION

IN recent years, IAC systems have been widely used over

the world due to its outstanding characteristics that, it can

store cooling by making ice during off-peak period and melt

it in on-peak period to release cooling [1]. IAC is of great

significance for the demand side management.

As IAC system has been widely implemented in the real-

world applications [2]–[4]. The optimization of IAC system

has become the mainstream research object. Some typical

optimization methods for IAC have been proposed [5]–[7].

The difficulty for the optimization of IAC lies in the controller

design of the system. It is difficult to built the precise models

for the IAC system. Therefore, a heuristic algorithm is needed.

With the development of control technology, parallel control

theory has become the guiding ideology for solving complex

control problems by combining theoretical research, scientific

experiment and computational technology [8]–[10]. Adaptive

critic design is in the category of parallel control [8]. ADP

is another name of adaptive critic design, which is proposed

in [11], [12]. Now ADP has been introduced in the field of

energy management [13]–[16], and performs well. However,

the traditional ADP algorithms has the problem of huge
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amount of iterations. Inspired by references [8] and [17],

we consider designing a parallel self-learning optimal control

method.

For solving the optimal control problem of IAC systems, a

new parallel self-learning algorithm is developed. The algorith-

m is formed by the combination of ADP and parallel control

theory. In the developed algorithm, the ADP algorithm and the

PSO algorithm are implemented in parallel. Next, the detailed

iteration structure is displayed.

II. PROBLEM FORMULATIONS

A. IAC System Description

The IAC system is composed of an air conditioning re-

frigerator, a cold storage equipment, a cooling converter and a

cooling management unit, which makes cooling inter-exchange

available. In the IAC system, the cold storage equipment

adopts different control strategies to meet the cooling load

demand. There are three operational modes for the IAC system

under consideration: store mode, idle mode and release mode.

Based on the main operation patters, the IAC model is

formulated as

RI(τ + 1) = RI(τ)− rI(τ)× 1[h], (1)

where τ is the time index, RI(τ)(kWh) is the residual cooling

capacity of the cold storage equipment, and rI(τ)(kW) is the

cooling capacity output of the cold storage equipment. Here,

rI(τ) < 0 means storing cooling, rI(τ) > 0 means releasing

cooling, and rI(τ) = 0 means the cold storage equipment is

idle.

For the safe use of the cold storage equipment, the following

physical constraints should be taken into consideration. The

residual cooling capacity RI(τ) satisfies RI min ≤ R(τ) ≤
RI max, the cooling output rI(τ) satisfies rI min ≤ R(τ) ≤
rI max. The cooling load demand is met by the air conditioning

refrigerator and the cold storage equipment. Then, we have

rL(τ − 1) = rI(τ − 1) + rC(τ). (2)

where rL(τ) is the cooling load demand, and rC(τ) is the

cooling capacity output of the refrigerator. Here, we introduce

delays in rL(τ) and rI(τ), for convenience of analysis [18].

According to the actual situation, we let rC(τ) ≥ 0.
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B. Optimization Objectives and Optimality Principles

Then, we let x1(τ) = rC(τ), x2(τ) = RI(τ). Let x(τ) =
[x1(τ), x2(τ)]

T
, u(τ) = rI(τ). The discrete nonlinear system

is given according to the air conditioning model as

x(τ + 1) = F [x(τ), u(τ), τ ] =

(
rL(τ)− u(τ)
x2(τ)− u(τ)

)
. (3)

The utility function is defined as

U [x(τ), u(τ), τ ] = n1 ×
(
x1(τ)

η
× C(τ)

)2

+ n2 × (RI max − x2(τ))
2
. (4)

where F (·) is the system function, C(τ)(CNY/kWh) is the

electricity rate, n1 and n2 are constants. Based on the utility

function, the performance index function is given by

J [x(τ), τ ] =
∞∑

κ=τ

γκ−τU [x(κ), u(κ), κ], (5)

where γ is the discount factor. The research object is to find

the optimal control which minimize (5).

III. PARALLEL SELF-LEARNING OPTIMAL CONTROL FOR

IAC SYSTEM

A. PSO Algorithm

In the work of Eberhart and Kennedy [20], [21], Particle

swarm optimization (PSO) is proposed. For the PSO algorithm

used here, we let θ be the swarm size, l = 1, 2, . . . , θ. Let

p(l, τ) and v(l, τ) denote the position and the velocity at

time τ of the particles, respectively. Here, the position vector

corresponds to u(τ) in system (3). We let pg denote the best

position, pl denote the best position of particles. Then the

update rule is shown as

p(l, τ) = p(l, τ − 1) + v(l, τ) (6)

and

v(l, τ) = ωv(l, τ − 1) + ρ1ϕ1 (pl − p(l, τ − 1))

+ ρ2ϕ2 (pg − p(l, τ − 1)) , (7)

where ω is the inertia factor, ρ1 and ρ2 are the correction

factors, ϕ1 and ϕ2 are the random numbers.

The utility function of the PSO algorithm to calculate the

fitness value is defined as

UPSO(τ) =
√

n1 × δ21 + n2 × δ22 , (8)

where

δ1 =
rL(τ)− p(l, τ)

η
× C(τ)

minC(τ)

and

δ2 = RImax − (RI(τ)− p(l, τ)) .

B. Parallel ADP Algorithm

Inspired by [18], the parallel ADP algorithm is developed

based on action-dependent heuristic dynamic programming

(ADHDP), which is one of the ADP approaches.

We defined an optimal action-dependent value function

V ∗ [x(τ), u(τ), τ ], such that

min
u(τ)

V ∗ [x(τ), u(τ), τ ] = J∗ [x(τ), τ ] . (9)

where J∗ [x(τ), τ ] denotes the optimal performance index

function. Based on [22], [23], we can obtain

V ∗ [x(τ), u(τ), τ ] = U [x(τ), u(τ), τ ]

+ γ min
u(τ+1)

V ∗ [x(τ + 1), u(τ + 1), τ + 1] . (10)

From (10), it can be found that the optimal action-dependent

value function depends on the control input. Thus, we can

obtained the optimal control without the mathematical ex-

pressions of the IAC system. However, it can be found that

V ∗ [x(τ), u(τ), τ ] is difficult to get from (10), because it is

time-varying. Hence, the following derivation is necessary.

Here we assume that rL(τ) and C(τ) are periodic functions

with the period T = 24h. According to the assumption, for

τ = 0, 1, . . ., we define α = 0, 1, . . . and β = 0, 1, . . . , T − 1,

that satisfy τ = αT + β. Define κ = αT . Then, there are

rL(τ) = rL(κ+ β) = rL(β) and C(τ) = C(κ+ β) = C(β).
Let Γ(κ) = (u(κ), u(κ+ 1), . . . , u(κ+ T − 1)) denote the

control sequence. Then, for all κ ∈ {0, T , 2T , . . .}, the utility

function can be expressed as

Λ [x(κ),Γ(κ)] =
T −1∑
β=0

γβU [x(κ+ β), u(κ+ β), β]. (11)

Hence, combined with (10), there is

V ∗ [x(κ),Γ(κ)] =Λ [x(κ),Γ(κ)]

+ γT min
Γ(κ+T )

V ∗ [x(κ+ T ),Γ(κ+ T )] ,

(12)

where V ∗ [x(κ),Γ(κ)] is called optimal value iteration. Hence,

the optimal control sequence can be obtained by

Γ∗(κ) = argmin
Γ(κ)

V ∗ [x(κ),Γ(κ)] . (13)

According to the above analysis, the parallel ADP algorithm

is designed. In the developed algorithm, there are two iteration

processes, including external iteration and internal iteration.

The first iteration is the external iteration. Here, we define i =
0, 1, . . . as the index of the external iteration. Let φ [x(κ), u(κ)]
denote the initial iterative function for the parallel ADP

algorithm, which is usually set as zero in traditional iterative

ADP algorithms [18], [24], [25]. Here, the PSO method is

used to obtain a suboptimal value function. For D = αT +β,

implementing PSO algorithm to get the control sequence. For
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β = 0, 1, . . . , D − 1, letting u(κ+ β) = pg(κ + β), then we

obtain

φ [x(κ), u(κ)] =
D−1∑
β=0

γβU [x(κ+ β), u(κ+ β), β]. (14)

Based on the initial iterative function, the initial iterative value

function V0 [x(κ),Γ(κ)] is defined as

V0 [x(κ),Γ(κ)] = Λ [x(κ),Γ(κ)] +

γT min
Γ(κ+T )

φ [x(κ+ T ),Γ(κ+ T )] . (15)

Based on (13), the iterative control sequence is computed as

Γ0 (x(κ)) = argmin
Γ(κ)

V0 [x(κ),Γ(κ)] . (16)

Then, for i = 1, 2, . . ., the update rule of external iteration

process are expressed as the following iteration equations,

which are

Vi [x(κ),Γ(κ)]

= Λ [x(κ),Γ(κ)] + γT min
Γ(κ+T )

Vi−1 [x(κ+ T ),Γ(κ+ T )]

= Λ [x(κ),Γ(κ)] + γT Vi−1 [x(κ+ T ),Γi−1 (x(κ+ T ))]
(17)

and

Γi (x(κ)) = argmin
Γ(κ)

Vi [x(κ),Γ(κ)] , (18)

respectively.
The second iteration process is the internal iteration. Here,

we define j = 0, 1, . . . , T − 1, as the index of the internal

iteration. For j = 0 and i = 0, let the initial iterative

performance index be

V 0
0 [x(κ), u(κ)] = φ [x(κ), u(κ)] . (19)

Then, for i = 0 and j = 0, 1, . . . , T − 1, the internal iteration

is proceeded between

uj
0 (x(κ)) = argmin

u(κ)
V j
0 [x(κ), u(κ)] (20)

and

V j+1
0 [x(κ), u(κ)]

= U [x(κ), u(κ), j] + γ min
u(κ+1)

V j
0 [x(κ+ 1), u(κ+ 1)]

= U [x(κ), u(κ), j] + γV j
0

[
x(κ+ 1), uj

0 (x(κ+ 1))
]
, (21)

where we let x(κ + 1) =

(
rL(T − 1− j)− u(κ)

x2(κ)− u(κ)

)
. Here

the utility function is expressed as

U [x(κ), u(κ), j] = n1 ×
(
x1(κ)

η
× C(T − 1− j)

)2

+ n2 × (RI max − x2(κ))
2
. (22)

For i = 1, 2, . . ., let V 0
i [x(κ), u(κ)] = V T

i−1 [x(κ), u(κ)].
Then, for j = 0, 1, . . . , T − 1, the internal iteration is

proceeded between

uj
i (x(κ)) = argmin

u(κ)

V j
i [x(κ), u(κ)] (23)

and

V j+1
i [x(κ), u(κ)]

= U [x(κ), u(κ), j] + γ min
u(κ+1)

V j
i [x(κ+ 1), u(κ+ 1)]

= U [x(κ), u(κ), j] + γV j
i

[
x(κ+ 1), uj

i (x(κ+ 1))
]
. (24)

Hence, the iterative control sequence is obtained by

Γi (x(κ)) =
{
uT −1
i (κ), uT −2

i (κ), . . . , u0
i (κ)

}
. (25)

IV. NEURAL NETWORK TRAINING FOR THE PARALLEL

ADP ALGORITHM

A. Action Network

The developed ADP algorithm is implemented by using

two neural networks, Action Network and Critic Network, to

provide the control signals and criticize the action network

performance, respectively. Both networks adopt three-layer BP

network model.

For the action network, the input vector x(κ) is the state

vector in (3). We define Wa1
and Wa2

as the input-hidden

weight matrix and the hidden-output weight matrix, respec-

tively. Let ba be the threshold value. Define the training step as

λ = 0, 1, . . .. Then the output of the network can be obtained

by

ûj
i (λ, x(κ)) =

(
W j

a2i
(λ)

)T

f (Ya (x(κ))) , (26)

where Ya (x(κ)) = (Wa1)
Tx(κ)+ba, and the activate function

f (x) =
1

1 + e−x
. Based on the work in [27], the update rule

of the network weight is displayed as follows.

W j
a2i

(λ+ 1) = W j
a2i

(λ)− μa
∂Ej

ai(λ)

∂W j
a2i

(λ)
, (27)

where

Ej
ai(λ) =

1

2

(
ûj
i (λ, x(κ))− uj

i (x(κ))
)2

, (28)

and μa denotes the learning rate.

In (28), a target control uj
i (x(κ)) is necessary to train the

network, while the target control is expressed in (23). For

traditional ADP algorithms [13]–[16], [18], [24], [25], the

target control uj
i (x(κ)) in each iteration can be obtained by

∂V j
i [x(κ), u(κ)]

∂u(κ)
= 0. (29)

As V j
i [x(κ), u(κ)] is approximated by critic network, which

is generally a nonlinear function, the analytical solution of

uj
i (x(κ)) is nearly impossible. Traditional numerical solution

in [26] for the equation (29) will expend large amount of com-

putation resource. In this section, PSO algorithm is employed

for the first time to obtain the target control uj
i (x(κ)).
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B. Critic Network

Based on updated control law by the action network train-

ing, the critic network can be improved. For the critic network,

we let Xc(κ) =
[
(x(κ))

T
, u(κ)

]T
be the input vector. Define

Wc1 as the input-hidden weight matrix, and define Wc2 as the

hidden-output weight matrix. Let bc be the threshold value.

Then the output of the network can be obtained by

V̂ j+1
i (λ, x(κ), u(κ)) =

(
W j

c2i
(λ)

)T

f (Yc (x(κ))) , (30)

where Yc (x(κ)) = (Wc1)
TXc(κ)+ bc. The update rule of the

network weight is

W j
c2i

(λ+ 1) = W j
c2i

(λ)− μc
∂Ej

ci(T )

∂W j
c2i

(T )
, (31)

where

Ej
ci(λ) =

1

2

(
V̂ j+1
i (λ, x(κ), u(κ))− V j+1

i (x(κ), u(κ))
)2

,

and μc denotes the learning rate.

V. NUMERICAL EXAMPLE

A. Simulation Preparation

Before the simulation, the following settings are required.

• The IAC system should meet the demand of cooling load

at any time.

• The simulation period is 4 days (96 h).

• RI max = 50000 kWh, RI min = 10000 kWh, RI(0) =
20000 kWh.

• rI max = 8000 kW, and rI min = −8000 kW.

• n1 = 1, and n2 = 0.1.

• η = 2.5.

• γ = 0.95.

• ε = 10−5.

• μa = μb = 0.01.

The cooling load demand and the real-time electricity rate

are shown in Fig. 1 and Fig. 2, respectively.
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Fig. 1. The cooling load demand in 96 h
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Fig. 2. The daily real-time electricity rate

B. Results and Analysis

The convergence of the V -function is shown in Fig. 3,

where “optimal V -function” denotes the optimal iterative value

function. We can find that the V -function converges after 5
external iterations.
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Fig. 3. Convergence trajectory of parallel ADP algorithm

The optimal control scheme of the IAC system is shown in

Fig. 4. We can see that when the electricity price is low and

cooling load demand is low, such as the midnight time, the

IAC stores the cooling. While the cooling load demand and

the electricity rate are both high, the IAC releases the cooling

to meet demand, which reduces the cost from the power grid.

For each hour in a day, the cooling storage/releasing power

can also be obtained. From the optimal scheduling shown in

Fig. 4, the correctness of the theoretical results can be verified.

To illustrate the superiority of the parallel ADP algorithm,

a traditional ADP algorithm is employed for comparison,
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Fig. 4. Optimal scheduling of IAC system in 96 h

which is the dual Q-learning algorithm [18]. The convergence

trajectory of the dual Q-learning algorithm is displayed in

Fig. 5. The numerical results are shown in Table I, where

“Dual QL” denotes the dual Q-learning algorithm and “PADP”

denotes the developed parallel ADP algorithm. From Fig. 5,

we can see that the dual Q-learning algorithm converges after

20 iterations, while the parallel ADP algorithm converges

after 5 iterations. The numerical results in Table I show

that the developed algorithm greatly reduces the amount of

computation. The pre-train process by using PSO increases

the algorithm performance.
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Fig. 5. Convergence trajectory of dual Q-learning algorithm

TABLE I
COST COMPARISON

Original Dual QL PADP

Cost (CNY) 99033.09 58282.18 57602.91

Saving rate 41.15% 41.84%

Iteration No. 20 5

VI. CONCLUSION

A parallel ADP algorithm is constructed in this paper for

the IAC system to find optimal scheduling, that minimizes

the cost of the IAC system. For the first time, the idea of

parallel control is applied to obtain the optimal control of IAC

system. The results of the optimal control scheme indicate that

the developed algorithm is effective in minimizing the overall

cost of the IAC system, and the comparison results also prove

the superiority.
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