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ABSTRACT

End-to-end speech synthesis can generate high-quality
synthetic speech and achieve high similarity scores with low-
resource adaptation data. However, the generalization of out-
domain texts is still a challenging task. The limited adaptation
data leads to unacceptable errors and the poor prosody
performance of the synthetic speech. In this paper, we
present two novel methods to handle the above problems by
focusing on the attention. Firstly, compared with the
conventional methods that extract prosody embeddings for
conditioning input, a duration controller with feedback
mechanism is proposed, which can control the states
transition in the sequence-to-sequence model more directly
and precisely. Secondly, to alleviate the unmatching text-
audio pairs’ impact on model, an adaptative optimization
strategy which would consider the matching degree of the
training sample is also proposed. Experimental results on
Mandarin dataset show that proposed methods lead to an
improvement on both robustness and overall naturalness.

Index Terms— prosody transfer, optimization strategy,
speaker adaptation, attention, speech synthesis

1. INTRODUCTION

End-to-end speech synthesis, such as Tacotron, can achieve
the state-of-art performance, and even close to human
recording for in-domain text [1-4]. However, the
generalization to out-domain is still a challenge, especially in
the circumstance that the target speaker data for adaptation
training is very limited. A lot of unacceptable errors could
occur, including skipping, repeating, mispronunciation, and
etc. Besides, the prosody performance is usually poor due to
the large range of unsimilar domain text for adaptation model.

Generally, the above low performance on generalization
and prosody can be ascribed to two aspects: attention
mechanism and corpus. One aspect is the misalignments from
attention. The attention is expected to predict the alignments
between states from encoder and decoder [5], which has been
widely applied in different fields [6-8]. Content-based [5] and
location-based [9] attention have been applied in the speech
synthesis [10,11]. To mitigate unacceptable errors, Tacotron2
[1] deploys local sensitive attention [12] to encourages the
model to move forward consistently through the input.
Furthermore, forward attention [13] and stepwise monotonic
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attention [14] are proposed to improve the robustness on out-
of-domain scenarios for phoneme-based models. The above
two methods assume that the alignments between encoder
and decoder states is monotonically and continuously without
skipping any encoder states, which may have a performance
degradation when some inputs scripts have no mapping to the
audio. For instance, there are some tokens representing the
prosodic boundaries or richer tokens to describe a phone.
Besides, all the above attention mechanisms are designed for
mono speaker acoustic model, which ignores that diversity of
prosody styles may result in different alignment patterns. The
state-of-art adaptive frameworks can generate high similarity
speech in low-resource speaker adaption task [15-17]. These
researches mainly focus on the extraction of prosody or
speaker embeddings, which would be the conditioning input.
However, the diversity of states transition is not directly
controlled and the prosody performance needs to be improved.

In this paper, we focus on attention to realize the
robustness and prosody controllability for multi-speaker end-
to-end speech synthesis system. We propose an improved
attention based on the learned alignment. A duration
controller structure is embedded in the seq-to-seq model to
control the states transition. Inspired by the PID controller in
the control theory [18], a feedback mechanism is proposed,
which monitor the states hold and transition. On another
aspect, the corpus is the foundation of a well-trained speech
synthesis model. The unmatching text-audio training sample
would cause errors that effects the naturalness. Conventional
methods usually use manual checking or forced alignment by
ASR technologies, which is time-consuming and low-
accuracy respectively. We expect the corpus checking could
be conducted with model training simultaneously and
automatically. Therefore, an adaptative optimization strategy
which would consider the matching degree of the training
sample based on the attention mechanism is also proposed.

Overall, the contributions of this paper are two-fold.
First, a duration controller with feedback mechanism is
proposed. Second, an adaptative optimization strategy is
proposed to immune to the unmatching training sample.
Experiments demonstrate the better prosody, more robustness,
and higher naturalness by applying proposed methods.

The rest of the paper is organized as follows. Section 2
describes methods. Experiments and results are analyzed in
section 3 and 4. The conclusions are discussed in Section 5.

ICASSP 2020



2. METHOD

Fig. 1 shows the architecture of the Tacotron based multi-
speaker end-to-end speech synthesis model. The whole
network consists of two components. In the acoustic model
part, Tacotron as proposed in [1] does not include explicit
modeling of speaker identity; however, due to the flexibility
of all neural sequence-to-sequence models, learning multi-
speaker models via conditioning on speaker identity is
straightforward. Besides, we add an extra prosody embedding
to focus on modeling the variety of the duration distribution
conditioned on the text information. In the training process,
the prosody style could be identical to the speaker id, which
means different people have different prosody styles. For the
same speaker, the prosody styles could also be different if the
types of recording text change from news to novel or
something else. By this way, the well-trained prosody
embedding with sufficient corpus can be used in the
circumstance of limited adaption corpus to improve the
prosody performance. The whole seq-to-seq acoustic model
consists of three parts: Encoder mainly processes text
information. The attention mechanism connects the encoder
and decoder and controls the prosody. The decoder generates
acoustic features conditioned on speaker embeddings to
ensure high similarity of the target speaker. In the neural
vocoder part, we deploy the LPCNet [19], which significantly
improve the efficiency of speech synthesis and remain high
quality. In the following sections, the duration controller and
adaptive optimization strategy focusing on the attention
mechanism would be introduced.

2.1. Duration controller with feedback mechanism

Generally, the attention-based encoder-decoder model is
deployed for acoustic modeling in end-to-end speech
synthesis. Therefore, it is difficult to control the duration just
like conventional statistical parametric speech synthesis [20].

Sample

Matching degree A.d a!)tlv.e 5
optimization Acoustic
recogmtlon
strategy Features

- Attention H Decoder ]

Alignment
wncoter /[ 3:.:;‘;;:, )
[ Text j [ Prosody ] [ Speaker ]
Embedding Embedding Embedding
I I I
‘ Text sequence ‘ ‘ Prosody style ‘ ‘ Speaker

Fig. 1 System architecture of the Tacotron based multi-
speaker end-to-end framework.

The alignment path in the attention mechanism indicates the
mapping relation between text information and
corresponding acoustic features. Inspired by the forward
attention [11], we propose a more robust attention mechanism
by adding the duration controller with feedback mechanism.
We assume that the alignment paths do not move strictly
monotonically, which means there are several small
mismatches between text and acoustic features due to the
unsilenced inputs text or special language phenomena. More
concretely, the attended phone should move forward to the
following one, remain motionless or move backward to the
previous one at the decoder timestep t. Given the encoding
results x and query q,, let B,(n) denote alignment results
from local sensitive attention for the index n of x at the
timestep t.The forward variable a,(n) is defined as the new
alignment results reweighted from B,(n). The a,(n) can be
calculated recursively from a,_4(n) , a;_;(n—1) and
a,_,(n+1)as
a () = 10 - a_ (W) +y, (D ae_ (n—1)
+Ye-1(2) e (n + 1)) - B (n) (1)
where y;_1(0), ¥;_1 (1), y;_1(2) are the outputs of duration
controller structure.
Then we define
am) =a,(m)/ X, a () (2)
to normalize forward variable a,(n). The reweighted context
vector can be computed as
¢ =xNa,(n)x, (3)
The duration controller is an DNN with two hidden
layers and sigmoid output layer, which predicts the
probability of the attended phone’ next move (remain
motionless: ¥,(0), move forward: y,(1), move backward:
¥:(2)). The inputs of duration controller consist of three parts:
linguistic part, embedding part and duration feedback part.
The linguistic part contains ¢, and q,, which tells the
information of attended phone and utterance level context
information. For each prosody style, an embedding vector
Eprosoay 15 1nitialized with Glorot [21] initialization like
speaker embedding, which could model the discrepancy.

=000 O-0-0-0
*" 1000
Fuay O Q/Q
o O X X X
QOO

Sd(T) ' . Sp(T)

010/0/0

Fig. 2 Colored circles represent a possible alignment path. Same
color means the current phone remain motionless. The feedback
parameters S,(T) , Sif (T), Sy (T), Sq(T) are illustrated by brackets.
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Inspired by the PID control theory, we also design
several feedback variables to observe current seq-to-seq
model generation status for improving robustness. As shown
in the Fig. 2, all the feedback variables at the decoder timestep
T are illustrated. The steps for the current phone S,(T) is the
direct control variable, which can been as the proportion part.
S4(T) is the total steps of the last phone, which can be seen
as the differentiation part. It can be interpreted as the
estimated current generation velocity since the end of current
phone is unknown. The forward position of current phone
Sif(T) and the backward position of current phone S, (T)
can be seen as the integration part, which accumulate the
entire decoder processing. The complete duration controller
with feedback mechanism is described in Algorithm 1.

2.2. Adaptative optimization strategy

Although the attention mechanism we proposed in the
previous section loosens up the restriction on strictly
monotonically assumption, the unmatching text-audio
samples would cause the unacceptable errors. Therefore, we
propose an adaptative optimization strategy to decrease the
unmatching training samples’ influence. During the training
process, the learning rate of one step would be adjusted
according to the matching degree of text-audio training
sample in this batch. As shown in the Fig. 1, the matching
degree recognition is based on the alignments results. The
matching degree M for one sample o is defined as

M(o) = (2 max (@, (0)}) /T 4)
where T, is length of the decoder step. A learning decaying
strategy regarding to the training step is also deployed in our
method. Let L(i) denote the leaming rate with decaying
strategy at the training step i. The propose adaptative
optimization strategy L (i) is defined as

L) = L) - (Zpea M(0))/B 5)
Algorithm 1 Duration Controller with Feedback Mechanism
Initialize:
@y(1) «1

ay(n) < 0,n=2,...N

Vo) «1/3, i=0,1,2

$p < 0,850, «N,S; < 0,5 <0
for t=1 to T do

B.(n) « Atten(x, q,)

Sip = argmax{f.(n)}
0snsN

Sip =N =S¢

if Sip == Sy
then
Sp=5+1
else
Sa=5Sp
S,=0

Sup = Sif

&, (n) & (#e=1(0) - @ () + ¥, (D) - @_y(n— 1)
+¥e-1(2) - @y (n + 1)) B ()
@, (n) « a,(n)/ Y=, &, (n)
e < Y=t Be(n)xy
Yt (0): Yt (1): Yt (2) « DNN(Ctv qe Spv Sifvsibv Sd' Eprosody)
end for

where Q denotes the set of all samples in a batch, and B
denotes the batch size. For each batch of training sample, if
some wrong labels occur, the model would be updated less in
this step by adopting this adaptative optimization strategy.

3. EXPERIMENTAL SETUP

We use the Blizzard Challenge 2019 dataset and our own
internal dataset to conduct the experiments. Our internal
dataset consists of 25 different professional Mandarin
speakers with about 200 hours. The Blizzard Challenge
dataset is an estimated 8 hours of speech from one native
Mandarin Chinese speaker collected from talk shows. All the
wav files are sampled at 16kHz. In this work, we limit the
input of the synthesis to 32 features: The 30-dim Bark-scale
[22] cepstral coefficients, and 2 pitch parameters (period,
correlation) are extracted directly from recorded speech
samples. The input text is processed by our G2P frontend and
transformed to the phone sequences, which also include tone
information of vowels.

For the Tacotron training, we set output layer reduction
factor r =2 . We use the Adam optimizer [23] with
adaptative learning rate decay, which starts from 0.001 and
decay as introduced in §2.2. The training batch size is 16,
where all sequences are padded to a max length. For the low-
resource adaptation task, after about 600K global steps, there
are about 2-3K global steps for adaptative training.

For the LPCNet training, the network is trained for 120
epochs, with a batch size of 64, each sequence consisting of
15 10-ms frames. We use the AMSGrad [24] optimization
method (Adam variant) with a step size a = a/(1 + § - b)
where ay, = 0.001, 5 = 5 x 107>, and b is the batch number.
For the LPCNet adaptation, there are about 10 epochs for
adaptative training.

The models on which we conduct experiments include:
1. Baseline: Tacotron2 with location sensitive attention
2. Forward attention, with or without transition agent, which
is denoted as FA+TA and FA w/o TA [13].
3. Stepwise monotonic attention: soft inference, which is
denoted as SMA soft [14].
4. Our proposed method: To do ablation studies, we make
several models. Duration Controller is denoted as DC. And
fm, pe and aos are short for feedback mechanism, prosody
embedding and adaptative optimization strategy respectively.
For instance, DC-fm-pe-aos is our final proposed method.

We evaluate the performance of our models in terms of
both intelligibility and naturalness. We conduct an automatic
objective intelligibility evaluation by ASR model. The test
sets are about 40,000 utterances, containing the in-domain
and out-domain text, which involve news, encyclopedias,
story and poetry. To evaluate naturalness, a subset is selected
by sorting high frequency errors from ASR model based
intelligibility evaluation. 30 listeners conducted crowd-
sourcing ABX preference tests. In each experimental group,
30 parallel sentences are selected randomly from test subset
for each system.
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4. EVALUATION AND DISCUSSION
4.1. Complexity and convergence speed
The duration controller we proposed is only a DNN structure
without any recurrent structure. The size of the model does
not increase significantly, which is about 0.3%. During the
training processing, we find that our proposed method DC
and FA, SMA can achieve faster convergence speed. Besides,
by adding feedback mechanism, the convergence speed is
further improved. And a better alignment results can be
observed in the Fig.3. We infer that the introduction of S, in
the feedback can help model distribute a more reasonable
duration, which reduce the occurrence of vague alignments.
4.2. Intelligibility evaluation
Intelligibility tests are performed with metrics of case level
unintelligible rate and number of words errors to evaluate the
robustness of models. All the speakers are tested and three
types of well-trained prosody are chosen in the DC ablation
test. As shown in the Fig.4, baseline fails to produce
intelligible results, while all the improved attention
mechanism (FA, SMA, DC) can achieve better performance.
By observing ablation test, the proposed prosody embedding,
feedback mechanism and adaptative optimization can further
improve the intelligibility. Besides, our submitted system for
Blizzard Challenge 2019 rank fifth of 24 teams in two
intelligibility evaluations, which also demonstrates the
effectiveness of our proposed DC-fm-pe-aos methods. By
sorting results from different speakers, the data size is also
the key factor that effects the final performance.

Robustness of different attention mechanism are further
demonstrated in Fig4 and Table 1. The monotonicity
assumption considering the speech characteristic which avoid
the skipping. It can be seen the feedback in the DC can further
reduce the occurrence of skipping and repeating. It can be
interpreted that the adding of S;¢(T) and S;;,(T) enhance the
position information and improve the performance.

(a) DC without feedback (b) DC with feedback
Fig. 3 Attention alignments with the same text on a test
utterance. Note that (a) has two points vague alignments.

Unintelligible Rate

DC-fm-peacs [N &5:%

DC-fm-pe [ ©.21%

ocpe N 107

DC [ 151:%

SMA soft [ 1:.93%
FAwo TA [ 555
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0.00¢ 5.0 100 10.00%

Fig. 4 Intelligibility results based on the ASR system

4.3. Naturalness evaluation

In this part, we evaluate the naturalness of the synthetic
speech from different models for low-resource speaker
adaptation. One male and one female target speaker is
selected. Both speakers have recordings for about 15 minutes.
One of well-trained prosody embedding by large dataset in
multi-speaker model is selected in the speech generation
process. By observing the preference scores results from
Table 2, we can find that the proposed DC-fm-pe-aos method
can have better naturalness. And the prosody embedding can
transfer prosody styles to the low-resourced situation, where
is no enough prosody information for adaption. The
synthesized speech sounds closer to human. We infer that the
proposed the duration controller play an important role.
Table 1 : Number of errors results
(Blizzard Challenge 2019 speaker, total 38360 words)

Model Skipping Repeating Mispronunciation
Baseline 196 372 8962
FA+TA 149 265 5836

FA w/o TA 163 248 5925
SMA soft 126 132 4862
DC 139 148 5358
DC-pe 94 125 3852
DC-fm-pe 68 59 3294
DC-fm-pe-aos 61 50 2861
Table 2: Preference scores on naturalness of speech
System Scores Scores Scores System
A A (%)  Neutral (%) B (%) B
69.23 17.69 13.08 Baseline
56.81 10.24 32.95 FA+TA
DC-PE 5336 16.73 3091 SMA soft
41.47 26.15 32.38 DC-ownPE

Note: DC-PE represents the proposed DC-fm-pe-aos method
choosing well-trained prosody embedding, while DC-ownPE
represents that only its own prosody embedding is selected.

5. CONCLUSION
In this paper, we propose a duration controller with feedback
mechanism and adaptative optimization strategy in the neural
end-to-end speech synthesis system. Experimental results
demonstrate that both the methods improve robustness,
especially in the circumstance of low-resource speaker
adaptation task. The introduction of prosody embedding in
duration controller provides more and better prosody styles.
These methods could be further applied to other sequence-to-
sequence tasks similar to speech synthesis. In the future, we
will investigate faster neural end-to-end speech synthesis
framework.
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