
Progressive Neural Networks based Features 
Prediction for the Target Cost in Unit-Selection 

Speech Synthesizer 

Ruibo Fu a, b, Jianhua Tao a,b,c , Zhengqi Wen a 

a National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China 
b School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China 

c CAS Center for Excellence in Brain Science and Intelligence Technology, Beijing, China 

Email: {ruibo.fu, jhtao, zqwen}@nlpr.ia.ac.cn

Abstract—This paper describes a direct acoustic features 

prediction for calculation of the target cost by progressive 

neural networks.  Compared with conventional methods 

involving many hand-tuning steps, our method directly predicts 

the features for calculation of the target cost. By applying the 

progressive deep neural network (PDNN) to predict these 

acoustic features, the correlation of these features can be 

modeled. Each type of the acoustic features and each part of a 

unit are modeled in different sub-networks with its own cost 

function and the knowledge transfers through lateral 

connections. Each sub-network in the PDNN can be trained to 

reach its own optimum step by step. Extensive comparative 

evaluations demonstrate the effectiveness of the PDNN in 

improving the accuracy of predicted acoustic features. The 

subjective evaluation results demonstrate that the naturalness 

of synthetic speech has been improved by adopting the proposed 

method to calculate the  target cost. 

Keywords—speech synthesis, unit-selection, target cost, 
progressive neural networks 

I. INTRODUCTION 

The unit-selection speech synthesis [1] has been 

challenged by the statistical parametric speech synthesis 

(SPSS) [2] and advanced methods (WaveNet, Deep Voice, 

Tacotron) [3-9] recently. However, the above new advanced 

methods still need more delicate works in computational 

efficiency and robustness. And the SPSS based speech 

synthesis tends to generate “average” speech which would 

defect the perception of sound. The unit-selection synthesizer 

is preferred when the speech corpus is highly-curated. And the 

ability of unit-selection is to yield studio-level quality for 

limited-domain speech synthesis. 

One of the core problem for unit-selection synthesizer is 

the discontinuousness between the selected adjacent basic 

units. People would identify that the selected sequence of units 

are extracted from difference utterances when acoustic clues 

such as the intonation, the speaking style, and the speed, are 

unmatched, which would defect the perception of sound.  

The target cost and the concatenation cost are defined to 

decide the best candidate from the corpus database. The target 

cost is designed to select the proper candidates from database. 

And the concatenation cost is designed to select adjacent units 

sound more coherently. The target cost, the metric to the 

similarities between candidate units and target units, is the 

foundation to select the proper combination of candidate units. 

But the target cost is hard to define and predict.  

Hunt and Black first presented current form of unit-

selection speech synthesis system [1]. The differences of 

prosodic and phonetic context information are calculated by 

weighted sum. The system performed best in the situation of 

the large database and high audio quality. Then the hybrid 

unit-selection [10], in which the target cost was related to 

acoustic and prosodic parameters predicted by the statistical 

model, used more the acoustic features to guide the unit-

selection. Several improvements, such as using the Deep 

Neural Networks (DNN) to generate the guiding parameters, 

have been made to use more acoustic clues for unit-selection 

[11-13].  

The features that the above methods used were manual 

well-designed. To make features be extracted automaticly by 

training, constructing a fixed-size representation of the 

variable-size audio, which referred as a embedding, were 

proposed. Approaches that take frame-level embedding of 

linguistic and acoustic information the intermediate layers of 

a deep neural network (DNN) [14] or a long short-term 

memory (LSTM) [15] network. In both cases, the unit-level 

embedding was constructed heuristically rather than being 

extracted from the whole unit directly. Then a sequence to 

sequence LSTM-based auto-encoders method is proposed to 

encode variable-length audio to a fixed-length vector [16]. 

The metric of the trained embedding is designed to represent 

the similarities of sounding units.  

The above manual designed features extraction methods 

might accumulate of errors in separate steps. And embedding 

methods were hard to train because each unit has text and 

audio two modalities. It was difficult to generate a uniform 

fixed-length vector to represent both acoustic and linguistic 

features. In this paper, we directly predict the acoustic features 

that is needed for the calculation of the target cost by using 

PDNN. The features including duration, MFCC and f0 are 

predicted directly, which avoid the accumulation of errors and 

is more computing efficient. We divide the unit into four parts. 
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And the correlation of the acoustic features in the sub-units is 

modeled by the proposed PDNN framework 

Progressive neural networks (ProgNets) [17] was first 

proposed by Google for the reinforcement learning tasks. 

ProgNets trained new task by freezing the previous trained. 

We separate the prediction of acoustic features into several 

sub-tasks. Each sub-task is modeled in different sub-

networks with its own cost function and the knowledge 

transfers through lateral connections. Each sub-network in 

the PDNN can be trained to reach its own optimum step by 

step. The correlation of the acoustic features between the 

middle and the margin of the units can be modeled and 

investigated.  

An overview of the rest of the paper is as follows: in 

section II we describe the framework of the unit-selection 

synthesizer and the PDNN for predicting acoustic features. 

Section III presents the experiments. And the results and 

analysis are presented in Section IV. The conclusions and 

future work are discussed in Section V. 

II. METHOD 

 

 
  

Fig. 1.  An overview of the unit-selection speech synthesizer. 
In our system, the PDNN module (yellow blocks) replace 
the conventional hybrid method (blue blocks) for generating 
the designed acoustic features for target cost calculation 

 

As illustrated in the Fig. 1, our speech synthesis system 

follows the typical unit selection framework, which uses a 

front-end text processing to produce linguistic features, pre-

selection for narrowing down the searching space, statistical 

model to implement concatenation and target costs for Viterbi 

search that finds the optimum unit sequence, and waveform 

concatenation to generate synthetic speech.  

The conventional hybrid methods using HMM or DNN 

based SPSS as guiding system. First, the acoustic model and 

duration model of SPSS predicts a sequence of acoustic 

parameters. Second, the generated acoustic parameters are 

extracted to the manual designed features for calculating the 

target cost.  

In this paper, we replace the above separate steps to a 

PDNN framework for direct manual designed features 

predicting. In this section, we will introduce the PDNN 

framework and designed acoustic features for target cost 

calculation. Besides, another Multi-task learning method as 

extensive comparative method is also introduced in this 

section. 

A. Progressive deep neural networks 

Compared with the conventional transfer learning 

methods that use the learned parameters as initial parameters, 

the PDNN use the following strategies: 

 Firstly, all the parameters of the old model are frozen 

when the new task begins.  

 Secondly, the new model is initialized randomly.  

 Thirdly, lateral connections are built between the new 

model and the frozen old model.  

 Fourthly, the parameters of the new model is learned 

through backpropagation. 

The PDNN framework with 3 columns (3 color blocks) 

for unit-selection speech synthesis system is shown in Fig. 2 

The first task starts with a single column (green in the Fig. 2): 

A deep neural network having 3 layers with hidden 

activations ℎ�
(�) ∈ ��� , with ��  the number of units at layer 

i ≤ 5 ,and parameters Θ(�) trained to convergence.  

When switching to a second task, the parameters Θ(�) are 

“frozen” and a new column (yellow in the Figures 1) with 

parameters Θ(�) is instantiated with random initialization, 

where layer ℎ�
(�) receives input from both  ℎ���

(�)  and ℎ���
(�)  via 

lateral connections. This generalizes to K tasks as follows:  

ℎ�
(�) = � ���

(�)ℎ���
(�) + ∑ ��

(�:�)
ℎ���
(�)

��� + ��
(�)
�     (1) 

where ��
(�) ∈ ���×����  is the weight matrix of layer i of 

column � , ��
(�:�)

∈ ���∗��  are the lateral connections from 

layer � − 1 of column �, to layer � of column �, ��
(�)

are the 
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biases and ℎ�  is the network input. �  is the activation 

function.  

In the construction of PDNN, it is important to carefully 

select a method for combining representations across network 

and to identify where these representations will be combined. 

Adaptation layers (as in the Fig. 2) can be included to 

transform from one task to another. However, due to the limit 

of the computational complexity in the runtime unit-selection 

system, a sharing weights strategy of the lateral connections  

��
(�:�)

 is adopted in our framework. All the row of the matrix 

��
(�:�)

 are sharing the same row vector. Except the first layer, 

each node of in the same layer of the column k would receive 

the same bias. The real number of parameters in the matrix 

��
(�:�)

is �� instead of  �� × ���� . 

 

 

 

 

Fig. 2. PDNN framework for predicting the acoustic 
features in unit-selection speech synthesis system. Blocks a 
represent the adaption layers as lateral connections.  

 
 

B.  Designed acoustic features and cost calculation 

 

The basic unit of our unit-selection synthesizer is vowels 

or consonants of the Mandarin, which resemble the syllables 

of the English. One type of the acoustic features is the 

duration. Instead of duration model which predict continuous 

value in the SPSS system, we classify the duration into 10 

classes. To extract other acoustic features such as MFCC and 

fundamental frequency ��, each unit is divided into 4 sections. 

The whole unit might contain voiced and unvoiced segments, 

which have different acoustic features distributions. The 

acoustic features distributions of the whole unit could not 

represent the articulation of units well. The first and last 

sections usually contain the unvoiced segments of the 

utterance. And the middle sections usually contain voiced 

segments of the utterance. The mean and variance of above 

are computed as the acoustic features of each unit. We use the 

above 4 sections of a unit as the metric for the target cost. 

Besides, the mean and variance of the acoustic features of the 

whole unit is also extracted as intermediate variables. In total, 

there are 290 features for predicting. The features are listed 

in TABLE I. 

 

TABLE I.  DESIGNED ACOUSTIC FEATURES FOR THE TARGET COST 

CALCULATION 

Feature Position Dimension 
Intermediate 

/final 
features 

Duration - 10 Final 

MFCC-W Whole 26 Intermediate 

∆MFCC-W Whole 26 Intermediate 

��-W Whole 2 Intermediate 

∆��-W Whole 2 Intermediate 

MFCC-B Beginning 26 Final 

∆MFCC-B Beginning 26 Final 

��-B Beginning 2 Final 

∆��-B Beginning 2 Final 

MFCC-ML Middle-Left 26 Final 

∆MFCC-ML Middle-Left 26 Final 

��- ML Middle-Left 2 Final 

∆��- ML Middle-Left 2 Final 

MFCC-MR Middle-Right 26 Final 

∆MFCC-MR Middle-Right 26 Final 

��- MR Middle-Right 2 Final 

∆��- MR Middle-Right 2 Final 

MFCC-E Ending 26 Final 

∆MFCC-E Ending 26 Final 

��-E Ending 2 Final 

∆��-E Ending 2 Final 

Total 290 

 

After the prediction of the designed acoustic features, the 

target cost C������  that describe the similarity between the 

candidate units and the target units is calculated as follow: 

C������ = ��‖��� − ���‖�
� + ��‖��� − ���‖�

� +

                                    ��‖��� − ���‖�
�                                           (2)                        

where ‖∙‖�  is the ��   norm. �� , ��  and ��  are pre-defined 

weights to balance each type of acoustic features. ��,  �� and 

 ��  denote the designed acoustic features of the duration, 

MFCC and �� respectively, in which subscript c represents the 

candidate unit and subscript t represents the target unit.  

h0：Linguistic features Input

1 2 1024...

h1(1)

1 2 1024...
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1 2 1024...
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1 2 1024...
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h2(2)
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The combined cost is defined as: 

C = σC������ + C�������������                    (3) 

where � denotes the target cost weight, �������   denotes the 

target cost, and ��������������  denotes the concatenation 

cost. 

The calculation of the concatenation cost for the speech 

synthesizer is described in [18].  

 

C. Designed Features prediction with multi-task learning 
method 

Multi-task learning (MTL) is also a way to directly predict 

the designed acoustic features for the three different but 

related tasks. The prediction of above designed acoustic 

features can be split into three sub-tasks: Duration, ��  and 

MFCC. Square loss is used as the cost function for each sub-

task. All the three models are trained together with the global 

combined cost function: 

�� = ��� + ��� + (1 − � − �)��                  （4） 

where ��  , �� and ��  are the error costs generated by each 

sub-task (Duration, ��  and MFCC, respectively). The 

coefficient �   and �   are parameters that need manually 

adjusted. While in the training process of PDNN, �� and �� 

are cost functions for each task.  

III. EXPERIMENTS 

A. Database and features 

A Mandarin database, which contains 30,000 phonetically 

rich sentences from a professional male broadcaster, is 

adopted in this paper. For the experiments described in this 

paper, the audio was down-sampled to 16 kHz. In the training 

process of PDNN, there are 27,000 sentences as training set, 

1,500 sentences as validation set, and the rest 1,500 sentences 

are reserved as test set. 

The linguistic features, which contain the phonetic and 

prosodic contexts of Mandarin in each unit, can be included 

as follow: The phone identity, the position of a phone, 

syllable and word in phrase and sentence, POS of word, 

prosodic phrase, intonational phrase and sentence, the length 

of prosodic word, prosodic phrase, intonational phrase and 

sentence, etc. The dimension of the linguistic features is 504. 

The continuous acoustic features are normalized to the 

range of (0,1] and the discrete acoustic features are encoded 

in One-Hot.  

B. Experimental setup 

The baseline we select is the BLSTM based hybrid 
method. 

 Baseline: It uses BLSTM based SPSS system to 

generate the acoustic parameters first and then 

calculate the KL divergence to get the final target cost.  

To compare the PDNN model with other models, the 

conventional DNN based prediction method and the DNN 

based prediction with MTL method are added as extensive 

comparative experiments. Besides, we also conduct a series 

of experiments on the PDNN prediction framework with 

different predicting sequences and quantity of hierarchies. 

Four types of systems are implemented for comparison: 

 DNN-C: Standard DNN-based approach. All the 

acoustic features are concatenated together and 

treated as one stream. The intermediate features are 

not predicted in the model. 

 DNN-I: Different from DNN-C, each type of the 

acoustic features (Duration, MFCC, �� ) is trained 

independently with separate DNN models. 

 MTL-DNN: DNN approach with MTL method. 

Different form DNN-C, one DNN model trains the 

three sub-tasks global combined cost function. 

Different coefficients � and � are tested. 

 PDNN: The proposed PDNN method. We first 

predict the duration and the intermediate features 

(MFCC and ��) that represent the whole unit. In the 

second task, the ��  in each section of the unit is 

predicted. In the third task, the MFCC in each section 

of the unit is predicted. Other different quantities of 

tasks and different prediction sequences are tried. 

After the cost calculation, a Viterbi search is used to find 

the best sequence that minimizes the combined cost. Except 

for the calculation of the target cost, the other modules are 

described in [18].  Our implementation is in TensorFlow [19] 

and we use the RMSProp optimizer with the global initial 

learning rate 0.0005 and its Tensorflow defaults parameters. 

We choose ReLU [20] as the activation function. 

C. Objective evaluation  

To evaluate the accuracy of the predicted designed 

acoustic features cost, the root mean square error (RMSE) 

between the predicting acoustic and the label is chosen as the 

objective metric for the ��  and MFCC. For the duration 

features, we choose F1-score that reveal both precision and 

recall as the objective metric. TABLE II shows the Objective 

measures of different models for acoustic features prediction.  

D. Subjective evaluation 

To evaluate the performance of unit-selection synthesizer 

with the modification of the target cost, 30 native speakers 

are arranged to evaluate the synthetic speech based on a 5-

point discrete scale Mean Opinion Scores (MOSs) [21] 

labeled “Bad”, “Poor”, “Fair”, “Good”, and “Excellent”. 

Each listener listens to 30 pairs random selecting sentences 

synthesized from five different systems. Different target cost 

weight � is tested to investigate the contribution of the target 

cost to the whole unit selecting procedure.  

507



 

 

IV. RESULTS 

 
As illustrated in Table II, the MTL-DNN method achieves 

a better performance in predicting the ��  and MFCC 

compared with standard DNN methods. There are 

correlations between �� and MFCC. The combination of their 

training can improve the performance. The performance of 

the duration prediction drops a little because of the weak 

connection between the duration and the acoustic features (�� 

and MFCC). The cost of the duration is not minimized to its 

own optimal. The proposed PDNN method has relative 

improvement in all the three objective measures. The 

knowledge transfer flow is defined by the lateral connections 

of PDNN. It illustrates that the goal of the MTL method is to 

minimize the combined global loss function, which is 

relevant to the objective measures of duration, �� and MFCC. 

Through epochs of training, it would reach the optimum. But 

it won’t be easy for each sub-target to reach its own optimum 

because other targets would affect the parameters of the entire 

networks. For MTL, it is hard to distinguish which 

parameters to learn the specific. On the contrary, it is easy to 

distinguish for PDNN because each task is trained by each 

sub-network. The transfer of memory depends on the lateral 

connections between these sub-networks. 

 

One thing we need to consider is the sequence of targets. 

Therefore, we did sets of the experiments on the sequence of 

predictions. According to the results, we can draw the 

conclusion that which target is predicted later, the better 

performance we can get. Predicting the ��  parameters first 

has a better overall performance than predicting the MFCC 

first. We infer that it is more helpful for �� to reconstruct the 

MFCC. 

 

 

 

The introduction of the intermediate features (FM-i) that 

represent the �� and MFCC of the whole unit to the training 

procedure can improve the performance of predicting �� and 

MFCC in each section of the unit. Although there is a little 

drop in the F1-score of the duration, the FM-i can help the 

following details reconstruction of the acoustic features. 

Observing the MOS results illustrated in the Fig. 3, the 

best MOS is 4.14 when the target cost weight is 1.5 in the 

PDNN experiment. The proposed PDNN method to predict 

the designed acoustic features for target cost calculation 

achieve better performance than the baseline. The direct 

features prediction avoids the accumulation of errors, which 

could generate more precise target cost to measure the 

similarity between the target units and candidate units. The 

MTL-DNN method outperforms the DNN-I and DNN-C 

methods. We infer that the correlation of these acoustic 

features could make contribution to the model prediction 

training. And a better way to joint train all the acoustic 

features is the key. The MTL-DNN method could balance 

each type of acoustic features better than the DNN-C method. 

The PDNN method has improvement in the MOS results than 

the MTL-DNN method because the PDNN model realize the 

physical isolation of each sub-task. 

The MOS results of BASELINE and DNN-C system both 

decrease when the weight of the target cost increase. It 

indicates that target cost calculated by the two methods could 

not reflect the similarity properly and the systems mainly 

depend on the concatenation cost to select the candidates. The 

target cost losses its designed function. Meanwhile, the 

system with the PDNN method perform better when the 

weight of the target cost is increasing in certain range. It 

illustrates that the target cost calculated by the PDNN method 

is more precise to measure the similarity between the 

candidates and the targets and can help the unit-selection 

select the candidates better. 

 
Fig. 3. MOS test for naturalness of synthetic speech using 
different target cost weight � and systems. 

 

TABLE II OBJECTIVE MEASURES OF DIFFERENT MODELS FOR ACOUSTIC FEATURES 

PREDICTION 

Model 
Duration 
F1-score 

����� 
RMSE 

MFCC 
RMSE 

D
N
N 

DNN-C 0.684 0.107 0.231 

DNN-I 0.763 0.098 0.223 

MTL-DNN 0.707 0.092 0.216 

P
D
N
N 

DF, M 0.735 0.096 0.203 

DM, F 0.727 0.093 0.205 

D, F, M 0.763 0.091 0.199 

D, M, F 0.763 0.087 0.202 

D&FM-i, F, M 0.761 0.083 0.188 

D&FM-i, M, F 0.761 0.081 0.191 
a. D, F, M are short for duration, �� and MFCC. 

b. FM-i is short for the intermediate features (MFCC and  ��) that represent the whole unit. 

c.  The second column on the left show the predicting sequences. 
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V. CONCLUSION 

 
In this paper, we present a progressive deep neural 

networks framework to predict the designed acoustic features 

directly for target cost calculation, which could predict 

different types of acoustic features one by one.  The PDNN 

is immune to forget the previous memory on processing the 

linguistic features. Each training process has its own train 

criterion. Therefore, each type of acoustic features can be 

trained to its own optimum. PDNN with different predicting 

sequences, quantity of hierarchies are compared in the 

experiments. Compared to the baseline using the BLSTM-

guided hybrid method, the MOS results demonstrated the 

better performance of our proposed PDNN method. 

 

This paper focus on predicting the acoustic features for 

target cost calculation more directly and reasonably. 

However, the defined target cost in our method still involves 

human knowledge. In the future, the similarity between audio 

still need to be explored by using more delicate semi-

supervised methods. Besides, the target cost is only part of 

the unit-selection synthesizer, the more direct method to 

choose a proper sequence of candidate units without 

calculating the target cost and the concatenation cost first is 

also our research focus. 
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