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SUMMARY

Bioluminescence tomography (BLT) allows in vivo localization and quantification of bioluminescent
sources inside a small animal to reveal various molecular and cellular activities. In this paper, the overlap
domain decomposition method (ODDM) of BLT is proposed, which refers to divide and conquer techniques
for solving BLT by iteratively solving sub-problems on smaller sub-domains. Here, two triangulations
of the region are adopted. We can obtain the photon density distribution on the object surface, as well
as reconstruct the position of the light source by using ODDM and genetic algorithm. The numerical
simulations have shown that ODDM is computationally efficient and fairly robust. Copyright q 2009
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Molecular imaging is a newly emerging field in which the modern tools of molecular and cell
biology are being married to state-of-art technology for noninvasive imaging [1]. Recently, the
small-animal molecular imaging is a rapidly developing biomedical imaging field. The goals of
this field are to develop technologies and assays for imaging molecular events in living organisms.
Bioluminescence tomography (BLT) is a promising medical imaging modality using near infrared
spectroscopy to ascertain the position of the light source.

For performance evaluation of BLT algorithms, the simulation of photon transportation in the
biologic tissues plays an important role [2, 3]. A popular approach of photon propagation modeling
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in highly scattering media is the diffusion equation derived from simplified assumptions applied to
RTE [4]. The numerical method is preferred when dealing with complex geometries [5–7] such as
the finite element method (FEM), boundary integral method and multi-spectral bioluminescence
optical tomography.

Because the computation complexity of photon density and source density increases quickly
with the number of dimensions and nodes, real-time computation of BLT needs to reduce the
complexity of the problem. In this paper, we present the overlap domain decomposition method
(ODDM ) for BLT. The outstanding advantage of ODDM is to distribute parallel numerical
solvers on smaller sub-domains and make the computation extremely efficient. The two-level
additive Schwarz method is developed to solve the forward problem of BLT. The emphasis of
this paper is to apply the idea of two-level domain decomposition to optimize the source density
of the BLT inverse problem. It is shown that the two-level approaches are indispensable in the
algorithm due to the properties of local convergence results. For BLT inverse problem, after
the photon density is obtained by ODDM, the genetic algorithm is employed to reconstruct the
position of the source. Numerical simulations illustrate that ODDM is more feasible and effective
than FEM.

The paper is organized as follows: in Section 2, the forward solver based on photon diffusion
equation model is described. In Section 3, ODDM applies domain decomposition techniques for
the forward and inverse problems of BLT. The convergence of the additive Schwarz method is
proved. In Section 4, the numerical simulations are shown and conclusions are drawn.

2. DIFFUSION EQUATION

When the bioluminescence imaging experiment is carried out in a dark environment, the propagation
of bioluminescent photons into biological tissue can be modeled by the steady-state diffusion
equation and Robin boundary condition [4, 8]:

L�=−∇ ·(D(x)∇�(x)+�a(x)�(x)) = S(x) (x ∈�)

�(x)+2A(x)D(x)(v(x) ·∇�(x)) = 0 (x ∈��)

(1)

where � and �� are the domain and its boundary, respectively; �(x) denotes the photon flux
density (W/mm3); S(x) is the source energy density (W/mm3); ��(x) is the absorption coefficient
(mm−1); D(x)=1/(3(��(x)+(1−g)�s(x))) is the optical diffusion coefficient (mm), �s(x) is
the scattering coefficient (mm−1) and g is the anisotropy parameter; and v is the unit outer normal
on ��. Given the mismatch between the refractive indices n for � and n′ for the external medium,
A(x;n,n′) can be approximately represented as

A(X;n,n′)= 1+R(x)

1−R(x)

where R(x) can be approximated by R(x)≈−1.4399n−2+0.7099n−1+0.6681+0.0636n [9]. The
measured quantity is the outgoing flux density Q(x) on ��, which is

Q(x)=−D(x)(v ·∇�(x))= �(x)

2A(x;n,n′)
(x ∈��)

BLT is used to reconstruct the bioluminescent source distribution inside an object based on the
photon flux measured at its boundary. However, BLT problem is ill-posed in theory and its solution
is not unique without sufficient a priori knowledge. Thus, the solution to Equation (1) is focus
for BLT.
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3. OVERLAPPING DECOMPOSITION DOMAIN METHOD

3.1. Weak-form equation

Based on the principle of virtual work, the weak solution of the photon flux density �(x) is given
through Equation (1):∫

�
D(x)(∇�(x)) ·(∇�(x))dx+

∫
�

�a(x)�(x)�(x)dx+
∫

��

1

2An(x)
�(x)�(x)dx

=
∫

�
S(x)�(x)dx (∀�(x)∈H1(�)) (2)

Here H1(�) is the Sobolev space. Then Equation (2) can be written as

�(�,�)=F(�) (3)

where,

�(�,�) =
∫

�
D(x)(∇�(x)) ·(∇�(x))dx+

∫
�

��(x)�(x)�(x)dx+
∫

��

1

2An(x)
�(x)�(x)dx

F(�) =
∫

�
S(x)�(x)dx

We are particularly interested in the solution of Equation (3) discretization (by either finite
element method or finite difference method), which yields a large sparse, symmetric positive
definite linear system: M�=F .

Considering the approximation �h of the exact solution � and the uniqueness of the BLT
problem solution, the following error bound was derived [10, 11]:

‖�(S�)−�h(Sh� )‖2L2(�)
+√

�‖S�−Sh�‖2L2(�)
�ch3/4 (4)

where �(S�)∈H1(�), S� ∈L2(�). �h(Sh� ) and Sh� correspond to �(S�) and S�, which are obtained
by introducing a regular triangulation �h of � and finite element space Vh;� is the regularization
parameter; h denotes the maximum element size of the triangulation and c is a constant independent
of � and h. Based on Equation (4), it is a beneficial improvement for the BLT solution to reduce
the maximum element size h.

3.2. ODDM for inverse problem

Overlapping domain decomposition algorithms are based on a decomposition of the domain �
into a number of overlapping sub-regions. Here, we consider the case of the two overlapping
sub-regions {�1,�2} that form a covering of �; see Figure 1. Let �i,i=1,2, denote the part of
the boundary of �i that is in the interior of �.

Figure 1. Two sub-domain decompositions.
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The basic Schwarz alternating algorithm to solve Equation (1) starts with any suitable initial
guess �0 and constructs a sequence of improved approximation of �1,�2, . . . . Starting with the
iteration sequence �k , we solve the following two sub-problems �1 and �2 successively with the
most current values used as a boundary condition on the artificial interior boundaries:

L�k+1
1 = f on �1

�k+1
1 = �k on �1

2AD
��k+1

1

�v
−�k+1

1 = 0 on ��1/�1

and

L�k+1
2 = f on �2

�k+1
2 = �k

1 on �2

2AD
��k+1

2

�v
−�k+1

2 = 0 on ��2/�2

The iteration sequence �k+1 is defined by

�k+1(X)=
{

�k+1
2 if X ∈�2

�k+1
1 if X ∈�/�2

It is shown that in the norm induced by operator L , the iteration {�k} converges geometrically to
� on � [12].

The above Schwarz procedure extends almost verbatim to discretions of Equation (1). We
describe the algorithm in matrix notation. Corresponding to the sub-regions {�1,�2}, let {I1, I2}
denote the indices of the nodes in the interior of �1 and �2, respectively. Thus, I1 and I2 form
an overlap set of indices for the unknown vector �. Let n1 and n2 be the number of indices in I1
and I2, respectively. Owing to overlap, n1+n2>n, where n is the number of unknowns in �.

Corresponding to each �i , we define a rectangular n×ni extension matrix RT
i [13] whose action

extends by zeros to a vector of nodal values in �i . Thus, given a sub-vector xi of length ni with
nodal values at the interior nodes on �i , we define

(RT
i xi )=

{
(xi )k for k∈ Ii

0 for k∈ I − Ii where I = I1∪ I2

The transposed matrix Ri of this extension map RT
i is a restriction matrix whose action restricts a

full vector x of length n to a vector size ni by choosing the entries with indices Ii corresponding
to the interior nodal in �i . As a result, Ri x is the sub-vector of nodal values of x in the interior
of �i . The local sub-domain matrices (corresponding to the discretion on �i ) are, therefore,
M1= R1MRT

1 , M2= R2MRT
2 and these are principle sub-matrices of M .

The discrete version of the Schwarz alternating method (described above) solves M�=F , and
starts with any suitable initial guess �0, generating a sequence that iterates �0,�1, . . . as follows:

�k+1/2 = �k+RT
1 M

−1
1 R1(F−M�k) (5)

�k+1 = �k+1/2+RT
2 M

−1
2 R2(F−M�k+1/2) (6)

Note that this corresponds to a generalization of the block Gauss–Seidal iteration (with overlapping
blocks) for solving Equation (1). At each iteration, two sub-domain solvers are required. Defining
Pi = RT

i M
−1
i Ri M , i=1,2.

The convergence is governed by the iteration matrix (I −P2)(I −P1), which is often called a
multiplicative Schwarz iteration. With sufficient overlap, it can be proved that the above algorithm
is convergent with a rate independent of mesh size h [13].
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We note that P1 and P2 are symmetrical with respect to the M inner product, but not so for the iter-
ation matrix (I −P2)(I −P1). A symmetrical version can be constructed by iterating one more half-
step with M−1

1 after Equation (6). The resulting iteration matrix becomes (I−P1)(I−P2)(I −P1),
which is symmetrical with respect to M inner product; therefore, conjugate gradient acceleration
can also be applied.

An analogous block Jacobi version can be also defined as

�k+1/2 = �k+RT
1 M

−1
1 R1(F−M�k)

�k+1 = �k+1/2+RT
2 M

−1
2 R2(F−M�k)

This version is more parallelizable because the two sub-domain solvers can be carried out concur-
rently. By eliminating �k+1/2, we obtain

�k+1=�k+(RT
1 M

−1
1 R1+RT

2 M
−1
2 R2)(F−M�k)

This is simply the Richardson iteration on M�=F with the following additive Schwarz pre-
conditioner for M : A−1= RT

1 M
−1
1 R1+RT

2 M
−1
2 R2; the preconditioned system can be written as

A−1M= P1+P2, which is symmetrical with respect to the M inner product [13] and can also
be used with conjugate gradient acceleration. Again, for suitably chosen overlap, the condition
number of the preconditioned system is bound independently of h (unlike classical block Jacobi).

We can compute Equation (3) by an FEM. For simplicity, we consider only continuous, piecewise
linear, tetrahedral elements in R3. In order to get photon density from the surface of the object, a
commonly used method for computing photon densities via FEM is used. In addition, we apply
the ODDM to Equation (3) in order to reduce computation complexity of the problem.

The shape of photon density has a peak around the source and decreases rapidly far from the
source. Thus, adding the Schwarz method to one level is not sufficient, since the domain is far
from the sources; it may neglect the existence of sources, especially in the case where there are
multiple sub-domains. As a result, we must refine the mesh and adopt two-level ODDM.

To define our algorithms, we need two levels of triangulation that have already been introduced
in [13, 14]. Let �∈ R3 be a polygonal domain with boundary �� and �(�,�)=(�,�)L2(�). Here,
�,�∈Vh and Vh are the usual triangular finite element subspaces of H1(�), consisting of a
continuous piecewise liner function. Following the Dryja–Widlund construction of the overlapping
decomposition of Vh , the triangulation of � is introduced as follows.The region is first divided into
non-overlapping sub-structures �k and (k=1,2, . . . ,N ), whose union forms a coarse subdivision
of �. Then, all the sub-structures �k , which have a diameter of order H , are divided into elements
of size h. The assumption, common in finite element theory, is that all elements are regularly
shaped. To obtain an overlapping decomposition of the domain, we extend each sub-region �k to
a larger region �′

k , consisting of all points � within a distance of �H from �k whose range is
from 0 to 1 i.e. �k ⊂�′

k . We assume that the overlap is uniform and Vk ⊂Vh is the usual finite
element space over �′

i . Let V0⊂Vh be a triangular finite element subspace defined on the coarse
grid. It is clear that �=⋃k �′

k and Vh =V0+·· ·+VN .
Based on the decomposition of Vh discussed above, which includes N elements and Nk vertex

nodes, we introduce and analyze some algorithms for the finite element solution of the expression
equation (3). Let {�1,�2, . . . ,�Nk

} be the nodal basis of the space Vh and�k(x) is an approximation
of �(x):

�k(x) =
Nk∑
i=1

�i (x)�i (x) (7)

�k(x) =
Nk∑
i=1

�i (x)�i (x) (8)
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where �i (x), �i (x) is the i th node value. Incorporating Equations (7) and (8) in Equation (3), we
have

�(�k(x),�k(x))=F(�k(x)) (9)

or
Nk∑
j=1

�(�i (x),� j (x))� j =F(� j (x))

Equation (9) is a linear algebraic equation, noted as M�= f , where

M=

⎛
⎜⎜⎜⎝

�(�1,�1) . . . �(�Nk
,�1)

...
. . .

...

�(�1,�Nk
) · · · �(�Nk

,�Nk
)

⎞
⎟⎟⎟⎠ , �=

⎛
⎜⎜⎜⎝

�k
1

...

�k
Nk

⎞
⎟⎟⎟⎠ , f =

⎛
⎜⎜⎜⎝

F(�1)

...

F(�Nk
)

⎞
⎟⎟⎟⎠

Let B(�)=�(�k(x),�k(x)), fk =F(�k(x)), then we have

G(�)= B(�)− fk =0 (10)

For each sub-space Vi , let us define an operator Qk :Vh →Vk, by b(Qk(�),�)=�(�,�) (where
b(·, ·) is a Poisson operator, which generally has nothing to do with the non linear problem
to be solved). ∀�∈Vh,�∈Vk,Qk(�) can also be understood in the matrix form, Qk(u)=
RT
k M

−1
k Rk B(�), where Mk is the sub-domain discretion of b(Qk(�),�) and Rk :Vh →Vk is a

restriction operator [12]. To define the additive Schwarz method, let us characterize Q=Q0+
Q1+·· ·+QN . We note that the operators Qk and Q are generally not linear as shown in the
following non-linear equation:

G̃(�)=Q(�)− g̃=0

which is equivalent to Equation (10), since they both have the same solution. For a properly chosen
parameter �, iterative for k=0,1, . . . until convergence of

�k+1=�k+�Sk (11)

where Sk =−G̃(�k). Then Equation (11) can be expressed as

�k+1 = �k+�
p∑

i=1
RT
i M

−1
i Ri (F−M�k)

=
(
I −�

p∑
i=1

RT
i M

−1
i Ri M

)
�k+

(
�

p∑
i=1

RT
i M

−1
i Ri

)
F

= Tas�
k+A−1

as F (12)

where Tas = I −A−1
as M, A−1

as =�
∑p

i=1 R
T
i M

−1
i Ri .

It can also be another iterative format. Starting with iterative �k , we compute �k+1 as follows:

�k+(i+1)/(p+1) =�k+i/(p+1)+RT
i M

−1
i Ri ( f −M�k+i/(p+1)), i=0,1, . . . , p (p=N )

ODDM is described in detail. Step 1: Initialization: Define sub-domains, overlapping regions,
and maximum number of iterations.

Step 2: Sub-region correction: Update photon densities by using Equation (10) or Equation (11)
at each sub-region.

Step 3: Stopping condition: Iterate coarse grid correction and sub-region correction until
maximum number of iterations is reached or the difference between the newly updated and
previous photon densities in the overlapping region is sufficiently small.

Step 4: Boundary measurement data: Computing �� by restricting photon densities of the
detectors on the boundary.
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3.3. Convergence analysis of �k

We discuss the convergence of the iterative method equation (12), when M only is a symmetric
positive definite Matrix, denoted as MO . By M�O we denote a symmetric positive semi-definite
matrix. The notation MN stands for M−N O . Consider the solution of a linear system of
n algebraic equation of the form M�= f in Rn by additive Schwarz iterations with overlapping
blocks. The convergence of additive Schwarz iterations [15–18] is discussed now.

Definition 1 (Horm and Johnson [15])
Let M be a symmetric positive definite matrix, ∀x∈ Rn be a column vector, then ‖x‖M =(xTMx)1/2

is weighted norm.

Definition 2 (Horm and Johnson [15])
Let M be a symmetric positive definite matrix, ∀A∈ Rn×n , then ‖A‖M =[tr(ATMA)]1/2 is defined
as M-norm of matrix A.

Definition 3 (Horm and Johnson [15])
The spectral radius 	(B) for a matrix B∈ Rn×n is 	(B)=max{|�| :�∈�(B)}.
Definition 4 (Frommer et al. [16], Frommer and Szyld [17])
M splitting M= B−C is called P-regular if BT+C is a positive definite matrix.

Lemma 1 (Frommer et al. [16], Frommer and Szyld [17])
Let MO , Then, M= B−C is P-regular splitting if and only if ‖B−1C‖M<1.

Lemma 2 (Frommer et al. [16], Frommer and Szyld [17])
Given Tas from Equation (12), there is a pair of matrices Aas and Bas such that M= Aas−Bas .
Matrix Aas is nonsingular and Tas = A−1

as Bas .

Note: If �=1, in the absence of damping, we simply denote the matrix Aas as A, i.e. A−1=∑p
i=1 R

T
i M

−1
i Ri .

Theorem 1
Let MO and let M= Aas−Bas be the splitting defined in Lemma 1. If �<1/p, then this splitting
is a P-regular splitting and therefore ‖Tas‖M<1.

Proof
As pointed out above

A−1
as =�

p∑
i=1

RT
i M

−1
i Ri =�

p∑
i=1

RT
i (Ri MRT

i )−1Ri =�A−1=�pM−1

then we can get Aas =[1/(�p)]M ; it is easy to see that Aas O . Bas = Aas−M=(1/�)A−M=
[1/(�p)−1]M is symmetric positive definite if �<1/p. Thus, AT

as+Bas O , and the splitting is
P-regular. By Lemma 2, we know Tas = A−1

as Bas , which shows ‖Tas‖M<1. �

Lemma 3 (Horm and Johnson [15])
Let B∈ Rn×n . We have

(1) If ‖·‖ be a matrix norm on Rn×n , we have 	(B)�‖B‖.
(2) For ∀ε>0, there exists a norm ‖·‖ on Rn×n , such that ‖B‖�	(B)+ε.

Lemma 4
If ‖Tas‖M<1, then 	(Tas)<1.

Proof
By Lemma 3, the proof is completed. �

Theorem 2
Let Tas ∈ Rn×n , then limk→∞ T k

as =0 if and only if 	(Tas)<1.
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Proof
If limk→∞ T k

as =0, we assume �∈�(Tas) and 	(Tas)=|�|. For an ∀k such that �k ∈�(T k
as), by

Lemma 3, we have 	(Tas)k =|�|k�	(T k
as)�‖T k

as‖M . For all k, it shows 	(Tas)<1. Conversely, if
	(Tas)<1, by using Lemma 3 and Theorem 1, there exists a norm ‖·‖, such that ‖Tas‖<1. It
shows 0�‖T k

as‖�‖Tas‖k →0, k→∞, which means limk→∞ T k
as =0. �

If the iterative method equation (12) is convergence, we assume that its limit is �∗. Then, we
have

�∗ =Tas�
∗+A−1

as f (13)

which means that �∗ is the solution of Equation (13).
Combining Equations (12) and (13), we have

�k+1−�∗ =Tas(�
k−�∗), k=0,1,2, . . . (14)

We can derive �k−�∗ =T k
as(�

0−�∗) from Equation (14). Giving any initial value �0, by
Theorem 2, the sequence {�k} converges to �∗ if and only if T k

as →0 as k→∞. It is so obvious
that we have got our conclusion. �

3.4. Source reconstruction for inverse problem

In Equation (1), when photon flux density � is obtained by ODDM, how to reconstruct source
S(x)?

Let {r1,r2, . . . ,rNsk } be the interpolation basis function, and S(x) is approximated by

Sk(x)=
Nsk∑
i=1

si (x)ri (x)

where Nsk and si (x) are the values of the interpolation basis function and the interpolation nodal
values, respectively. The selection of interpolation basis function ri may be the same as or different
from that of the nodal basis function �i , which depends on the choice of source variables si . We
select the basis source variable and piecewise constant function as the interpolation basis function,
which are different from the piecewise linear nodal basis function �i . We have

Sk(x)=
Nk∑
i=1

�(�i ,� j )� j = f (� j ), j =1,2, . . . ,Nk

The matrix form of Equation (2) can be obtained as follows:

M�=F∗S (15)

where

M =

⎛
⎜⎜⎜⎝

�(�1,�1) . . . �(�Nk
,�1)

...
. . .

...

�(�1,�Nk
) . . . �(�Nk

,�Nk
)

⎞
⎟⎟⎟⎠ , �=

⎛
⎜⎜⎜⎝

�1

...

�Nk

⎞
⎟⎟⎟⎠

F∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∫
�k

r1�1 dx . . .

∫
�k

rNk�1 dx

...
. . .

...∫
�k

r1�Nk
dx . . .

∫
�k

rNk�Nk
dx

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, S=

⎛
⎜⎜⎜⎝

S1

...

SNk

⎞
⎟⎟⎟⎠
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For a brief description of the reconstruction method, we rearrange Equation (15) as follows:(
M11 M12

MT
12 M22

)(
�m

�∗

)
=
(
F11 F12

F21 F22

)(
S p

S∗

)
(16)

where �m represents the nodal flux density on the boundary ��, which is computed from the
surface flux image captured with a charge coupled device (CCD) camera, and the flux density on
the internal nodes is denoted as �∗. The unknown source intensities in the region where reporter
genes are tagged are S p and S∗; the latter is equal to zero since no emission source exists in that
region. It is noted that the region for S p is larger than the exact region where the reporter genes
are present. Thus, Equation (15) is reduced to

AkS
p =�m (17)

where Ak =(M11−M12M
−1
22 MT

12)
−1(F11−M12M

−1
22 F21). The reconstruction of the light source

distribution can be expressed as a non-negative vector {S p}, which optimally minimizes the differ-
ence between the computed surface nodal flux density �m via Equation (16), and the computed
�m , which is obtained from the forward model as the experimental data on the surface which is

�k(S
p)= min

0�S p�Sksup
{‖ASp−�m‖�+
�k(S

p)} (18)

where Sksup is the upper bound of source density, � is the weight matrix in ‖V ‖� =V T�V, 
 is

the regularization parameter and �k(S
p
k ) is the penalty function. Because the genetic algorithm

[19–21] has global convergence, we adopt it to solve Equation (18).

4. NUMERICAL SIMULATIONS

A series of computational experiments are designed by ODDM. We compare ODDM and FEM.
Two kinds of model (sphere and cylinder) are applied in Sections 4.1 and 4.2. Optical parameters
from [4] are listed in Table I.

4.1. Forward problem for two different tissue sphere phantom models

BLT forward problem is to find the photon flux density in the biological tissue and the outgoing
flux on its boundary.

Consider a uniform spherical light source with radius r0 and total power s, centering at x0 in a
homogeneous medium. The photon flux density � at point x in the medium is

�(x)= exp(−�effr)

r D(�eff)2

(
r0 cosh(�effr0)−

1

�eff
sinh(�effr0)

)

where r =‖x−x0‖ and �eff denotes the effective attenuation coefficient

�eff=(�a/D)1/2=(3�a(�a+�s(1−g)))1/2

as shown in Figure 2(a), a finite element volume mesh was made. The solid spherical source of
radius 0.5mm and flux 1W was located at the center, as shown in Figure 2(b). The spherical
models were designed to have various radii ranging from 1 to 10mm.

Table I. Optical parameters of the heterogeneous phantom.

Material �a(mm−1) �s(mm−1) g

Lung (Lu) 0.35 23 0.94
Heart (H) 0.2 16.0 0.85
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Figure 2. Finite-element meshes for modeling ideal source and detection spheres: (a) detection sphere and
(b) solid spherical source at the center of the detection sphere.

Figure 3. Comparison between the ODDM solution and the analytic solution for two kinds of optical
parameter: (a) �s =23mm−1,�a =0.35mm−1,g=0.94 and (b) �s =16mm−1,�a =0.2mm−1,g=0.85.

We compare between the total flux photon density by the ODDM and the analytical solution
based on the two different tissue models (see below Figure 3).

As shown in Figure 3, the solution of the described ODDM is identical to the analytical solution
as well. It is observed that flux decreases with the increment of the sphere radius at different
rates. Since the photon takes a longer total optical path to reach the spherical surface, the larger
radius and the stronger the absorption, the weaker the signal on the surface. The variation of the
falling rate of the flux in different tissue models is attributed to complex scattering and absorption
processes in the medium.

4.2. Inverse problem for cylinder phantom model

A cylindrical phantom 30mm in height and 10mm radius is divided into tetrahedral 288 elements
and 124 nodes, as shown in Figure 4. The phantom was homogenized with optical parameters
�s =23mm−1,�a =0.35mm−1,g=0.94 and n=1.37. We assumed that a solid spherical source
of 1mm diameter having the power of 1W is put at (−0.323096, 0.263254, 0.42990) inside the
cylindrical phantom. It includes 22 node numbers and each has the power of 0.0455W. Based
on this model, the source reconstruction was carried out by using ODDM. The relative error (re)
between the real and reconstructed source energy is defined by

re= ‖reconstucted flux−exact flux‖
exact flux

In this experiment the photon flux density � is obtained by ODDM. The advantages of ODDM
are demonstrated as follows:

First, the flux error distribution for reconstructed source is drawn up. As shown in Figure 5,
there is an excellent agreement between the real and reconstructed source energy. The relative
errors of the bulk source intensities are 0.35997, 0.23267, 0.30891 and 0.01202 when 0, 2, 4 and
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Figure 4. Finite-element meshes for modeling a homogeneous cylindrical body and a solid
spherical source: (a) cylindrical body of homogeneous optical properties and (b) solid spherical

source at the center of the cylindrical body.

Figure 5. Relative errors in terms of source intensity with (a) 0%; (b) 2%; (c) 4%; and (d) 6% noise
added to the flux data measured on the surface of the cylindrical tissue phantom.

6% random noise are respectively added to the data measured on the surface of the cylindrical
phantom.

Second, the actual reconstructed source centers and energy density for different regularization
parameter 
 is given in Table II. Here, we assume a solid spherical source of 1mm diameter having
the power of 1W was put at (−0.323096, 0.263254, 0.42990). The convergence condition is that
the total of the source density is between 0.3 and 1. 
 must be between 0.0006 and 0.00001, or
else, it cannot satisfy the convergent condition. It is easy to see that when 
=0.0008, it gives the
best reconstructed position, but has higher relative error.

Finally, the reconstructed results by FEM and ODDM, respectively, are compared. Table III lists
the numerical results.
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Table II. Comparison between the actual reconstructed source centers and energy density for different
regularization parameter 
 and initial value.


 Recons. pos Recons. density (W) re

0.0007 (0.110475, 0.993879, 0.436038) 0.393 0.607
0.0008 (−0.976364, 0.216131, 0.415819) 0.337 0.663
0.0009 (−0.166014, 0.986123, 0.876151) 0.359 0.641

Table III. Comparison with FEM.


 Recons. Pos Density (W) re

FEM 0.0007 (−0.166, 0.986, 0.876) 0.201 0.799
0.0008 (−0.976, 0.216, 0.415) 0.067 0.933

ODDM 0.0007 (0.110, 0.994, 0.436) 0.393 0.607
0.0008 (−0.976, 0.216, 0.415) 0.337 0.663

Obviously for same 
, ODDM has higher energy density and lower relative error than FEM.
Hence, ODDM is an effective method for BLT.

5. CONCLUSIONS

Domain decomposition methods are applied widely [22–25] ODDM refers to divide and conquer
techniques for solving partial different equations by iteratively defining sub-problems on smaller
sub-domains. It can handle complex and irregular geometries, singularities and anomalous regions.
We have developed a reconstruction algorithm to identify a 3D bioluminescent source distribution
by incorporating a priori knowledge, which is important and helpful to identify the source region.
The more a priori information we have, the more precise and stable BLT reconstruction becomes.
The simulation experiments have shown that ODDM is computationally efficient and fairly robust
with respect to initial distribution and permissible region size, but it is important for us to choose
an initial value for ODDM. Our future work will focus on light source reconstruction using the
parallel method.
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