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Purpose To evaluate several popular parameter

estimation methods for determining the cerebral metabolic

rate for glucose and individual kinetic rate constant

parameters in 2-deoxy-2-[18F]fluoro-D-glucose positron

emission tomography studies.

Procedures These methods can be divided into two

categories: nonlinear estimation methods and linear

estimation methods. The nonlinear estimation methods

include nonlinear least squares (NLLS), weighted

NLLS using noisy tissue time-activity data (WNLLS-N),

weighted NLLS using noise-free tissue time-activity data

(WNLLS-NF), iteratively reweighted NNLS (IRWNLLS) and

nonlinear ridge regression (NLRR) method, whereas the

linear estimation methods include Patlak–Gjedde graphical

analysis (PGA), linear least squares (LLS), generalized LLS

(GLLS), total least squares (TLS) and the basis functions

(BF) method. Simulation studies are presented.

Results and conclusion There are several findings:

(i) when the noise level is low, GLLS performs well.

However, it exhibits large bias and poor precision

especially in k�3 and k�4 when the noise level is high.

(ii) BF is a promising method with superior bias and

precision properties, and is less affected by the scan

duration used. (iii) The weighting factors in the nonlinear

estimation methods are important: a good choice of

weights can help to make the estimates more accurate and

reliable. Weighting based on noisy data should be avoided.

(iv) It confirms that PGA is little affected by noise, but the

assumptions of PGA could induce bias. It also confirms

that 60 min is not long enough to give reliable estimates

of k�4 especially for the linear estimation methods LLS, TLS,

and GLLS. Nucl Med Commun 32:4–16 �c 2011 Wolters

Kluwer Health | Lippincott Williams & Wilkins.
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Introduction
2-Deoxy-2-[18F]fluoro-D-glucose positron emission tomo-

graphy (18F-FDG PET) has played an important role in

quantitatively estimating physiological parameters of the

human brain such as the cerebral metabolic rate for

glucose (MRGlc) [1]. Measurement of these physiologi-

cal parameters can provide a clear insight into the

underlying processes in the human brain to help with a

more accurate diagnosis. Traditionally, to determine the

parameters, the acquired tissue time–activity curves

(TTACs) from a dynamic 18F-FDG PET scan and the

measured tracer concentration in blood/plasma over the

duration of the scan, are fitted to the appropriate tracer

kinetic model. The model-fitting methods to estimate

the parameters can be roughly divided into two cate-

gories: nonlinear estimation methods and linear esti-

mation methods.

The classical nonlinear estimation methods are consid-

ered to be the methods with optimum statistical accuracy

as the solution of the 18F-FDG kinetic model is nonlinear

and the fitting procedure is iterative. These nonlinear

estimation methods are based on the maximum-like-

lihood principle and use nonlinear optimization to

estimate parameter values [2]. The gold standard non-

linear estimation method is the nonlinear least squares

method (NLLS), in which the objective function to be

minimized is the residual sum of squares. Sometimes a

modified objective function is minimized, wherein each

of the squared deviations is multiplied by a weighting

factor. A proper choice of weights could emphasize

the precise parts of the data and reduce the importance

of the questionable parts of the data, thus helping to

improve the estimation accuracy. To investigate the

effect of different weights, the NLLS method, which

can be regarded as a unit-weighted method, the it-

eratively reweighted NLLS (IRWNLLS) method, the

weighted NLLS using noisy tissue time-activity data

(WNLLS-N) and the weighted NLLS using noise-free

tissue time-activity data (WNLLS-NF) were evaluated in

this study. In addition, a recently proposed nonlinear

ridge regression method (NLRR) [3,4], which makes use

of prior information by adding a penalty function to the

objective function of NLLS, was also included for

comparison.All supplementary data are available directly from the authors.
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Although in theory, nonlinear estimation methods can be

applied to obtain parametric images on a voxel-by-voxel

basis, they suffer from too much computational burden

and may be prone to trapping in local minima. Thus,

alternative methods were proposed. In the category of

linear estimation methods, the Patlak–Gjedde graphical

analysis (PGA) method [5,6] is widely used in dynamic

PET data analysis for determining the MRGlc because of

its simplicity and computational efficiency. However, it

has been pointed out [7] that the MRGlc is often

underestimated because of the assumption of an irrever-

sible model (i.e. k�4 ¼ 0). Blomqvist [8] proposed the

linear least squares (LLS) method, which was later

extended to 18F-FDG tracer by Evans et al. [9]. However,

bias exists in parameters estimated from LLS because of

the noise present in TTACs that propagates as correlated

error in the right side of the LLS equation [7,10]. To

overcome this problem, the generalized LLS (GLLS)

method [10,11] was proposed. It incorporates an auto-

regressive model for the noise into the estimation process

to turn the correlated noise into white noise, thus to

reduce the bias. The total least squares (TLS) [12]

method (also called perpendicular linear regression), in

which observational errors on dependent and indepen-

dent variables are both taken into account, has been

applied to parametric imaging in the field of nuclear

medicine recently [13–15].

Spectral analysis was first introduced in the field of

dynamic PET studies by Cunningham and Jones [16],

and was then successfully applied to many tracer studies

[17–20]. The technique uses a set of basis functions

(BF) that enables the incorporation of parameter bounds

to linearize the solution of the kinetic model. Hong

and Fryer [21] have extended this BF technique to

a two-compartment model and applied it to 18F-FDG

tracer.

In this study, the methods mentioned earlier, including

the five types of nonlinear estimation methods and the

five types of linear estimation methods, were system-

atically compared and evaluated. The aim of this study

was to further evaluate the accuracy and precision of

these methods for determining the kinetic rate constants

and the MRGlc. Only simulation studies were presented

as the true values could be obtained for accurate

comparison. Different noise levels were investigated to

evaluate the performance of each method as a function of

noise. The effects of different scanning sequences were

also taken into account.

Methods
The 2-deoxy-2-[18F]fluoro-D-glucose model

The commonly used three-compartment, five-parameter

model [1,22] is used to describe the rates of changes in

concentration in the brain:

d
dt

C�e ðtÞ ¼ K�1 Cp
�ðtÞ � ðk�2 þ k�3ÞC�e ðtÞ þ k�4C�mðtÞ

d
dt

C�mðtÞ ¼ k�3C�e ðtÞ � k�4C�mðtÞ

(

C�i ðtÞ ¼ ð1� VbÞðC�e ðtÞ þ C�mðtÞÞ þ VbC�p ðtÞ
ð1Þ

in which C�p ðtÞ;C�e ðtÞ; and C�mðtÞ, are the 18F-FDG con-

centration in plasma, the concentration of free 18F-FDG

in tissue, and the concentration of 18F-FDG-6-phosphate

in tissue. C�p ðtÞ is obtained from blood samples, whereas

the sum of the activity in the tissue C�i ðtÞ is obtained

from PETscan measurements. K�1 is the forward transport

rate constant of 18F-FDG from the plasma to the tissue,

k�2 is the reversed transport rate constant from the tissue

back to the plasma, k�3 is the phosphorylation rate

constant, k�4 is the dephosphorylation rate constant, and

Vb is the fractional blood volume of the tissue. Denote

y ¼ ½K�1 ; k�2; k�3; k�4;Vb� as the parameter set to be esti-

mated. Once the parameters are obtained, MRGlc can be

calculated by:

M RGlc ¼ Cp

LC
� K�1 k�3

k�2 þ k�3
� Cp

LC
� K ð2Þ

in which Cp is the glucose concentration in plasma. The

lumped constant (LC) is usually defined as a constant.

The noise model of tissue time–activity curves

As noise was present in the real measured PET data, a

commonly used noise model was used to simulate the

measurement noise in the simulation study. The noise

model adopted here has been used extensively by several

other researchers [7,15,23].

Here, noise was added to a simulated noise-free PET

TTAC using:

C�i ðtkÞ ¼ C�0i ðtkÞ þ sðtkÞ � Nð0; 1Þ ð3Þ

in which C�0i ðtkÞ is the simulated noise-free TTAC and

C�i ðtkÞ is the simulated noisy TTAC. N (0,1) stands for a

pseudo-random number generated from normal distribu-

tion (Gaussian distribution) with zero mean and a

standard deviation of one. The measurement noise

standard deviation (decay corrected) s(tk) is accurately

modeled using the following equation:

sðtkÞ ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C�0i ðtkÞ � e ltk

Dtk

s
ð4Þ

in which the coefficient a is a proportionality constant

that actually determines the noise level in the simulation

study, Dtk is the kth frame length, and l is the decay

constant of the isotope 18F that can be calculated from

the half-life of 18F, (t1/2), from equation l= ln 2/t1/2. In

this study, a was set to 0, 0.2, 0.4, 0.6, and 0.8, in which 0
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corresponds to no noise added and 0.4 is approximately

the clinical noise level [21].

The nonlinear estimation methods

Nonlinear least squares method

The solution of equations (1) can be derived by Laplace

transforms and further rearranged as:

C�i ðtÞ ¼
ð1� VbÞK�1
a2 � a1

fðk�3 þ k�4 � a1Þe�a1t

þ ða2 � k�3 � k�4Þe�a2tg � C�p ðtÞ þ VbC�p ðtÞ ð5Þ

where a1 ¼ðk�2 þ k�3 þ k�4 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk�2 þ k�3 þ k�4Þ

2 � 4k�2

q
k�4Þ=2;

and a2 ¼ðk�2 þ k�3 þ k�4 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk�2 þ k�3 þ k�4Þ

2 � 4k�2k�4

q
Þ=2:

Parameter estimation using NLLS requires nonlinear

regression of the objective function:

RSSðyÞ ¼
XN

k¼1

½ ~C�i ðtkÞ � C�i ðtkÞ�2 ð6Þ

in which RSS(y) stands for the residual sum of squares

between the estimated TTAC ~C�i ðtkÞ and the simulated

TTAC C�i ðtkÞ [see equation (3)]. NLLS can be regarded

as a WNLLS method with equal weights.

Weighted nonlinear least squares methods using

noise-free tissue time–activity data

In WNLLS-NF, the values of the parameters are

estimated by minimizing the objective function:

W RSSðyÞ ¼
XN

k¼1

otk
½ ~C�i ðtkÞ � C�i ðtkÞ�2 ð7Þ

in which WRSS(y) stands for the weighted residual sum

of squares. The weighting factor otk
reflects the relative

accuracy of the measurement at time tk. Here the weights

otk
are set equal to the inverse of the ideal noise variance,

that is, otk
¼ 1=sðtkÞ2, with

sðtkÞ ¼ a½C�i 0ðtkÞ � eltk=ðDtkÞ�0:5 ð8Þ

in which the C�i
0ðtkÞ is the kth simulated noise-free TTAC

[see equation (3)]. It should be noted that the weighting

factors in WNLLS-NF are calculated using the ideal

noise-free TTAC C�i
0ðtkÞ. Therefore, in theory, WNLLS-

NF can obtain the smallest variance of estimates.

Weighted nonlinear least squares method using noisy

tissue time–activity data

When the WNLLS-N method is used, the object

function is also expressed by equation (7), however, with

sðtkÞ ¼ a½C�i ðtkÞ � eltk=ðDtkÞ�0:5 ð9Þ

in which C�i ðtkÞ is the kth simulated noisy tissue time-

activity data [see equation (3)].

WNLLS-N is the most often used nonlinear estimation

method in practice. Compared with equation (4),

WNLLS-N uses the noisy TTAC C�i ðtkÞ to calculate the

noise variance to approach the ‘true’ noise variance.

Iteratively reweighted nonlinear least

squares method

In the IRWNLLS method, the objective function is also

expressed by equation (7), with the standard deviation s
calculated each time from the new estimated TTAC
~C�i ðtkÞ:

sðtkÞ ¼ a½ ~C�i ðtkÞ � eltk=ðDtkÞ�0:5 ð10Þ

The process iterates until the estimated parameter set

y ¼ ½K �1 ; k�2; k�3; k�4;Vb� converges.

Nonlinear ridge regression method

In NLRR method, the objective function is given by

Byrtek et al. [3] and O’sullivan and Saha [4]:

ON LRRðyÞ ¼ W RSSðyÞ þ tðy� mÞ0
X�1

y
ðy� mÞ ð11Þ

in which t is the ridge biasing parameter that determines

the degree of emphasis on the penalty term, m is a set of

physiologically reasonable values for y, and
P

y is a

diagonal matrix that scales the deviation of y from m.

The linear estimation methods

The Patlak–Gjedde graphical analysis method

The PGA has been developed for an irreversible model, in

which k�4 is assumed to be zero. The PGA solution to the
18F-FDG model (1) under a steady-state condition [6] is

given by the expression:

C�i ðtÞ
C�p ðtÞ

¼ K �
R t

0
C�p ðtÞdt
C�p ðtÞ

þ V ð12Þ

in which the slope K and the intercept V can be obtained

by linear regression from a graph of C�i ðtÞ=C�p ðtÞ againstR t
0

C�p ðtÞdt=C�p ðtÞ. The PGA method is easy to implement

and is computationally efficient; however, it cannot

estimate the individual rate constants, and the assump-

tion of the irreversible model may induce large bias in the

estimated MRGlc.

Linear least squares method

The solution of the 18F-FDG model (1), can be derived

by converting (1) into the following linear equation [10]:
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C�i ðtÞ ¼P1C�p ðtÞ þ P2

Z t

0

C�PðtÞdt

þP3

Z t

0

Z t

0

C�PðtÞdt2

þ P4

Z t

0

C�i ðtÞdtþ P5

Z t

0

Z t

0

C�i ðtÞdt2 ð13Þ

in which P1 = Vb, P2 ¼ ðk�2 þ k�3 þ k�4 � K �1 Þ � Vb þ K�1 ,

P3 ¼ ðk�2k�4 � K �1 k�3 � K�1 k�4Þ � Vb þ K �1 ðk�3 þ k�4Þ,
P4 ¼ �ðk�2 þ k�3 þ k�4Þ, P5 ¼ �k�2k�4. Digitize the equation

at each sample time of the tissue measurements tk (k = 1,

2,y, m), and then rearrange them into a matrix form:

y ¼ XP þ e ð14Þ

in which y ¼ ½C�i ðt1ÞC�i ðt2Þ . . . C�i ðtmÞ�T , P = [P1 P2 y

P5]T, e ¼ ½e1 e2 . . . em�T are the equation error terms, X is

the coefficient matrix:

X ¼

C�p ðt1Þ
R t1

0
C�p ðtÞdt

R t1
0

R t
0

C�p ðtÞdt2
R t1

0
C�i ðtÞdt

R t1
0

R t
0

C�i ðtÞdt2

C�p ðt2Þ
R t2

0
C�p ðtÞdt

R t2
0

R t
0

C�p ðtÞdt2
R t2

0
C�i ðtÞdt

R t2
0

R t
0

C�i ðtÞdt2

..

. ..
. ..

. ..
. ..

.

C�p ðtmÞ
R tm

0
C�p ðtÞdt

R tm

0

R t
0

C�p ðtÞdt2
R tm

0
C�i ðtÞdt

R tm
0

R t
0

C�i ðtÞdt2

2
666664

3
777775:

The solution can be obtained from:

P̂LLS ¼ ðXT XÞ�1XT y ð15Þ
Once the estimates for P̂LLS have been obtained, the rate

constants, K�1 � k�4 and Vb can be calculated by:

K �1 ¼
P1P4 þ P2

1� P1

; k�2 ¼
P1P5 þ P3

P1P4 þ P2

� P4;

k�3 ¼� ðk�2 þ k�3 þ P4Þ; k�4 ¼ �
P5

k�2
; Vb ¼ P1

ð16Þ

It has been reported that because of the presence of the

noisy term on both sides of equation (13), the errors in

equation (14) are correlated as they consist of the direct

measurement noise and integrals of the measurement

noise. Therefore, the equation errors e are not statistically

independent, which is the cause of correlated errors

leading to bias in parameter estimations [7,10].

Generalized linear least squares method

GLLS is developed to overcome the shortcoming of LLS

by whitening the correlated equation noises iteratively.

The detailed description of GLLS has been presented by

Feng et al. [7,11] and Cai et al. [10]. The solution can be

obtained by:

P̂GLLS ¼ ðXT XÞ�1XT y ð17Þ

in which

y ¼

C�i ðt1Þ þ P̂4c1 � C�i ðt1Þ þ P̂5c2 � C�i ðt1Þ
C�i ðt2Þ þ P̂4c1 � C�i ðt2Þ þ P̂5c2 � C�i ðt2Þ

..

.

C�i ðtmÞ þ P̂4c1 � C�i ðtmÞ þ P̂5c2 � C�i ðtmÞ

2
666664

3
777775;

withc1 ¼
1

l2 � l1

ðl2e�l2t � l1e�l1tÞ;

c2 ¼
1

l2 � l1

ðe�l1t � e�l2tÞ; l1 ¼ �
P̂4 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̂2

4 þ 4P̂2
5

q
2

;

l2 ¼ �
P̂4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̂2

4 þ 4P̂2
5

q
2

:

The iteration stops when the parameter estimates con-

verge. After the estimates for P̂GLLS have been obtained,

the parameter set y can be calculated using equation (16).

Total least squares method

The TLS method considers that both sides of equation

(14) have noise, and then the equation in LLS can be

refined as:
yþ e ¼ ðX þ EÞP ð18Þ

in which e and E are error matrices. The aim is to find P
that minimizes error matrices e and E for y and X,

respectively, that is, argmine;E77½e;E�77e. Using singular

value decomposition: ½ ðX þ EÞ ðyþ eÞ � ¼ ½UX Uy�
SX 0

0 Sy

� �
VXX VXy

VyX Vyy

� ��, and then the solution can be

obtained by:
P̂TLS ¼ �VXyV

�1
yy ð19Þ

X ¼

C�p ðt1Þ þ P̂4c1 � C�p ðt1Þ þ P̂5c2 � C�i ðt1Þ c1 � C�p ðt1Þ c2 � C�p ðt1Þ c1 � C�i ðt1Þ c2 � C�i ðt1Þ
C�p ðt2Þ þ P̂4c1 � C�p ðt2Þ þ P̂5c2 � C�i ðt2Þ c1 � C�p ðt2Þ c2 � C�p ðt2Þ c � C�i ðt2Þ c2 � C�i ðt2Þ

..

. ..
. ..

. ..
. ..

.

C�p ðtmÞ þ P̂4c1 � C�p ðtmÞ þ P̂5c2 � C�i ðtmÞ c1 � C�p ðtmÞ c2 � C�p ðtmÞ c1 � C�i ðtmÞ c2 � C�i ðtmÞ

2
66664

3
77775;
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Once the estimates for P̂TLS have been obtained, y can be

calculated using equation (16).

The basis functions method

The detailed description of the BF method has been

presented by Hong and Fryer [21]. In this method,

equation (5) can be rewritten as:

C�i ðtÞ ¼ ðy1e�a1t þ y2e�a2tÞ � C�p ðtÞ þ VbC�p ðtÞ ð20Þ

Through linearization of the convolution term, a set of BF

can be obtained:

BijðtÞ ¼ e�aij t � C�p ðtÞ i ¼ 1; 2; j ¼ 1; . . . ;N ð21Þ

in which N is the number of the basis functions. Then for

each basis function, the model can be rewritten as:

C�i ðtÞ ¼ y1B1j þ y2B2l þ VbC�p ðtÞ j; l ¼ 1; 2; . . . ;N ð22Þ

The parameters (y1, y2, Vb) can then be solved by using

the linear regression method for each basis function. The

parameter set with the lowest weighted residual sum of

squares is chosen as the solution. Then the rate

constants, K �1 � k�4ðk�4 6¼ 0Þ can be obtained from:

K�1 ¼
y1 þ y2

1� Vb
; k�2 ¼

y1a1 þ y2a2

y1 þ y2

;

k�3 ¼
a1a2ðy1 þ y2Þ
y1a1 þ y2a2

; k�4 ¼
y1y2ða2 � a1Þ2

ðy1 þ y2Þðy1a1 þ y2a2Þ

ð23Þ

Simulation study

The plasma time–activity curve

In the simulation study, the plasma time–activity curve

(PTAC) was modeled using the method proposed by

Feng et al. [24]:

C�p ðtÞ ¼ ½A1t � A2 � A3�el1t þ A2el2t þ A3el3t ð24Þ

in which A1, A2, and A3 are the coefficients and l1, l2, and

l3 are the eigenvalues. A typical parameter set used

here was [7]: A1 = 851.1225, A2 = 20.8113, A3 = 21.8798

(mCi/ml), l1 = – 4.1339, l2 = – 0.0104, l3 = – 0.1191 (l/min).

The delay was not modeled. We assumed that no errors

occurred in the PTAC as we focused our attention on the

effects of PET measurement noise on the various

parameter estimation methods. The sample times were

8	 15, 2	 30 s, 4, 5, 7, 10, 15, and every 10 min

thereafter.

The tissue time–activity curves

The TTACs were modeled using equation (3) with noise

variance modeled using equation (4). One set of

parameters from the literature published earlier was used

here [1,7]: K�1 ¼ 0:1020; k�2 ¼ 0:1300; k�3 ¼ 0:0620;
k�4 ¼ 0:0068 and Vb ¼ 0:058 with Cp = 91.9 mg/100 ml

and LC = 0.418. To account for the effect of different

scanning sequences, two PET scanning schedules were

simulated: 8	 15, 4	 30, 6	 60, 6	 150, 7	 300 s for

the 60 min scans [21] and 10	 12, 2	 30, 2	 60, 1	 90,

1	 210, 2	 300, 1	 600, 3	 1800 s for the 120 min

scans [7].

Configuration and evaluation criteria

In all nonlinear estimation methods, the lower bound and

upper bound constraints were: LBy = [0.01, 0.01, 0.001,

0.001, 0.001] and UBy = [2.0, 1.0, 1.0, 0.1, 0.1]. The

initial values for all the nonlinear estimation methods

were obtained using LLS. For all cases, fmincon from

MATLAB was used to minimize the objective functions.

In IRWNLLS, the number of reweighting iterations was

set to a maximum of 20. In NLRR, m was set to the true

parameter values and t was estimated by a plug-in

strategy [4], that is, t ¼ pŝ2=77½ŷð0Þ � m�772, where

ŝ ¼ 1=ðN � pÞW RSS½ŷð0Þ�, in which ŷð0Þ is the LLS

estimate, p is the number of estimated parameters. The

matrix
P

y was estimated using: S�1
y ¼ nj=mj , in which nj

and mj is the coefficient of variation (CV) and the mean

taken over a number of patients from Dr Spence’s

laboratory [4].

In the category of linear estimation methods, the PGA

method uses TTACs from 20 min onwards to fit

transformed data to a line. For the GLLS method, the

initial values were from the estimates using LLS, and

only two iterations were implemented, as in most cases

(more than 80%) two iterations were enough to converge,

which is consistent with that of Feng et al. [7]. In BF, the

ranges of physiological values used for a1 and a2 are: 100

logarithmically spaced a1A[0.0005, 0.015]/min and

a2A[0.06, 0.6]/min [21].

In this study, box plots were used to show the distribution

of parameters estimated from these different methods.

The box plots depict the data through four statistical

measures: the median (50th percentile of the data), the

upper (75th percentile of the data) and lower (25th

percentile of the data) quartiles and the outliers beyond

1.5 times interquartile range (IQR, i.e. 25–75th percen-

tile of the data) in each direction. The box plots can

provide simply but directly a graphical summary of the

location and dispersion of the data. For better under-

standing of the data, accuracy and precision of the

estimates obtained by each analysis method were also

provided for comparison. Percentage bias for each

parameter was calculated to evaluate the accuracy of

the estimates, with Bias ¼ ð1=MÞSM
i¼1ðpi � poÞ=po � 100%,

in which M is the number of realizations, pi is the

estimated parameter value, and po is the corresponding

true parameter value. The CV of the estimates was

calculated to describe the precision of each method as a

function of noise. CV is the ratio of the standard deviation

to the mean, that is, CV = s/m. CV is a normalized

measure of dispersion of a variable that does not depend
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on the variable’s measurement unit. The higher the CV

the greater the dispersion in the variable. Moreover, the

average running time t for each method was calculated for

comparison of computational efficiency.

For each noise level, 1000 realizations were run. Then

these simulated data were fitted using these parameter

estimation methods and criteria were calculated. All the

calculations are run on a Windows-PC with an Intel

Pentium4 3.4GHz processor (Santa Clara, California,

USA) and a 2-gigabyte physical memory.

Results
Figures 1a–f and 2a–f show the box plots and the plots of

the percentage bias versus CV of K�1 ; k
�
2; k�3; k

�
4; Vb and

MRGlc estimates obtained from the different methods at

different noise levels. The scanning length is 120 min.

Figures 3a–f and 4a–f show the results corresponding to

the 60 min scan. As only MRGlc can be estimated for the

PGA method, the individual rate constants are not available

in the figures. In the box plots, the horizontal axis

corresponds to the noise levels and the vertical axis

corresponds to the parameter values. The individual boxes

Fig. 1
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have lines at the lower (25th percentile of the data),

median (50th percentile of the data, indicated by a

horizontal line within the box), and upper quartile values

(75th percentile of the data). Thus, the box indicates

where the middle 50% of the data are located. The

whiskers extend from the ends of the box to the most

extreme value with 1.5 times IQR in each direction. The

estimates beyond the whiskers are marked by ‘ + ’. The

true values for each parameter are also plotted for better

comparison. In the plots of the percentage bias versus CVs,

the horizontal dashed line in each subfigure indicates zero

bias. The farther the points to the dashed line or the larger

the CV values, the more biased or the less precise the

estimation method would be. A good estimation method

would have its point pairs (percentage bias, CV) around the

origin (0,0) as close as possible.

In this study, the effect of different scanning schedules

(120 min scan and 60 min scan) was investigated. From

the results, generally the estimates obtained from each

method with the 120 min scan are more accurate than

those with the 60 min scan, especially at the high noise

level. Linear squares methods (LLS, TLS, and GLLS)

tend to be more easily affected by scanning lengths than

the other methods. Moreover, the results also indicate

that the precision of k�4 is very poor with the 60 min scan,

especially when estimated by linear squares methods

(Figs 3d and 4e). The observation that k�4 may not be

determined reliably with the 60 min scan is consistent

with earlier reports [25–27].

In Figs 1 and 3, when the data is noise free, all methods

except PGA, LLS, and TLS show low bias as the

estimates from these methods are very close to the true

parameter values. Consistent with the observation in the

literature published earlier, the assumption of k�4 ¼ 0

introduces bias for the PGA method [22,28]; it under-

estimates (Fig. 1f, 14.5% for 120 min) or overestimates

(Fig. 3f, 7.8% for 60 min) the MRGlc. LLS and TLS

overestimate all parameters (except k�4 in Fig. 1d) in both

the cases, suggesting that when solving nonlinear

problems in the linear squares sense, bias exists even

Fig. 2
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when fitting the noise-free data. GLLS and BF achieve

lower bias (a small negative bias from – 0.2 to – 1.2% for

each parameter) and higher precision than LLS and TLS

at the lowest noise level. All nonlinear estimation

methods tend to provide accurate estimates for each

parameter.

At increasing noise levels, all methods tend to have poorer

precision compared with their low noise level cases, as all

the IQRs are increasing as shown in Figs 1 and 3. PGA is

considered as the most stable method as its precision is

little affected by noise, however, still with approximately

8–15% bias (Figs 1f, 2a, 3f and 4a). BF performs best in

the category of linear estimation methods and even

outperforms NLLS and WNLLS-N not only in its lower

bias but also in its better precision (Figs 2 and 4). GLLS

performs better than LLS and TLS at the low noise level;

however, it exhibits large bias when the noise level is high

especially in determining k�3 (45% for 60 min) and k�4
(42% for 120 min and even exceeded 200% for 60 min)

(Figs 2d, e, 4d, e). LLS and TLS do not show regular

improvement or deterioration in the accuracy of estimates

with increasing noise levels. In the nonlinear estimation

methods, NLRR shows the best bias and precision

Fig. 3
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properties, whereas WNLLS-N shows the poorest proper-

ties with increasing noise levels. WNLLS-NF and

IRWNLLS provide more reliable results than NLLS.

This indicates the importance of the choice of weighting

factors in the nonlinear estimation methods. As the gold

standard method, NLLS exhibits low bias at the low

noise level, but high bias and poor precision at the

middle–high noise levels; for example, bias range of k�3 is

2.6–14.2% for 120 min and 5.6–29.6% for 60 min, and

range of k�4 is – 2.9 to – 9.9% for 120 min and – 3.5 to

10.3% for 60 min; CV values range of k�3 is 38.1–72.7% for

120 min and 44.4–86.6% for 60 min, and of k�4 is 27.2–

50.1% for 120 min and 81.9–121.3% for 60 min.

For MRGlc in Figs 2a and 4a, the MRGlc estimates from

the linear estimation methods, except BF, tend to be less

accurate than those from the other methods; for K �1 in

Fig. 2b and Fig. 4b, LLS, TLS, NLLS, and WNLLS-N

show more bias than GLLS, BF, WNLLS-NF, IRNLLS,

and NLRR; for k�2 in Fig. 2c and Fig. 4c, LLS, TLS,

and NLLS generally exhibit larger bias; for k�3 and k�4 in

Figs 2d, e, 4d, e, LLS, TLS, GLLS, and WNLLS-N tend

to be more biased, with bias even exceeding 200% for k�4
at noise level 0.6 and above with the 60 min scan

(Fig. 4e); for Vb in Figs 2f 4f, LLS, TLS, and WNLLS-

N exhibit higher bias than the other methods.

Figure 5 shows the average running time for each analysis

method at the different noise levels. As the running time

for the 120 min scan is almost the same as that for the

60 min scan, only one case is shown here. From the

results, IRWNLLS was most time consuming (1–2 s), as

it needed to iteratively adjust the weighting factors

and fit the model. The time complexities of NLLS,

WNLLS-N, and WNLLS-NF are in the same order of

magnitude (0.6–0.8 s). GLLS and BF show slight super-

iority in running time (0.2–0.4 s) than the nonlinear

estimation methods; however, they are more time

consuming than the other linear estimation methods

such as PGA, LLS, and TLS (0.005–0.007 s).

In general, most of the linear estimation methods are

found to be more computationally efficient, whereas most

of the nonlinear estimation methods tend to achieve

Fig. 4
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better accuracy. In the category of linear estimation

methods, BF is the most promising method at the

tradeoff between computational cost and estimation

accuracy and precision. Moreover, BF is less influenced

by the scan duration used. In the category of nonlinear

estimation methods, from the perspective of accuracy and

precision, the order of these methods (from best to

worst) is NLRR, WNLLS-NF, IRWNLLS, NLLS, and

WNLLS-N. However, as NLRR and WNLLS-NF use the

true parameter values and the true noise variance as prior

information that makes them impractical in clinical

studies, and IRWNLLS is excessively time consuming,

NLLS may be the most suitable method. When

comparing BF with NLLS, it is shown that BF performs

better than NLLS in terms of its statistical reliability

and computational efficiency. Thus, if reliable parameter

bounds (that can be determined from earlier studies) are

known, then BF is the most preferred method.

Discussion
In dynamic 18F-FDG PET imaging, several approaches to

determine kinetic parameters have been proposed con-

tinuously in recent years. Some researchers have also

evaluated some methods used in dynamic 18F-FDG PET

imaging [2,7,29,30]. However, these historical evaluations

were not investigated under the same configuration, and

some conclusions have led to some confusion in whether

or how to best apply these methods. Moreover, only a

subset of these estimation methods was included in each

historical evaluation, and some recently proposed meth-

ods were not included for comparison. For example, Feng

et al. [7] did not include the cerebral blood volume effect

in the pharmacokinetic model, whose necessity has been

shown by Lammertsma et al. [31] when the individual

rate constants were to be determined, and they declared

the superiority of GLLS; Muzic and Christian [2] focused

their attention on evaluating objective functions used in

iterative nonlinear estimation methods, and questioned

the appropriateness of using GLLS in parametric

imaging. In this study, several popular existing and newly

developed linear and nonlinear estimation methods were

systematically compared and evaluated in terms of their

statistical reliability and computational efficiency under

the same configuration while trying to clarify these

confusions. The performance advantages and disadvan-

tages of these methods were shown. Only simulation

studies were presented as the true parameter values

are known for accurate comparison. To better under-

stand the results, besides the parameter set used for

simulation in this study, we also tested another commonly

used parameter set [22]: K �1 ¼ 0:0540; k�2 ¼ 0:1090;
k�3 ¼ 0:0450; k�4 ¼ 0:0058; and Vb ¼ 0:025. Similar results

to those in this study were observed. The results are

given in the supplementary figures.

In the category of linear estimation methods, PGA is

found to achieve the best precision, however, to be

markedly biased. The reason for its good precision is that

fitting the PGA curve is restricted to the latter linear

part of the curve (from 20 min onwards), which is less

influenced by noise thus reducing the CV values. When

applying PGA, two assumptions are made. First is

complete equilibration between the tracer in the tissue

and plasma, and second is the absence of metabolic

product loss during an 18F-FDG scan (i.e. k�4 ¼ 0).

Violation of any assumption may cause nonlinearity of

the curve. As the rate of dephosphorylation of 18F-FDG -

6-phosphate (k�4) is included and assumed to be fixed in

this study, the PGA plot tends to slightly curve down-

wards in the end, which results in bias. The use of a Vb

correction within the kinetic compartmental model may

be another reason for the bias of the PGA method. An
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appropriate and careful choice of the time intervals after

sufficient tracer equilibration and before significant

product loss occurs, may reduce the possible bias, as

shown in the literature publishes earlier [32,33]. For

example, in the 120 min scan, restricting the upper time

limit from 120 to 90 min would reduce the bias from

10–15% to 2.5–4.0%.

LLS performs better than TLS. However, both of them

tend to be easily affected by scan length and noise.

Estimates with the 60 min scan show larger bias than

those with the 120 min scan, especially for k�3 and k�4. On

account of this, in this study, we do not recommend

LLS and TLS to be applied when short scan durations

are used. Bias was observed even when fitting noise-

free data using these two estimation methods, likely

because linearization may induce some bias and the

existence of numerical error may also induce bias.

Although LLS and TLS do not show superiority in

terms of accuracy and precision when compared with

the nonlinear estimation methods, they have absolute

superiority in terms of computational speed. Thus,

they might be preferred for generating parametric

images on a voxel-by-voxel basis. Combining LLS or

TLS with some constraints, such as clustering [34], ridge

regression with spatial constraints [35] or other noise

reduction strategies, will possibly remove part of the bias

and improve the quality of the parametric images

generated.

GLLS is a controversial method because of some incon-

sistent conclusions in earlier studies. There are several

reports on the superiority of GLLS as ‘an unbiased,

computationally efficient algorithm’ [7,11,36,37], where-

as there are also some disagreements on the use of this

method. Muzic and Christian [2] compared GLLS with

other methods saying GLLS exhibited large bias even

when fitting noise-free data ‘bringing into question the

appropriateness of using this method for parametric

imaging’. Negoita and Renaut [38] discussed the conver-

gence of GLLS and concluded that GLLS did not always

converge to solve the nonlinear problem. In the study,

GLLS outperforms LLS and achieves as low bias and high

precision as the nonlinear estimation methods when the

noise level is low, confirming that introducing an auto-

regressive filter in GLLS does help to improve the

estimation accuracy, which is consistent with the

observations of Feng et al. [7] in 18F-FDG PET studies

and Boellaard et al. [17] in 15O-water PET studies.

However, when the noise level is high, it exhibits large

bias for each parameter (negative bias for K �1 � k�4 and

MRGlc, and positive bias for Vb), especially for k�3 and k�4.

The reason for its large bias at a high noise level may be

that the noise would make iterative GLLS converge to a

wrong solution, and whitening the correlated equation

noise in LLS is not enough to overcome the detrimental

effect of noise. Moreover, GLLS does not show obvious

superiority in running time compared with nonlinear

estimation methods. The computational cost of GLLS

depends on the number of iterations. In this study, only

two iterations are used as described by Feng et al. [11]. In

each iteration, the discrete convolutions need to be

calculated, which leads to resampling and interpolation of

TTACs and PTAC, which makes GLLS much more time

consuming. In general, if one wants to use GLLS to

determine kinetic parameters, noise reduction strategies

should be used to reduce the effect of noise, otherwise

GLLS may not significantly reduce bias compared with

LLS.

BF is a promising method that shows relatively low bias

and high precision at each noise level. It outperforms all

the other linear estimation methods and even performs

better than the standard nonlinear estimation method

NLLS. This finding is consistent with that of Hong and

Fryer [21], who proposed this method and showed its

superiority in both simulated and clinical studies. The

majority of its computational cost is in the predefinition

of the BF (10 000 BF in this study) that only need to

be run once. Thus, the average running time would be

reduced with the decreasing number of BF or increasing

number of voxels to be processed. Therefore, BF is

suitable for generating parametric images on the voxel-

by-voxel basis. However, the parameter bounds used to

construct BF may bring risk of bias. If the true parameter

values are not included in the range of physiological

values, which may happen in some abnormal tissue cases,

large bias would arise. This possible disadvantage may

partly be avoided by using a larger range of physiological

values at the cost of increased running time. Thus, one

should investigate this possible disadvantage of BF when

applying it in individual applications.

In the category of nonlinear estimation methods, NLRR

achieves the best precision. It is easy to understand as

NLRR uses the true parameter values as prior informa-

tion to construct the penalty function. The higher the

degree of reliance to place on the penalty function, the

more precise the estimated parameters would be. In this

study, the reliance estimator t is determined by a plug-in

approach that proves to be efficient in this simulation

study. However, as the true parameter values are un-

known in practice, average parameter values obtained by

applying NLLS on the smoothed images [3,4] are always

used instead as prior information to construct the penalty

function. This treatment improves the estimation preci-

sion compared with NLLS; however, it also has risks as

the performance of NLRR relies on the NLLS estimates

that could be biased. The greater the emphasis on prior

knowledge, the more biased the NLRR estimates would

be. Moreover, in such a case, the running time would be

doubled as the NLLS is prerun to get the initial values.

For other nonlinear estimation methods, the most

commonly used WNLLS-N performs the worst in all

criteria. WNLLS-NF and IRWNLLS are always reliable at
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each noise level, whereas NLLS gives acceptable

performance. This indicates the importance of the choice

of weighting factors. Weighting based on noisy experi-

mental data should be avoided. Although the real noise-

free data cannot be obtained in practice, IRWNLLS

provides a method to iteratively approach the real noise

variance to obtain the smallest variance of estimates.

From the plots of percentage bias versus CVs, when

the noise level is low, WNLLS-N, WNLLS-NF, and

IRWNLLS have similar precision, suggesting that the

noise in the data is too small to make any difference to

the weighting factors to affect their performance. Mean-

while, the NLLS estimates have greater dispersion than

these methods at the low noise level, suggesting that

appropriate weighting could reduce the possibility of

estimates being trapped in local minima and make the

estimates more accurate. However, when the noise level

is high, the WNLLS-N estimates have the largest bias

and poorest precision in most cases, suggesting that when

the data is noisy, inappropriate weighting is even inferior

to uniform weighting. It is also suggested that if the noise

variance is unknown in clinical applications, then NLLS

is the best choice. The observation is consistent with

that of Thiele and Buchert [39] in 11C-( + )McN5652,
11C-DASB, and 11C-raclopride PET studies with the

simplified reference tissue model.

Conclusion
In conclusion, there are several findings: (i) when the

noise level is low, GLLS can achieve as low bias and high

precision as the nonlinear estimation methods, but when

the noise level is high it exhibits large bias especially

in determining k�3 and k�4. In addition, GLLS does not

show an obvious advantage in running time. (ii) BF is a

promising method with superior bias and precision pro-

perties, and is less affected by the scan duration used. It

is suitable for determining kinetic parameters at the voxel

level. PGA and LLS can be used to generate parametric

images on a voxel-by-voxel basis because of their

computational efficiency. However, if accurate estimates

for all parameters are required, then BF is preferred at the

cost of relatively increased computational time. (iii) The

weighting factors in the nonlinear estimation methods are

important because a good choice of weights can help to

make the estimates more accurate and reliable. Weighting

based on the noisy data should be avoided. If the noise

variation is unknown, then NLLS is the recommended

method. (iv) This study confirms that PGA is little

affected by noise, but the assumptions of PGA could

induce bias. It also confirms that 60 min is not long

enough to give reliable estimates of k�4 especially for linear

squares methods LLS, TLS and GLLS.
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