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Abstract—Retinal image registration is crucial for the diagnoses
and treatments of various eye diseases. A great number of meth-
ods have been developed to solve this problem; however, fast and
accurate registration of low-quality retinal images is still a chal-
lenging problem since the low content contrast, large intensity vari-
ance as well as deterioration of unhealthy retina caused by various
pathologies. This paper provides a new retinal image registration
method based on salient feature region (SFR). We first propose
a well-defined region saliency measure that consists of both local
adaptive variance and gradient field entropy to extract the SFRs
in each image. Next, an innovative local feature descriptor that
combines gradient field distribution with corresponding geometric
information is then computed to match the SFRs accurately. After
that, normalized cross-correlation-based local rigid registration is
performed on those matched SFRs to refine the accuracy of lo-
cal alignment. Finally, the two images are registered by adopting
high-order global transformation model with locally well-aligned
region centers as control points. Experimental results show that
our method is quite effective for retinal image registration.

Index Terms—Retinal image registration, salient feature region
(SFR).

1. INTRODUCTION

ETINAL image registration is crucial for ophthalmolo-

gists to diagnose various diseases. Retinal images contain
valuable local and temporal information of the retina, and they
may be taken at different time or with different perspectives. By
accurate registration, ophthalmologists could make better diag-
noses and treatment plans for various eye diseases, including
age-related macular degeneration,degenerative myopia, glau-
coma, and diabetic retinopathy [1], [2]. However, accurate and
fast registration of retinal images is still a challenging problem
since the low content contrast, large intensity variance as well
as various pathologies caused deterioration in some low-quality
retinal images. In recent years, a great number of methods have
been proposed to solve this problem. Generally, these methods
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can be classified into two categories: intensity-based methods
and feature-based methods.

A. Intensity-Based Approaches

The intensity-based approaches optimize a similarity measure
based on intensity difference, cross correlation, gradient corre-
lation, or mutual information [3] of the images [4]. It is crucial
to define an optimal similarity measure to guarantee that the
best similarity measure is reached when two images are accu-
rately aligned. Furthermore, an effective optimization strategy
is also very important to find the global optimum. Matsopoulos
et al. used simulated annealing and genetic algorithm to opti-
mize the object function based on the intensity difference of
the segmented retinal images [5]. For retinal images with size
of 512 x 512, their method needs 4.5 min. In the method of
Ritter et al. [6], mutual information combined with simulated
annealing was used to align stereo and temporal retinal images.
In addition, pyramid-sampling-based reannealing search tech-
nique was adopted to reduce the runtime. Still, their method
needs dozens of seconds. Skokan et al. also used mutual infor-
mation as matching criterion [7], and a major drawback of their
method is the high computation burden that restricts its practi-
cability. Generally, the optimization procedure will take a long
time, and the situation should get worse if higher order trans-
formation model is adopted. The expensive computational cost
has become a bottleneck that limits further clinical application
of intensity-based approaches. Additionally, the intensity-based
methods need to incorporate the whole image information to
calculate global image similarity measure. The performances of
these methods are closely related to the background changes, im-
age quality as well as initial misalignments. If there exists large
intensity variance, or the overlap region is not large enough, the
intensity-based methods may fail in these cases.

B. Feature-Based Approaches

Feature-based methods extract the features of retinal image
first, such as vascular bifurcation points [8], the whole vascula-
ture [9], optic disk [10], fovea [11], and feature points extracted
by point detectors [12], [13]. Following the feature extraction,
an objective function based on the correspondences of these
extracted features is optimized to find the best transform pa-
rameters. Currently, most feature-based approaches are based
on vascular features. Stewart et al. [8] used vascular bifurca-
tion points and intersection points as landmark points, the dual-
bootstrap iterative closest point (Dual-Bootstrap ICP) algorithm
was then adopted to expand the region and refine the trans-
formation model. In [14], the whole vascular tree is extracted
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Fig. 1. Low-quality retinal images taken with large intensity variance and
vasculature deterioration. It is hard to find enough stable accurate features for
conventional vasculature feature-based methods.

for image registration. Compared to intensity-based methods,
feature-based methods are faster and more robust to intensity
variance and small overlap region thus have been widely used
in clinical application.

However, accurate extraction of vasculature itself is a time-
consuming step. In the method of Sofka and Stewart [9], it needs
about 10-30 s to extract the vasculature of a retinal image with
size of 700 x 605. Besides, accurate vascular feature extraction
is also a challenging task for some low-quality images. In the
presence of various pathologies and great background changes,
the vascular features can vary dramatically across individual
images. As shown in Fig. 1, there are severe intensity variance
and vasculature deterioration between the two images. It is really
hard for conventional vascular feature-based method to extract
sufficient features for correspondence matching to guide the
registration.

Scale invariant feature transform (SIFT) [13], [15] is now
widely used in computer vision to extract stable feature points
that are invariant to image rotation and scaling transformation.
However, SIFT is not invariant to intensity variance. We find
that SIFT fails to find stable matches between the two images,
as shown in Fig. 1. In addition, SIFT also needs about 10 s to
extract the feature points for a single retinal image with size
about 1548 x 1260, which is still a little time consuming for
practical application. Yang et al. proposed a Generalized Dual-
Bootstrap Iterative Closest Point (GDB-ICP) method to register
those challenging image pairs based on SIFT key points [16].
First, corner and face points are extracted using a weighted
neighborhood outer product matrix criterion, which is similar
to Harris corner detector. Then SIFT key points are matched to
generate initial transform estimations, and each estimation is re-
fined using the Dual-Bootstrap ICP algorithm. GDB-ICP is very
effective for the registration of challenging image pairs. How-
ever, we find that GDB-ICP may cost too much time for aligning
some extreme image pairs. Furthermore, it also fails to register
some low-quality retinal images, as shown in Fig. 1, due to the
lack of enough good matches. Tsai et al. [17] added an edge-
driven item to GDB-ICP (ED-DB-ICP) to register multimodal
retinal images. ED-DB-ICP is very effective for fluorescein an-
giography (FA) images; however, its performance is not optimal
for IR images. Since ED-DB-ICP need additional edge-driven
computation and transformation refinement, the runtime of ED-
DB-ICP is even worse than that of GDB-ICP.
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Fig. 2. Flowchart of SFR method. Our SFR method includes three sequential
steps. Step 1: SFR extraction. Step 2: coarse to fine SFR matching. Step 3: local
to global registration.

In this paper, we propose a new retinal image registration
method based on salient feature region (SFR) to deal with low-
quality retinal images. In order to extract SFRs that are robust
to intensity variance, background changes as well as patholo-
gies, we first define an effective region saliency measure, which
integrates both local adaptive standard deviation and gradient
field entropy. Next, the SFRs are extracted and matched using
an innovative local feature descriptor that comprises gradient
field distribution and geometric information. Then, we employ
local rigid transformation model for accurate SFRs matching
and outliers eliminating. Finally, high-order global transforma-
tion model is adopted by using locally registered region centers
as control points. We have tested our method with 43 pairs of
real retinal images. Experimental results demonstrate that our
method is very fast and accurate and is quite effective for low-
quality retinal image registration.

The following part of this paper is organized as follows: the
flowchart of our SFR method is shown in Fig. 2, the details of
our method are described in Section II, experimental results and
analyses are given in Section III. Finally, Section IV is the brief
conclusion of this paper.

II. METHODS
A. Previous Related Work

Although both vascular features and feature point detectors
are sensitive to large intensity variance and pathologies, there are
still some SFRs that are prominent in both images. Intuitively,
the SFRs can be considered as the regions with complex content,
such as the areas with dense vasculature distribution and the
areas that contain more local structural information. If the SFRs
are accurately extracted and matched, the two images will be
well aligned.
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The SFR extraction is the fundamental step in our method. It
is crucial to define a good region saliency measure that is robust
to background changes, intensity variance, and pathologies in
the retina. Kadir and Brady [18] and Huang et al. [19] have
done much valuable work in this area. Kadir proposed a region
extraction criterion based on entropy information. Huang et al.
extended Kadir’s work to image registration, and their experi-
mental results showed that image registration based on salient
regions is feasible. However, its runtime is still less than satisfac-
tory due to the high computation burden caused by exhaustive
searching over 3-D image space.

B. Salient Feature Region Extraction

Inspired by Kadir’s method, we consider that the retinal region
saliency can be described in the following two aspects: local
intensity variance saliency and local structural saliency. For
intensity variance saliency, the coefficient of variation [20] is
an effective evaluation criterion. We denote this local intensity
variance saliency of region R as adaptive variance (Av(R)),
defined as follows:

Av(R) =2 ()

where o is the standard deviation of R and ¢ is the mean value
of R. The Av(R) characterizes the intensity variance saliency
of region R and guarantees the invariability of SFRs to local
linear scale change in pixel intensities.

As for local structural saliency, we consider that the main
local structural information can be described as the set of struc-
tural edges. This is especially meaningful for retinal images
because the main structures in the retinal images are vessels,
optic disk, fovea, and other structures that can be interpreted as
the combination of edges. According to information theory [21],
entropy is appropriate for measuring local structural saliency. In
order to avoid the time-consuming accurate segmentation, we
use local gradient field entropy instead.

In our method, the 2-D direction angle [—7/2, 37/2) is di-
vided into 36 bins uniformly. For a given pixel X, the index
of 2-D direction angle is denoted as direction(Xj;), it can be
computed as follows:

- {arctan(gggé) +/ ﬂ 9:(Xi) = 0
direction(X;) = arctan(g(X;)) + 37/2
’7 271'/7;36 —‘ gr(X7) <0

2
where [-] denotes the ceil operator' and g(X;) = (g.(X;),
gy (X)) denotes the gradient vector of pixel X;. Our local gra-
dient field entropy of region R, denoted as Lge(R), can be
computed as follows:

36
Lege(R) = — > _pi(R)log, pi(R) 3)
i=1

I'The ceil operator [] gives the smallest integer i € Z not less than 2

Fig.3. Comparative figure of fitted local saliency measure (7) with the image,
as shown in Fig. 1. (a) With adaptive variance. (b) Without adaptive variance.
Saliency measure with adaptive variance has small value in background areas
and is more distinctive, while saliency measure without adaptive variance has
high value in background areas and is less distinctive.

where
fR |9(Xi)|dXi
((R) = 4
and
R; = {X;|X; € R Adirection(X;) = i}. (5)

Magnitude weighted strategy is adopted to reduce the unstable
effect of pixels with low gradient magnitude, which are more
easily to be influenced by intensity variance and background
changes. Combining adaptive variance with local gradient field
entropy, our local saliency measure of region R can be formu-
lated as Ls(R), which is given as follows:

Ls(R) = Av(R)Lge(R). (6)

A comparison of our fitted local saliency measure [refer to (7)]
with and without adaptive variance term is shown in Fig. 3. As
shown in the figure, saliency measure without adaptive vari-
ance term has high value in the background areas. In contrast,
saliency measure with adaptive variance is more distinctive be-
tween structures, thus it will be more robust to perturbation.
This property enables our saliency measure to perform better
in case of background changes and pathologies. A comparative
experiment is done to evaluate the performance of our local
saliency measure with and without adaptive variance term. The
detail results are summarized in Table I.

We adopt an effective subregion expansion strategy to extract
SFRs. The whole procedure of our SFR extraction is illustrated
in Fig. 2. The major steps can be summarized as follows:

1) Subregion Division and Local Saliency Computation: We
first divide the whole image into M x N square subregions to
avoid exhaustive searching over whole image domain. Empiri-
cally, the size of subregion was set about ten in order to capture
small salient regions while maintaining statistical significance.
To reduce computational complexity of our algorithm, a subre-
gion average value threshold of 20 combined with the adaptive
variance threshold of 0.04 is applied to exclude the background
subregion. In addition, a prominent gradient direction above
0.1 is another requirement to exclude the subregion with little
structural information. Subregion that satisfies these conditions
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TABLE I
EXPERIMENT RESULTS OF REGION MATCHING PERFORMANCE WITH AND WITHOUT ADAPTIVE VARIANCE

Avg. Coarse Mat. Num.

Avg. Fine Mat. Num.

Avg. Accurate Mat. Num. | Avg. Accurate Rate

Fls_Av(R) 6755 234

15.6 66.7%

Fls_NoAv(R) 7014.6 9.3

3.2 34.4%

Fls_Av(R) denotes the fitted local saliency measure with adaptive variance term and Fls_NoAv(R) denotes the fitted local
saliency measure without adaptive variance term.

Fig. 4. Compare figure of local saliency measure with the image, as shown in
Fig. 1. (a) With Gaussian fitting. (b) Without Gaussian fitting.

is labeled as an SFR candidate. The local saliency Ls(R) of
subregions are then computed according to (6).

2) Fitted Local Saliency Computation: Generally, there would
be apparent discontinuity and local singular points in local
saliency measure function Ls(R), which may affect the accu-
racy of the SFR extraction. Therefore, we use a Gaussian fitting
method to compute the fitted local saliency measure Fls(R),
which is defined as follows:

sp~ (0= (b=0)")/(20) 7y

where R,, means the subregion with coordinate (a,b) in the
MxN subregion array. We select o = 1.5 as the tradeoff pa-
rameter between central subregion saliency and neighborhood
saliency. Compared to Ls(R), Fls(R) is more smooth and con-
tains the information from the neighborhood regions, thus it
could provide more robust and salient descriptions for local
feature. Fig. 4 gives an intuitive comparison between Ls(R)
and Fls(R). We can see that there are significant discontinuity
and a great many singular points in Ls(R), which will greatly
reduce following region matching performance for low-quality
image pairs. A comparative experiment is done to evaluate re-
gion matching performance between Ls(R) and Fls(R). The
detail results are summarized in Table II.

3) Fls Local Maximum Determination and Subregion Ex-
pansion: The local maximum of Fls(R) is then selected as the
central SFR subregion. Next, we need to determine the final size
of SFR. If SFR is too small, it will contain little information,
which may degrade SFR matching performance. Otherwise, if
the radius is too large, then SFR will overlap too much within
each other and the distinctiveness of SFR will be weaken. In our
method, we adopt a subregion expansion method to determine
the final SFR size. Starting from the original central subregion,
SFR expands isotropically in the M x N subregion array to find

the largest square subregion array €2 as follows:

Fls(R;;) > AFls(R.) VR €Q ®)

where R, stands for original central subregion, and A € [0, 1]
is a region expansion control parameter. In our experiment, we
set A = 0.75 by experimental observation. The inscribed circle
area of () is then selected as the semifinished SFR, which is
invariant to image rotations. The final SFR denoted as R; is
determined by expanding the radius of semifinished SFR to two
times of the original. By taking this step, the local salient area
are enlarged to incorporate more local information, which will
be more distinctive for following SFR matching while keeping
the SFRs in the same relative sizes. Fig. 5 gives an example
of the SFRs extracted from the retinal image pair, as shown in
Fig. 1.

C. Salient Feature Region Description and Matching

Based on the characteristics of retinal images, we propose
an innovative feature descriptor with corresponding evaluation
criterion as well as an effective coarse to fine matching strategy
to match the SFRs. In the following, we will present the SFR
matching algorithm in details.

1) Local Feature Descriptor: Local feature descriptor can
either be content based, such as SIFT, PCA-SIFT [22], and
SUREF [23] or local relationship based that contains geometric
information and topological information [8]. Recently, SIFT,
PCA-SIFT, and SURF have been widely used and gain great
success. These descriptors are mainly constructed based on
probability distributions and could be less effective when en-
countered the regions with similar probability distributions but
different geometric features. Thus, we propose a local feature
descriptor that combines both gradient field distribution and cor-
responding geometric distribution. For an SFR denoted as Rj,
our 72-dimension local feature descriptor Lfd(R;) is defined
as follows:

Lfd(Rs) = (pw1(Rs), -, Pwse(Rs)
dai(Ry), ..., dags(Ry)) (9)
and
_ S (- 1X = X P /r?)|g(XG)] dX;
Jr, (1= [X = Xc|?/r?)]g(X)]dX

Puwi (Ré ) (10)
where p,;(Rs) is an inverse square distance weighted gradi-
ent magnitude distribution, X is the central point of R, r is
the radius, Ry, is the point set with direction ¢, and da; (Ry)
is the direction angle from X to the geometric center of R;.
The first 36-dimension component describes the gradient field
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TABLE II
EXPERIMENT RESULTS OF REGION MATCHING PERFORMANCE WITH AND WITHOUT GAUSSIAN FITTING
Avg. Coarse Mat. Num. | Avg. Fine Mat. Num. | Avg. Accurate Mat. Num. | Avg. Accurate Rate
Fls(R) 3118.3 279 20.8 74.6%
Ls(R) 80430.8 29.6 16 54.1%

Fls(R) denotes the local saliency measure with Gaussian fitting and Ls(R) denotes the local saliency measure
without Gaussian fitting.

Fig. 5. SFRs extracted from the image pair, as shown in Fig. 1. The regions
with white circle are extracted SFRs that usually contain complex image content.

s T Pui2Rs) p ((Rs
ANE 2 e x> Y
NIl 2
2
NN
N Vi
JisHL I
7N l P

dag(Rs)

(a) ©)

Fig.6. Exampleof L fd(R;) construction. (a) Local gradient field distribution
of an SFR, where X is the SFR center, the dotted line stands for pixel with the
third direction, and X (3 is the geometric center of 1?3 . (b) First 36 components
of Lfd(Rys), the segment length stands for probability of corresponding point
set. (¢) Second 36 components of L fd(Rs), the angle of each segment stands
for corresponding direction angle.

distribution of R, and the second 36-dimension component rep-
resents corresponding location attribute of the geometric center
of R,;. An example of our Lfd(Rs) construction is shown in
Fig. 6.

We have done a comparative experiment to evaluate SFR
matching performance for L fd(R,) with and without geomet-
ric information term. The detail results are shown in Table III.
Experimental results show that local feature descriptor integrat-
ing with additional geometric information is more distinctive
and effective in describing local regional features.

2) Evaluation Criterion: In order to evaluate the similar-
ity between two feature descriptors L fd(R,1) and Lfd(Rs2)
effectively, we define a novel evaluation criterion based on
Kullback-Leibler (KL) divergence [24]. The mathematical ex-

pression is given as follows:

36
DmﬂjﬂRﬂLLMGMM:E:{EM@MRALMA&m)

i=1

)

where Eud(da; (Rs1), da; (R,2)) is defined as follows:
Eud(dai(Rsl), daZ(RSQ))

_ {|da,;(Rsl) —da; (Rs2)|, |da;(Rs1) — da; (Rs2)| <
|27 —|da; (R,1)—da; (R,2)|, else

(12)

Compared to KL divergence, our criterion is symmetric and
outperforms KL divergence in SFR matching. Furthermore, our
criterion can find the same correspondences when encountered
inverse registrations. A comparative experiment between our
criterion and KL divergence is shown in Table I'V.

3) Salient Feature Region Matching: Insome extreme cases,
there may be hundreds of SFRs in a single large retinal image,
effective matching strategy is very important for practical ap-
plication. We adopt a coarse to fine matching strategy to accel-
erate matching procedure. The detailed matching algorithm is
described as follows:

1) Coarse region pairs matching: Traverse every possible
correspondence pair C(, j), where C(7, j) denotes the corre-
spondence between the 7}, SFR in reference image and the j;;
SFR in floating image. C'(4, j) that satisfies following condition:

Min(Av(R;i), Av(Rsj)) Min(Lge(Rsi), Lge(Rsj))
Max(Av(Rsi), Av(Rsj)) Max(Lge(Rsi), Lge(Rsj))

is considered as a coarsely matched pair Cmp(é,j), where
T € [0,1] is an empirical global similarity threshold. In our
method, it is set to 0.6 for intramodal images and 0.4 for mul-
timodal images. This is based on the assumption that similar
feature regions will have similar local gradient distributions
and intensity distributions. By this limitation, the number of
coarsely matched pairs can be greatly reduced to several thou-
sands in extreme cases. For every Cmp(i, j), we compute the
similarity measure S(i, j) between SFR R4 and R,j with the
coarse rotation angle ¢;; based on (11) as follows:

2km
0 = —— 14
736 (14
where
ki =arg Min(Dist(L fd(Ry1), Lfd(R,j*))),k€{0,1,...,35}
(15)
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TABLE III
EXPERIMENT RESULTS OF REGION MATCHING PERFORMANCE WITH AND WITHOUT GEOMETRIC COMPONENT

Avg. Coarse Mat. Num.

Avg. Fine Mat. Num.

Avg. Accurate Mat. Num. | Avg. Accurate Rate

Lfd_Gc(Ry) 31183 279

20.8 74.6%

Lfd_NoGc(R,) 31183 253

18.4 72.7%

Lfd_Gc(Rs) denotes the local feature descriptor with geometric component and Lfd_NoGc(Rs) denotes the local feature

descriptor without geometric component.

TABLE IV
DETAIL EXPERIMENT RESULTS OF REGION MATCHING PERFORMANCE BETWEEN OUR CRITERION AND KL DIVERGENCE

Avg. Coarse Mat. Num. | Avg. Fine Mat. Num. | Avg. Accurate Mat. Num. | Avg. Accurate Rate
Our Criterion 3118.3 279 20.8 74.6%
KL Divergence 3118.3 12.9 8 62.0%
and
S(i,7) = Dist(Lfd(Rsi), Lfd(Rsj")). (16)

In (15), Lfd(R,j*) is the descriptor of the region generated by
rotating R,j k bins counterclockwise. A main direction is not
assigned to our feature descriptor as SIFT, because the compu-
tation of main direction could bring in error that reduces SFR
matching performances. Additional computation cost of this
step is acceptable since the number of Cmp(4, j) is not very
large.

2) Fine region pairs matching: Every Cmp(i, j) with 6, ; spec-
ifies three global rigid transformation parameters: 2-D transla-
tion [t;, t,], and rotation ¢;;. Considering [x,y] as the central
point of floating image, the rigid transformation model can be

written as follows:
|:u:| o |:C089j]' sinﬂ,;j] |:l‘:| |:t.7::|
= X +
v sin 6; cos 0 y ty

where [u, v] is the coordinate of transformed image center. We
adopt global rigid transform parameters clustering method to
select finely matched pairs. First, arrange the Cmp(¢, 7) in an as-
cending order of S(4, j), and the top 2000 coarsely matched pairs
are selected as the clustering inputs, which is sufficient for reti-
nal image registration application. Second, a nearest neighbor
clustering algorithm is performed in the space of transformed
floating image center. Empirically, the distance threshold for
coarse pair selection can be set to one twentieth of the image
size. The cluster with the most pairs is then selected as fine
matched pairs Fmp(4, j). Finally, the repeated regions between
correspondence pairs Fmp(4, j) are excluded by comparing their
similarity value S(, j); therefore, the correspondence pairs in
Fmp(i, j) are all bilateral one-to-one mapped.

a7

D. Local to Global Registration Strategy

Since retinal images are projection of the curved retina taken
from different viewpoints, the nonlinear distortion is unavoid-
able. High-order transformation is essential to achieve fine level
registration results. We take a local to global registration strat-
egy to obtain the final result, as illustrated in Fig. 2. It can be
described as following sequential steps:

1) Local Rigid Registration: Local rigid registration is per-
formed with every finely matched region pair Fmp(i, j) to im-
prove local matching accuracy. normalized cross correlation

Fig. 7. Final accurately matched SFRs between images in Fig. 1. There are
four final accurately matched region pairs and the affine transformation model
can be applied.

(NCC) is chosen as the region similarity measure for its capa-
bility in aligning images with large intensity variance [25], [26]
as well as its computational effectiveness. Gradient descent op-
timization method is adopted for accurate transformation pa-
rameters searching based on previously obtained estimations.

2) False Local Registration Exclusion: The local rigid regis-
tration may fail when noises and incorrect correspondences exist
in finely matched region pairs. We set an NCC value threshold
Txcce = 0.9to exclude the false local registrations. Afterward, a
parameter clustering strategy introduced previously with smaller
threshold is applied, empirically one fortieth of the image size is
used to obtain final accurately matched regions. If no accurately
matched region is found, our algorithm terminates with failure.
Fig. 7 gives an example of final accurately matched SFRs.

3) High-Order Global Transformation: Global transforma-
tion model is selected adaptively according to the number of pre-
vious accurately aligned region pairs. Rigid, scale rigid, affine,
bilinear, and second-order polynomial transformations are used
in our method. Second-order polynomial transformation is suffi-
cient for correcting deformations between retinal images due to
its capability in describing complex nonlinear distortions. The
accurate transformation model can be solved by linear regres-
sion method using previous accurately aligned region centers as
control points [27].

III. EXPERIMENTS AND RESULTS

In this section, we will evaluate the performance of proposed
SFR method and compare it with GDB-ICP [28], SIFT [15],
and ED-DB-ICP with 43 pairs of retinal images. Our algo-
rithm is implemented in C++ based on the Medical Imaging
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ToolKit (MITK) [29]. GDB-ICP, SIFT, and ED-DB-ICP? are
downloaded binary executable programs. All the experiments
are performed on a personal computer with Intel Core 2 Duo
1.86GHz and 2G RAM.

A. Performance of Saliency Measure

In order to evaluate the performance of proposed saliency
measure in some extreme cases, we have done two comparative
experiments with nine low-quality image pairs, some are with
pathologies. The test images are all about the size of 1548 x
1260.

The first comparative experiment is to evaluate the effec-
tiveness of adaptive variance term. We test our local saliency
measure with and without adaptive variance term, respectively.
The radius of SFR is set to a fixed value of 30 pixels and the
constraint.

Min(Lge(Rsi), Lge(Rsj))
Max(Lge(R,i), Lge(R;j))

is adopted in coarse region pairs matching step. We compare
the average number of coarse SFR matches (Avg. Coarse Mat.
Num.), the average number of fine SFR matches (Avg. Fine Mat.
Num.), the average number of accurate SFR matches (Avg.
Accurate Mat. Num.), and the average of accurate rate (Avg.
Accurate Rate), which is defined as follows:

> 0.85 (18)

Avg. Accurate Mat. Num.

Avg. Accurate Rate = -
Avg. Fine Mat. Num.

19)

The results are shown in Table I. As can be seen, saliency mea-
sure without adaptive variance term shows a reduction of the
number of finely matched pairs by 14.1, and the number of ac-
curately matched pairs by 12.4, as well as an average accurate
rate reduction of 32.3%. This will cause a great reduction in fi-
nal registration accuracy. The results indicate that local gradient
field entropy is not sufficiently distinctive between subregions,
which could greatly decrease the accuracy of the SFR extrac-
tion and the SFR matching performance. The combination with
adaptive variance term could greatly improve the SFR extraction
accuracy as well as registration performance.

The second comparative experiment is to evaluate the per-
formances of our saliency measure with and without Gaussian
fitting. The results are shown in Table II. It shows that there exist
significant discontinuities and a great many singular points in
saliency measure without Gaussian fitting. This directly leads
to a steep rise in the number of coarse matched pairs by a fac-
tor of 25, which will greatly increase the SFR matching time.
Moreover, there are an increase of 1.7 in the number of finely
matched pairs and a reduction of 4.8 in the number of final ac-
curately matched pairs for saliency measure without Gaussian
fitting. This will not only increase the local registration runtime
but also degrade the final registration accuracy and lead to an
average accurate rate reduction by a factor of 20.5%. In gen-
eral, these two experiments indicate that our saliency measure
is effective in describing the local saliency of retinal images.

2We appreciate Tsai, the author of ED-DB-ICP for providing the executable
program of ED-DB-ICP.

Fig. 8.  Two samples of the rotation test. The first row is with the rotation of
90°, and the second row is with the rotation of 180°.

B. Local Feature Descriptor and Evaluation Criterion

We have performed two comparative experiments in this part
to evaluate the performances of our local feature descriptor as
well as evaluation criterion.

The first comparative experiment evaluates the effectiveness
of proposed geometric component. We implement our local
feature descriptor with and without geometric component, re-
spectively. The results are shown in Table III. As shown in this
table, local feature descriptor with geometric component could
find 2.6 more finely matched pairs and 2.4 more accurately
matched pairs, and there is a small promotion in accurate rate
by 1.9% on average. Therefore, the final registration accuracy
will be improved. This experiment indicates that the integration
of geometric component is an effective way to improve the final
registration accuracy.

The second comparative experiment evaluates the perfor-
mances of our evaluation criterion and compares it with KL
divergence. The results are shown in Table IV. According to this
table, our evaluation criterion could find 15 more fine matched
pairs and 12.8 more accurate matched pairs as well as a promo-
tion in accurate rate by 12.6% on average. The improvements
are obtained as a result of the suppression of the mismatches
in both prominent directions in the image pair. This experiment
indicates that our evaluation criterion is more effective than KL
divergence in describing the similarity between our feature de-
scriptors. In general, these two experiments demonstrate that our
local feature descriptor and evaluation criterion are effective in
describing and matching region features for retinal images.

C. Performance of Rotation and Scale

We rotate the nine test floating images by 30°, 45°, 60°, 90°,
and 180°, respectively, our method successfully registered 42
rotated pairs with a success rate [refer to (20)] of 93.3%. The
results show that our method is potentially robust with respect
to large rotation differences, since that our method traverses all
possible 36 rotation bins in evaluating the similarity between
local feature descriptors. Two samples of the rotation tests are
shown in Fig. 8.

To evaluate the performance of scaling differences, we zoom
all reference images to 90% and 110%, and the success rates
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TABLE V
RUNTIME AND REGISTRATION ACCURACY OF DIFFERENT SUBREGION LENGTHS
Subregion Length 6 8 10 12 14 16 18 20
Relative Run Time (s) 324 | 1.31 | 1.00 | 0.79 | 0.73 | 0.59 | 0.47 | 0.36
Mean Error (pixels) 197 | 1.86 | 1.68 | 1.81 | 1.84 | 1.73 | 3.24 | 3.61
Standard Deviation (pixels) | 2.23 | 141 | 1.04 | 1.32 | 1.13 | 1.20 | 3.36 | 3.89

For the relative runtime, the runtime of subregion length of 10 is selected as the baseline.

TABLE VI
RUNTIME AND REGISTRATION ACCURACY OF DIFFERENT ADAPTIVE VARIANCE THRESHOLD
Adaptive Variance Threshold | 0.02 | 0.03 | 0.04 | 0.05 | 0.06
Relative Run Time (s) 143 | 1.29 | 1.00 | 0.80 | 0.63
Mean Error (pixels) 1.76 | 1.65 | 1.68 | 1.94 | 2.67
Standard Deviation (pixels) 1.32 | 093 | 1.04 | 1.95 | 2.32

For the relative runtime, the runtime of adaptive variance threshold of 0.04 is selected as the baseline.

TABLE VII
RUNTIME OF DIFFERENT SUBREGION AVERAGE VALUE THRESHOLD
Subregion Average Value Threshold 10 15 20 25 30 35
Relative Run Time (s) 1.007 | 1.005 | 1.000 | 0.988 | 0.940 | 0.829

For the relative runtime, the runtime of subregion average value threshold of 20 is selected as the baseline.

TABLE VIII
RUNTIME AND REGISTRATION ACCURACY OF DIFFERENT PROMINENT GRADIENT DIRECTION THRESHOLD
Prominent Gradient Direction Threshold | 0.06 | 0.08 0.10 0.12 | 0.14 | 0.16
Relative Run Time (s) 1.11 | 1.09 | 1.000 | 0.83 | 0.66 | 0.49
Mean Error (pixels) 1.79 | 1.70 1.68 1.80 | 2.02 | 2.72
Standard Deviation (pixels) 0.98 | 1.01 1.04 1.17 | 1.62 | 2.83

For the relative runtime, the runtime of prominent gradi

are 65% and 75%, respectively. The effectiveness of our method
dealing with scaled images is not notable; however, this result is
acquired with local rigid transform model as well as global rigid
transform parameters clustering criterion. Generally, retinal im-
ages are with relatively small scale differences. Therefore, our
method is still potentially effective to rigid transformations with
scaling. The improvement of scale invariance of our method will
be a major work in the future.

D. About Parameters

Several parameters are set by experience, including subre-
gion length, subregion average value threshold, adaptive vari-
ance threshold, prominent gradient direction threshold, and the
coarse match threshold 7 in (13). We also performed several
experiments in the previous nine image pairs to study the prop-
erties of these parameters.

1) Subregion Length: We compare the relative runtime and
registration accuracy of different subregion length settings from
6 to 20, with a step length of 2. The runtime of subregion length
of 10 is selected as the baseline. The registration accuracy is
evaluated by the mean error and the standard deviation of the
manually labeled landmark points that are stable and prominent
in the successfully aligned image pairs. The results are shown
in the Table V. As the subregion length decreases, the number of
subregions will increase quadratically; therefore, local rigid reg-
istration cost will increase accordingly. This causes runtime to
decrease monotonically as the subregion length increases from
6 to 20. The deviation of registration accuracy is not so appar-

ent direction threshold of 0.1 is selected as the baseline.

ent when the subregion length is less than 16. If the subregion
length increases to 20, the registration accuracy decreases ob-
viously. Additionally, there is a failure with subregion length of
20. Considered these two aspects, the subregion length could
be set around ten in order to obtain accurately matched image
pairs in a short time. For larger image pair, the subregion length
could increase properly to reduce the runtime.

2) Adaptive Variance: We test the adaptive variance thresh-
old in a range from 0.02 to 0.06 with a step length of 0.01. The
runtime and registration accuracy performances are summarized
in Table VI. With the increase in adaptive variance threshold,
the number of SFRs decreases monotonically and total runtime
decreases accordingly. When the threshold increases beyond
0.04, the registration accuracy decreases obviously. Therefore,
the adaptive variance threshold is set to 0.04 empirically.

3) Subregion Average Value: We evaluate the average value
threshold of subregion in arange from 10 to 35, with a step length
of 5. The registration accuracy performances are almost the
same for all thresholds, but the runtime performance degrades
dramatically when the average threshold is beyond 25, as shown
in Table VII. This demonstrates that the average value threshold
begins to affect the number of SFRs. Therefore, the subregion
average value threshold is set around 20 in order to achieve best
registration accuracy.

4) Prominent Gradient Direction Threshold: We evaluate
the prominent gradient direction threshold in a range from 0.06
to 0.16, with a step length of 0.02. The relative runtime and reg-
istration accuracy performances are summarized in Table VIIL.



ZHENG et al.: SALIENT FEATURE REGION: A NEW METHOD FOR RETINAL IMAGE REGISTRATION 229

TABLE IX
RUNTIME AND REGISTRATION ACCURACY OF DIFFERENT COARSE MATCH
THRESHOLD
Coarse Match Threshold 0.4 0.45 0.5 0.55 0.6 0.65 0.7
Relative Run Time (s) 126 | 1.21 | 1.15 | 1.06 | 1.00 | 0.97 | 0.92
Mean Error (pixels) 1.78 | 1.73 | 1.83 | 1.82 | 1.68 | 1.96 | 2.08

Standard Deviation (pixels) | 1.06 | 0.96 | 0.95 | 0.97 | 1.04 | 1.37 | 1.56

For the relative runtime, the runtime of coarse match threshold of 0.6 is selected as the baseline.

As can be seen, the runtime decreases monotonically as the
prominent gradient direction threshold increases. The registra-
tion accuracy performances are almost the same for threshold
within 0.12 and decreases apparently if threshold continues to
increase. Therefore, the prominent gradient direction threshold
could be set to 0.10 for a tradeoff between runtime and registra-
tion accuracy.

5) Coarse Match Threshold: We evaluate the coarse match
threshold 7" in (13) in a range from 0.4 to 0.7, with a step
length of 0.05. The relative runtime and registration accuracy
performances are summarized in Table IX. As can be seen, the
runtime decreases monotonically as the coarse match threshold
increases. The registration accuracy performances are almost
the same for threshold within 0.6 and decreases gradually if
threshold continues to increase. Therefore, the prominent gra-
dient direction threshold could be set around 0.6 for intramodal
image pairs. For intermodal image pairs, 0.4 is an empirical
tested threshold by which a compromise between runtime and
registration accuracy could be reached for all test pairs.

E. Rotation Improvements of NCC-Based Local Registration

In this part, we rotate the nine test floating images by 45°
and evaluate the rotation improvements of NCC-based local
registration. Our method extracts 243 pair of accurately matched
SFRs totally. We compare the rotation angles of SFRs with and
without NCC-based local registration. The mean improvement
of the rotation angle is 4.79° and with a standard deviation of
1.22°. The results show that NCC-based local registration is
effective in accurate rotation parameter estimation.

F. Retinal Image Registration Performances

In this part, we test the proposed SFR method with 43 reti-
nal image pairs and compared it with the GDB-ICP algorithm
(downloaded from [28]), SIFT3, and ED-DB-ICP. Among the
43 experimental pairs, 39 pairs are obtained from clinic [29]
and the remaining 4 pairs are collected from internet [30]. The
test images are of different resolutions, including 512 x 512,
700 x 605, 1320 x 1036, 1548 x 1260, 2400 x 2000, the max-
imum scaling difference is 30% and maximum rotation differ-
ence is 10°. Images are of three modalities, including 20 pairs
of IR images, 20 pairs of IR and red-free images, and 3 pairs
of IR and FA images. In addition, about 31 pairs of the test
data are with low quality, including the image pairs with low
content contrast or large intensity variance, the image pairs that

3SIFT package provide by Lowe [15] with default setting are used to extract
SIFT key points, high-order global transformation is then performed with the
SIFT key points as control points to obtain final registration results.

Fig. 9. Low contrast IR and FA image pair that SFR, GDB-ICP, SIFT failed
to align and ED-DB-ICP gained success.

are hard to extract vascular features, and the image pairs with
great deterioration caused by pathologies.

A reliable and effective evaluation method is important for as-
sessing registration accuracy. Centerline error measure (CEM)
[8], [31] is conventional assessment criterion, which measures
the median error of the centerlines of vasculature. However, it is
difficult to extract retinal vessels in some extreme image pairs
and the errors in centerline extraction cannot be ignored. Thus,
we use mean error and the standard deviation of manually placed
landmark points as the evaluation criterion instead of CEM. Ac-
cording to ophthalmologist’s knowledge, some prominent reti-
nal features, such as vessel bifurcations, vessel intersections as
well as the boundaries of optic disk, are stable in both images.
So that we select these feature points as the landmarks to eval-
uate the performance of our method as well as the other three
reference methods.

The final registration performance is evaluated in following
three aspects: success rate, average and standard deviation of
registration accuracy as well as the runtime. The detail compar-
ative results are as follows.

1) Success Rate: If the mean error of corresponding land-
mark points is larger than 10 pixels, the registration is considered
as a failure. The success rate is then defined as follows:

the number of successful pairs
success rate =

. 20
the total number of test pairs (20)

Our SFR method successfully aligns 41 pairs of the test images
with the success rate of 95.3%. GDB-ICP gains success in 37
pairs with the success rate of 86.0% with [-complete] setting,
which performs the best for challenging image pairs. SIFT gains
success in 30 pairs with the success rate of 69.8%. ED-DB-ICP
gains success in 26 pairs with the success rate of 60.5% with
default settings.

We perform a detailed comparison between SFR, GDB-ICP,
and ED-DB-ICP. Both SFR and GDB-ICP fail with two low-
quality image pairs, in which one image pair is with the same
modality and contains little structural information with small
overlap. The other pair contains an IR image and an FA im-
age with low contrast, as shown in Fig. 9. Besides, GDB-ICP
also fails with another four low-quality image pairs including:
three pairs of images are with different modalities, one pair of
images is severely affected by intensity variance. ED-DB-ICP
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TABLE X
SUMMARIZED EXPERIMENT RESULTS OF SFR, GDB-ICP, SIFT, AND ED-DB-ICP
Avg. Time (s) | Mean Dist. (pixels) | Std. Dist. Devi. (pixels) | Mean Err. (pixels) | Std. Devi. (pixels) | Success Rate
SFR 10.5 301.7 315.1 2.50 2.17 95.3%
GDB-ICP 43.8 291.9 286.4 2.89 2.66 86.0%
SIFT 28.2 259.9 170.5 3.97 2.18 69.8%
ED-DB-ICP 48.7 186.6 122.1 2.05 1.57 60.5%

performed the best with FA images; however, it fails with 17
pairs of IR and red free images.

The comparative experiments indicate that our SFR method
is more robust in registering the image pairs with large intensity
variance and pathologies. The initial transformation of GDB-
ICP is estimated based on SIFT key points matching, and SIFT
is not invariant to nonlinear intensity variance since that the
direction assignment in SIFT is not robust. In our method, we
do not assign the main direction for the feature region and the
matching is performed by traversing all possible 36 rotation bins,
which made our method more robust to large intensity variance
compared to GDB-ICP. On the other hand, our method is less
effective with FA images in contrast with ED-DB-ICP, because
our feature descriptor is not invariant to intensity reversal in FA
images where the intensities of vessels are usually lighter than
the background.

2) Average and Standard Deviation of Registration Accu-
racy: The registration accuracy is evaluated based on manually
labeled landmark points that are stable and prominent in the
successfully aligned image pairs. The mean distance (Mean
Dist.) and standard deviation (Std. Dist. Devi.) of these land-
mark points are showed in Table X. The detailed performances
of registration accuracy are as follows: the average registration
accuracy of SFR is 2.50 pixels with the standard deviation of
2.17 pixels, the average accuracy of GDB-ICP is 2.89 pixels and
standard deviation is 2.66 pixels, the average accuracy of SIFT
is 3.97 pixels and standard deviation is 2.18 pixels, the average
accuracy of ED-DB-ICP is 2.05 pixels and the standard varia-
tion is 1.57 pixels. ED-DB-ICP performs the best in registration
accuracy. SFR is slightly better in both the average and standard
deviation compared to GDB-ICP. The performance of SIFT is
less accurate compared to SFR, GDB-ICP, and ED-DB-ICP.

3) Run Time: The runtime performance is the most attrac-
tive advantage of SFR. GDB-ICP takes about 43.8 s to align one
image pair on average (ten extreme cases with runtime larger
than 100 s are not taken into account), ED-DB-ICP takes about
48.7 s (20 extreme cases with runtime larger than 200 s are
not taken into account), SIFT takes about 28.2 s, and SFR only
needs about 10.5 s. Both GDB-ICP and ED-DB-ICP need large
amount of computation in multiscale feature points extraction,
parameter estimations of high-order transformation model. Es-
pecially, the region bootstrap step involved to guarantee a good
performance of the image registration is quite time consuming
for clinical diagnosis.

Compared to GDB-ICP, ED-DB-ICP, and SIFT, SFR is more
computational efficient since major calculation is done with the
SFRs rather than the whole image registration. This is especially
effective for the retinal images with small scaling differences,
and the runtime can be further decreased by limiting the number

Fig. 10. Comparative results of SFR, GDB-ICP, SIFT, and ED-DB-ICP for
the image pair, as shown in Fig. 1. (a) Result of our SFR method. (b) Result
of GDB-ICP. (c¢) Result of SIFT. (d) Result of ED-DB-ICP. GDB-ICP, SIFT,
and ED-DB-ICP fail to align these two images, and SFR gets an overall success
with a little error in some local area.

of local registration pairs to top 20 fine-matched SFR pairs,
while the registration accuracy is still acceptable.

The overall experimental results are summarized in Table X,
and the visual comparative results of two low-quality image
pairs are shown in Figs. 10 and 11, respectively. Fig. 10 shows
the registration result of a low-quality image pair, as shown in
Fig. 1, in which there are large intensity variance and deterio-
ration caused by pathologies. GDB-ICP, ED-DB-ICP, and SIFT
failed to align these two images. In contrast, our SFR gets a
successful result as a whole with a little error in some local
area. Fig. 11 shows another registration example of low-quality
image pairs with low contrast. Both GDB-ICP and ED-DB-IC
fail to align the image pair. SIFT get a generally successful re-
sult with a little error in the local area, In contrast, our SFR
achieves a satisfactory result. Additionally, Fig. 12 illustrates an
example of SFR in multimodal image registration in which both
GDB-ICP and SIFT fail, and ED-DB-ICP also gains success.

In summary, the experiments discussed earlier demonstrate
that our SFR method is accurate and robust to large intensity
variance, low content contrast and some pathologies caused de-
terioration. Also, it is important to emphasize that our SFR
method is very fast for retinal image pairs without scaling
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Fig. 11. Comparative results among SFR, GDB-ICP, SIFT, and ED-DB-ICP
for image pairs with low contrast. (a) Reference retinal image. (b) Floating
retinal image. (c) Result of our SFR method. (d) Result of GDB-ICP. (e) Result
of SIFT. (f) Result of ED-DB-ICP. GDB-ICP and ED-DB-ICP fail to align the
image pair, SIFT gets a generally successful result with a little error in the local
area, and SFR gets a satisfactory result.

() (d) (©

Fig. 12.  Result of SFR in a multimodal image pair that GDB-ICP, SIFT failed
and ED-DB-ICP gained success. (a) Reference retinal image. (b) Floating retinal
image. (c) Result of SFR.

differences. This could make SFR to be a competitive approach
for clinical applications.

IV. CONCLUSIONS AND FUTURE WORKS

This paper presents a new method for retinal image registra-
tion, which is very effective for low-quality images with little
scaling differences. The well-defined local saliency measure and
subregion expansion strategy guarantees that our SFR extrac-
tion algorithm is effective and robust to intensity variance and
pathologies caused image deteriorations. Additionally, an inno-

vative feature descriptor incorporating geometric information
makes our SFRs more distinctive, and the experiments demon-
strate that the proposed evaluation criterion works better than
conventional KL divergence for the proposed feature descrip-
tor. Finally, the local to global registration strategy makes our
SFR method more computational efficient while maintaining
comparable high registration accuracy. Detailed experiments
indicate that our SFR method is very effective for retinal image
registration.

There are still several challenging issues that remain unsolved
and can be considered in our future work, including: a more pow-
erful local feature descriptor for multimodal images, especially
for FA images, a better scale-invariant SFR extraction method
and a more efficient SFR matching strategy without the clus-
tering step to deal with the image pairs with extremely small
overlap region. In addition, our future work will focus on ex-
tending our SFR method to other medical image registration
fields, such as three dimensional image analysis.

ACKNOWLEDGMENT

The authors would like to thank the owners of the retinal
images adopted in the present study.

REFERENCES

[1] C. Sanchez-Galeana, C. Bowd, E. Blumenthal, P. Gokhale, L. Zangwill,
and R. Weinreb, “Using optical imaging summary data to detect glau-
coma,” Ophthalmology, vol. 108, no. 10, pp. 1812-1818, 2001.

[2] L. Zhou, M. Rzeszotarski, L. Singerman, and J. Chokreff, “The detection
and quantification of retinopathy using digital angiograms,” IEEE Trans.
Med. Imag., vol. 13, no. 4, pp. 619-626, Dec. 1994.

[3] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens,
“Multimodality image registration by maximization of mutual informa-
tion,” IEEE Trans. Med. Imag., vol. 16, no. 2, pp. 187-198, Apr. 1997.

[4] G. Penney, J. Weese, J. Little, P. Desmedt, D. Hill, and D. Hawkes, “A
comparison of similarity measures for use in 2-D-3-D medical image
registration,” IEEE Trans. Med. Imag., vol. 17, no. 4, pp. 586-595, Aug.
1998.

[5] G. Matsopoulos, N. Mouravliansky, K. Delibasis, and K. Nikita, “Auto-
matic retinal image registration scheme using global optimization tech-
niques,” IEEE Trans. Inform. Technol. Biomed., vol. 3, no. 1, pp. 47-60,
Mar. 1999.

[6] N.Ritter, R. Owens, J. Cooper, R. Eikelboom, and P. Van Saarloos, “Reg-
istration of stereo and temporal images of the retina,” IEEE Trans. Med.
Imag., vol. 18, no. 5, pp. 404-418, May 1999.

[71 M. Skokan, A. Skoupy, and J. Jan, “Registration of multimodal images
of retina,” in Proc. EMBS/BMES Conf. 2002 [Engineering in Medicine
and Biology, 2002. 24th Annual Conf. and the Annual Fall Meeting of the
Biomedical Engineering Society], vol. 2, pp. 1094-1096.

[8] C. Stewart, C. Tsai, and B. Roysam, “The dual-bootstrap iterative closest
point algorithm with application to retinal image registration,” [EEE
Trans. Med. Imag., vol. 22, no. 11, pp. 1379-1394, Nov. 2003.

[9] M. Sofka and C. Stewart, “Retinal vessel centerline extraction using mul-
tiscale matched filters, confidence and edge measures,” IEEE Trans. Med.
Imag., vol. 25, no. 12, pp. 1531-1546, Dec. 2006.

[10] J.Xu, O. Chutatape, E. Sung, C. Zheng, and P. Chew Tec Kuan, “Optic disk
feature extraction via modified deformable model technique for glaucoma
analysis,” Pattern Recog., vol. 40, no. 7, pp. 2063-2076, Jul. 2007.

[11] H. Li and O. Chutatape, “Automated feature extraction in color retinal
images by a model based approach,” IEEE Trans. Biomed. Eng., vol. 51,
no. 2, pp. 246-254, Feb. 2004.

[12] C. Harris and M. Stephens, “A combined corner and edge detector,” in
Proc. Fourth Alvery Vis. Conf., Manchester, U.K., 1988, pp. 147-151.

[13] D.Lowe, “Distinctive image features from scale-invariant keypoints,” Int.
J. Comput. Vis., vol. 60, no. 2, pp. 91-110, Nov. 2004.

[14] T.Chanwimaluang, G.Fan, and S. Fransen, “Hybrid retinal image registra-
tion,” IEEE Trans. Inform. Technol. Biomed., vol. 10, no. 1, pp. 129-142,
Jan. 2006.



232

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 15, NO. 2, MARCH 2011

D. Lowe. (2005). Demo software: Sift keypoint detector [Online]. Avail-
able: http://www.cs.ubc.ca/Towe/keypoints/.

G. Yang, C. Stewart, M. Sofka, and C. Tsai, “Registration of challenging
image pairs: Initialization, estimation, and decision,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 29, no. 11, pp. 1973-1989, Nov. 2007.

C. Tsai, C. Li, G. Yang, and K. Lin, “The edge-driven dual-bootstrap
iterative closest point algorithm for registration of multimodal fluorescein
angiogram sequence,” IEEE Trans. Med. Imag., vol. 29, no. 3, pp. 636—
649, Mar. 2010.

T. Kadir and M. Brady, “Saliency, scale and image description,” Int. J.
Comput. Vis., vol. 45, no. 2, pp. 83—105, Nov. 2001.

X. Huang, Y. Sun, D. Metaxas, F. Sauer, and C. Xu, “Hybrid image
registration based on configural matching of scale-invariant salient region
features,” in Proc. Conf. Comput. Vis. Pattern Recog. Workshop. 2004, pp.
167.

L. Van Valen, “The statistics of variation,” in Variation. New York: Else-
vier, 2005, pp. 29-47.

T. Cover and J. Thomas, Elements of Information Theory. ~New York:
Wiley, 2006.

Y. Ke and R. Sukthankar, “PCA-SIFT: A more distinctive representation
for local image descriptors,” in Proc. IEEE Comput. Soc. Conf. Comput.
Vis. Pattern Recog., vol. 2. IEEE Computer Society, 2004, pp. 511-517.
H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,”
in Proc. 9th Eur. Conf. Comput. Vis., Lecture Notes in Computer Science,
Graz, Austria, vol. 3951, 2006, pp. 404—417.

S. Kullback and R. Leibler, “On information and sufficiency,” Ann. Math.
Statist., vol. 22, no. 1, pp. 79-86, 1951.

M. Holden, D. Hill, E. Denton, J. Jarosz, T. Cox, T. Rohlfing, J. Goodey,
and D. Hawkes, “Voxel similarity measures for 3D serial MR brain image
registration,” [/EEE Trans. Med. Imag., vol. 19, no. 2, pp. 94-102, Feb.
2000.

D. Hill, P. Batchelor, M. Holden, and D. Hawkes, “Medical image regis-
tration,” Phys. Med. Biol., vol. 46, pp. R1-R45, 2001.

N. Ryan, C. Heneghan, and P. de Chazal, “Registration of digital retinal
images using landmark correspondence by expectation maximization,”
Image Vis. Comput., vol. 22, no. 11, pp. 883-898, 2004.

D. Freedman and C. Stewart. (2007). Homepage of Computer Vision Re-
search Group Department of Computer Science at Rensselaer Polytech-
nic Institute. [Online]. Available: http://www.vision.cs.rpi.edu/download.
html.

J. Tian, J. Xue, Y. Dai, J. Chen, and J. Zheng, “A novel software plat-
form for medical image processing and analyzing,” IEEE Trans. Inform.
Technol. Biomed., vol. 12, no. 6, pp. 800-812, 2008. [Online]. Available:
http://www.mitk.net/download.

A. Hoover and M. Goldbaum, “Locating the optic nerve in a retinal
image using the fuzzy convergence of the blood vessels,” IEEE Trans.
Med. Imag., vol. 22, no. 8, pp. 951-958, 2003. [Online]. Available:
http://www.parl.clemson.edu/stare/.

A. Can, C. Stewart, B. Roysam, and H. Tanenbaum, “A feature-based,
robust, hierarchical algorithm for registering pairs of images of the curved
human retina,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 3,
pp. 347-364, Mar. 2002.

Jian Zheng received the B.E. degree in automation
from the University of Science and Technology of
China, Hefei, China, in 2005, and thePh.D. degree
from the Institute of Automation, Chinese Academy
of Sciences, Beijing, China, in 2010.

He is currently with the Medical Image Process-
ing Group, Key Laboratory of Complex Systems
and Intelligence Science, Institute of Automation,
Chinese Academy of Sciences. His research inter-
ests include medical image processing and computed
tomography.

Jie Tian (M’02-SM’06-F’10) received the Ph.D. de-
gree (with Honors) in artificial intelligence from the
Institute of Automation, Chinese Academy of Sci-
ences, Beijing, China, in 1992.

From 1995 to 1996, he was a Postdoctoral Fellow
at the Medical Image Processing Group, University of
Pennsylvania, Philadelphia. Since 1997, he has been
a Professor at the Institute of Automation, Chinese
Academy of Sciences, where he has been involved in
the research in Medical Image Processing Group. He
is the author or coauthor of more than 70 research pa-
pers published in international journals and conference proceedings. His current
research interests include the medical image process and analysis and pattern
recognition.

Prof. Tian is the Beijing Chapter Chair of The Engineering in Medicine and
Biology Society of the IEEE.

Kexin Deng received the B.E. degree in automa-
tion from the University of Science and Technology,
Beijing, China, in 2005.

He is currently with the Medical Image Processing
Group, Institute of Automation, Chinese Academy
of Sciences, where he is involved in developing de-
formable image registration algorithms. His research
interests include motion control, robotics, and con-
tinuum mechanics.

Xiaogian Dai received the B.S. degree in computer
science from the University of Science and Tech-
nology of China, Hefei, China, 2007. She is currently
working toward the Ph.D. degree in computer science
at the Institute of Automation, Chinese Academy of
Sciences, Beijing, China.

Her current research interests include medical im-
age processing, quantitative analysis, and noninvasive
input function estimation in dynamic PET.

Xing Zhang received the M.S. degree in biomed-
ical engineering from Beijing Jiaotong University,
Beijing, China. She is currently working toward the
Ph.D. degree at the Institute of Automation, Chinese
Academy of Sciences, Beijing, China.

Her current research interests are centered on med-
ical image processing, including medical image seg-
mentation using graph cut method, 3-D medical im-
age segmentation based on statistical shape models.

Min Xu received the B.S. degree in computational
mathematics from Wuhan University, Wuhan, China,
in 1989.

He is currently a Team Member of Medical Imag-
ing ToolKit, Medical Image Processing Group, Insti-
tute of Automation, Chinese Academy of Sciences,
Beijing, China, where he has been engaged in re-
search on the development of medical imaging algo-
rithm and software since 2006. His research interests
include image reconstruction and fusion.



