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In this paper, an efficient l1-regularized reconstruction method named the primal-dual interior-point (PDIP)
method is presented for three-dimensional bioluminescence tomography (BLT) based on the adaptive finite
element framework. Taking into account the sparse characteristic of the bioluminescent source, the BLT
inverse problem is considered to be a linear programming problem and is represented by its primal and dual
form. The source localization and quantification are obtained by solving the primal-dual Newton equation
system. The comparisons between PDIP and the classical conjugate gradient least square (CGLS) algorithm are
implemented to validate our method. Results from numerical simulation and an in vivo mouse experiment
demonstrate the credibility and the potential of the proposed method in practical BLT reconstruction.
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1. Introduction

As a promising optical molecular imaging technique, biolumines-
cence tomography (BLT) suggests enormous potential in drug
development and preclinical oncological investigation due to its
significant advantages in specificity, sensitivity, safety and cost-
effectiveness [1–4]. By integrating surface measured light flux
distribution, geometrical structures and tissue optical properties, the
goal of BLT is to reconstruct the distribution of bioluminescent probes
inside a small living animal, achieving accurate tomographic recon-
struction and visualization in three-dimensional (3D) [5–7]. However,
the reconstruction problem remains a challenging issue because of the
inherent ill-posedness nature of the inverse problem.

Recently, intensive interests have been given to the reconstruction
algorithms andmany feasible approaches have beenproposed to handle
the inverse source problem [6–18]. To alleviate the ill-posedness, some
forms of a priori information have been employed to remarkably
improve the source reconstruction, including permissible source region
strategy that restricts the source in a specific area [8] and a spectrally-
resolved approach that attains the reconstruction using multispectral
data [9,17]. Nomatterwhat kind of a priori information used, the source
reconstruction problem is regularized to a least squares optimization
problem. Many numerical methods have been applied to solve this
optimization problem, such as the conjugate gradient [13], level set
strategy [7,14], trust region method [15] and a differential evolution
approach [6]. Most of these methods are based on the l2 norm
regularization, which tries to solve the problem by combining a
quadratic error term and an l2 norm term. However, l2 norm
regularization has been proven to smooth solutions and bring multi-
pseudo sources to surround the true source. Because of the sparsity of
bioluminescent source distribution [16], l1 regularization has been
applied in BLT and became a mainstream trend [17,18].

In this paper, considering the sparse characteristic of the biolumines-
cent source, a primal-dual interior-point (PDIP)methodwas proposed for
BLT reconstruction, which successfully integrates the adaptive finite
element (AFE) framework and the l1 norm regularization strategy. During
the last twenty years, interior-point methods have been proven to be
highly efficient in both theory and practice, which are robust for
numerically solving optimization problems, such as linear, quadratic,
second-order cone, geometric, and semidefinite programming [19–24].
The interior-point method was first proposed for solving linear
programming problems by Karmarkar in 1984 [25]. By the early 1990s,
a subclass of the interior-point methods distinguished itself as the most
efficient practical approach, and turned out to be a strong competitor for
large-scale problems. As thefirst approaches developed for solving sparse
problems via convex optimization, interior-point methods have been
widely applied in sparse signal reconstruction and processing, statistics,
and related fields over the past few years [26]. As one branch of the
interior-point methods, PDIP inherits the highly efficient and numerical
robustness of the interior-point methods and it poses good convergence
since it only requires a total of Οð ffiffiffi

n
p Þ iterations. As one of the best and
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most perfect polynomial algorithms of linear programming in theory, the
PDIP combines the penalty functionmethod andNewtonmethod and can
beused to resolve the sparseproblemwith l1 regularization. Therefore, the
PDIPmethod canbeutilized to solve the source reconstructionproblem in
BLT.

In the proposed PDIP method, diffusion approximation (DA) was
employed to describe light propagation in biological tissues. Based on
the AFE framework, the DA is formalized as a linear matrix equation
between the unknown source variables and the surfacemeasurement.
Because of the sparsity of the bioluminescent source distribution and
the insufficiency of the surface measurement, the exact solution of the
inverse source problem is the l0 regularizer, which is one of the
hardest combinatory optimization problems. In order to solve such a
complicated problem, we replaced the l0 regularizer with the l1 norm
for simplicity. By introducing the logarithmic barrier term, the PDIP
method takes the l1 norm problem as a minimization problem of
linear programming. In order to obtain the optimal solution of the
minimization problem, the Karush–Kuhn–Tucker (KKT) conditions
were used to restrain the solving process. Using the Newton method,
we obtained the optimal solution to the primal-dual equation.
Reconstructed results on numerical simulation and an in vivo mouse
experiment validated the ability of the proposed method for locating
and quantifying the bioluminescent source.

2. Method

2.1. Forward formula of BLT

It is well acknowledged that the radiative transfer equation (RTE)
can be used as the most accurate model to describe the photon
transport in biological tissues [10,27]. However, due to the imple-
mentation complexity in a numerical setting and the difficulty in the
direct calculation, the application of RTE for BLT is difficult [28].
Because photon transport in biological tissues exhibits high scattering
and weak absorption, DA and its Robin boundary condition have been
well accepted [8]:

−∇· D rð Þ∇Φ rð Þð Þ + μa rð ÞΦ rð Þ = S rð Þ r∈Ωð Þ
Φ rð Þ + 2An rð ÞD rð Þ v rð Þ·∇Φ rð Þð Þ = 0 r∈∂Ωð Þ ð1Þ

whereΩ⊂R3 is the domain of interest ;r is a position vector;Φ(r) is the
photon flux density; S(r) is the source distribution; μa(r) is the
absorption coefficient; D(r)=1/(3(μa(r)+μ′s(r)) is the diffusion
coefficient, where μ′s(r) is the reduced scattering coefficient; v(r) is
the unit outer normal on the boundary ∂Ω; and An(r)=(1+R(r))/
(1−R(r)) is the boundarymismatch factor, where R(r) depends on the
refractive index n of the surroundingmedium and can be approximated
by R≈−1.4399n−2+0.7099n−1+0.6681+0.0636n [29]. In the bio-
luminescence imaging experiments, the exiting flux density on ∂Ω can
be can be expressed as follows [8]:

Q rð Þ = −D rð Þ v rð Þ·∇Φ rð Þð Þ = − 1
2An rð Þ Φ rð Þ r∈∂Ωð Þ: ð2Þ

Using the AFE framework [30] and taking into account a priori
knowledge of the permissible source region, a simple linear
relationship between the measurable boundary data and the
unknown source distribution is established:

ΑSp = Φm ð3Þ

where Α is the system matrix and is formed by removing the rows
associated with immeasurable photon fluence rate on interior nodes,
Sp is the source density in the permissible source region, andΦm is the
measurable photon fluence rate on boundary nodes.
2.2. Primal-dual interior-point method for BLT reconstruction

Because of the insufficient measurement and the ill-conditioned
systemmatrix, Eq. (3) is underdetermined and ill-posed. To deal with
the ill-posedness, the BLT reconstruction is regularized as the
following regularization problem [16]:

min ‖Sp‖0
s:t: ΑSp = Φm

Sp≥0

8<
: ð4Þ

where ‖ ⋅‖0 denotes the l0 norm. Because of the combinatorial
difficulty and the exponential complexity, l0 norm is usually
equivalent to the l1 norm regularization problem based on the
compressive sensing theory [16]:

min ‖Sp‖1
s:t: ΑSp = Φm

Sp≥0
:

8><
>: ð5Þ

In order to solve the l1 norm problem, the linear programming
problem (5) should be translated into the following standard form,
the primal and its dual form [20,22,31]:

P : mincTx

s:t: Αx = b

x≥ 0

D : max bTy

s:t:ΑTy + s = c
s≥ 0

8><
>:

8><
>: ð6Þ

where c, s and x are vectors in Rn, b and y are vectors in Rm, and Α is an
m×n matrix. Here x and bstand for Sp and Φm respectively. Given a
feasible solution x of P and a feasible solution (y,s) of D, the duality
gap is simply obtained as:

cTx−bTy = xTs≥0: ð7Þ

Let us introduce a logarithmic barrier term for P. For barrier
parameter θN0, we obtain:

P θð Þ : min cTx−θ∑n
j = 1 In xj

s:t: Ax = b

x≥ 0:

8><
>: ð8Þ

Because the gradient of the objective function P(θ) is c−θX−1e
(where e is the vector of ones), the KKT conditions for P(θ) are [20]:

Αx = b; x N 0
ΑTy + s = c
XSe= θ−e = 0

8<
: ð9Þ

where X is a n×n diagonal matrix whose diagonal entries are
precisely the components of x; S is the n×n diagonal matrix whose
diagonal entries are precisely the components of s, and s is defined by
s=θX−1e.

From (9), we obtain that if (x,y,s) is a solution of (9), then x is
feasible for P, (y,s)is feasible for D, and the resulting duality gap is:

xTs = eTX S e = θ n: ð10Þ

This suggests that we tried solving P(θ) for a variety of values of θ
as θ→0.

Assuming the next feasible point is x; y; sð Þ, we calculated the
primal-dual Newton direction (Δx,Δy,Δs) based on the Newton



Fig. 1. Heterogeneous phantom. (a) A heterogeneous phantom with a single light
source, consisting of muscle, lungs, heart, bone, liver and the source in the right lung;
(b) The initial mesh used in the adaptive FEM algorithm.

Table 1
Optical parameters of the heterogeneous phantom [30].

Tissue μa (mm−1) μ′s (mm−1)

Muscle 0.010 0.400
Heart 0.200 2.400
Lungs 0.350 1.380
Liver 0.035 0.600
Bone 0.002 2.000
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method. Because x; y; sð Þ satisfies (10), we obtain the following system
equation:

ΑΔx = b−Αx
ΑTΔy = c−ΑTy−s
SΔx + XΔs = θe−XSe

:

8<
: ð11Þ

By solving (11), we obtain the primal-dual Newton direction and a
new feasible point.

Based on the above analysis, we are motivated to develop the
primal-dual interior-point algorithm for BLT reconstruction. The
general framework for the proposed algorithm is described as follows:

Step 1: Initialization. Given that (x0,y0,s0,θ) satisfies x0N0, s0N0,
y0 is a random vector and θN0, step-factor h satisfies
0bhb1 and the tolerance parameter εN0. Set k←0.

Step 2: Check the following stopping criterions.

1ð Þ‖Αxk−b ‖ < ε
2ð Þ‖ΑTyk + sk−c‖ < ε:

3ð Þ sk
� �T

xk < ε

If one of the above three conditions is met, then the reconstruction
is stopped. If not, proceed.
Step 3: Shrink θ. Set θ←αθ for decreasing the parameter α∈(0,1).
Step 4: Compute the primal-dual Newton direction. Compute the

Newton direction (Δx,Δy,Δs) using (11) at (xk,yk,sk) for θ.
Step 5: Determine the step-sizes.

θP = min 1;h min
Δxj<0

xkj
−Δxj

( )( )
; θD = min 1;hmin

Δsj<0

skj
−Δsj

( )( )
:

Step 6: Update values.

xk+1
; yk+1

; sk+1
� �

← xk + θPΔx; y
k + θDΔy; s

k+1 + θDΔs
� �

:

Reset k←k+1 and return to Step 2.

3. Experiments and results

In this section, a series of verification experiments were designed
to evaluate our proposed reconstruction algorithm. In order to analyze
the results quantitatively, we defined the Location Error of the
distance between the actual and reconstructed source and the
Relative Error of the source density between the actual and
reconstructed source as follows:

Location Error =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þ2 + y−y0ð Þ2 + z−z0ð Þ2

q
Relative Error = jSrecon−Srealj= Sreal

where (x,y,z) is the coordinate of the reconstructed source with the
maximum density and (x0,y0,z0) is that of the actual source center;
Srecon and Sreal are the density of the reconstructed source and the
actual source respectively. All of the results were compared with the
conjugate gradient least square (CGLS) algorithm, which is a classical
method to solve the l2 norm problem. In all experiments, we set the
max iterations of the PDIP and CGLS to 10 and the initial values of x are
manually optimized between the zero vector and the vector of ones;
the initial values of y and s are the random vector; the barrier
parameter θ=1; the tolerance parameter ε=1e−8; the step-factor
h=0.99; the decreasing parameter α=0.1 and the regularization
parameter of CGLS is 1e−9. Both reconstruction algorithms were
coded in MATLAB and carried out on a personal computer with
2.66 GHz Intel Core 2 Quad CPU and 4 GB RAM.
3.1. Numerical experiment

We first considered two numerical cases to verify our proposed
method. In this part, a cylindrical heterogeneous phantom was
employed (30 mm height and 20 mm diameter). It contained five
kinds of materials to represent muscle, lungs, heart, bone and liver
respectively, as shown in Fig. 1(a) [11]. Optical parameters that came
from the literature [30] were assigned to each of the five components,
as listed in Table 1. Because the Monte Carlo (MC) method remains as
the gold standard for photon transport simulation in biological
tissues, the Molecular Optical Simulation Environment (MOSE),
which was developed based on the MC method, was used to obtain
the objective and reliable surface measured data in this section [32]. It
was difficult to obtain all of the surface data from the cylindrical
phantom in the imaging experiment, hence only the data on side of
the cylinder were used for source reconstruction in this paper.

In single source case, the phantomwas discretized into 3874 nodes
and 17763 tetrahedral elements. A solid sphere source with a 1 mm
radius and 0.238 nW/mm3 power density was centered at (3, 5, 0)
inside of the right lung as shown in Fig. 1(a). In the reconstruction
procedure, a coarse volumetric mesh shown in Fig. 1(b) was chosen as
the initial discretization of the phantom. Furthermore, in order to
reduce the number of unknown variables, the entire right lung was
specified as an a priori permissible source region.

After two steps of refining the procedure of the AFE framework, we
obtained the BLT reconstruction results using PDIP and CGLS
respectively, as shown in Fig. 2. The reconstructed location of our
proposed algorithm was (2.864, 4.618, and −0.068) with a location
error of 0.470 mm, and the reconstructed power density was
0.231 nW/mm3 with a relative error of 2.93%. In contrast, the
reconstructed location of the CGLS algorithm was (2.897, 7.025,
and−0.214) with a location error of 2.039 mm, and the reconstructed
power density was 0.127 nW/mm3with a relative error of 46.64%. It is
shown that the method proposed in this paper provided a superior
final result than the CGLS algorithm.



Fig. 2. Result comparisons between the actual and reconstructed sources using PDIP and CGLS in single source case. (a)–(d) are the reconstructed results by PDIP, (e)–(h) are the
reconstructed results using CGLS; (a) and (e) are 3D views, (b) and (f) are coronal views, (c) and (g) are axial views, and (d) and (h) are sagittal views.
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In the case of double source reconstruction, two solid sphere
sources with a 1 mm radius and 0.238 nW/mm3 power density were
centered at (3, 5, 2) and (3, 5,−2) inside of the right lung as shown in
Fig. 3. Result comparisons between the actual and reconstructed sources using PDIPandCGLS in
reconstructed results using CGLS; (a) and (d) are 3D views, (b) and (e) are coronal views, and
Fig. 3(a). The right lung was still specified as an a priori permissible
source region and the ultima mesh was 4002 nodes and 18,086
tetrahedral elements after two refined steps. The reconstruction
double source reconstruction. (a)–(c) are the reconstructed results byPDIP, (d)–(f) are the
(c) and (f) are sagittal views.

image of Fig.�2
image of Fig.�3


Fig. 4. Multi-view overlay images from photographs and photographic images (in pseudo color) of the mouse torso using a CCD camera in four directions, 90° apart. (a)–(d)
Anterior–posterior, right lateral, left lateral, and posterior–anterior views respectively.
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results using PDIP and CGLS are shown in Fig. 3. The reconstructed
locations of PDIP were (3.528, 4.779, and 1.754) and (3.394, 3.800,
and−0.702) with the location errors of 0.626 mm and 1.811 mm, and
the reconstructed power densities were 0.225 nW/mm3 and
0.252 nW/mm3 with the relative errors of 5.46% and 5.88%. In
contrast, the reconstructed locations of the CGLS were (2.500, 3.862,
and 0.326) and (2.194, 5.396, and−1.158) with the location errors of
2.327 mmand 1.231 mm, and the reconstructed power densities were
4.429 nW/mm3 and 4.477 nW/mm3. In Fig. 3(a)–(c), we can see that
the two sources can be accurately distinguished by PDIP, but the
reconstructed sources of CGLS are close to each other in Fig. 3(d)–(f).
The reconstructed results demonstrated that the PDIP method can
bring good spatial resolution and satisfactory quantitative results.
3.2. In vivo experiment

An in vivo experimentwas presented here to verify the performance
of the proposedmethod for mouse applications. A catheter containing a
luminescent liquidwas implanted into a livingmouse as the test source.
The luminescent liquid was extracted from a luminescent mini
Glowproducts stick (Glowproducts, Victoria, Canada) with an emission
peak wavelength of about 644 nm, whose emission spectrum is similar
to the in vivo spectrum of a firefly luciferase-based source. The light
source was 2.7 mm in diameter and 5.1 mm in length, with an initial
power density of 60 nW/mm3. Two dimensional photographic images
of the surface emitted photon fluxwere captured using a BLT prototype
imaging system as shown in Fig. 4. The CCD camera in the experimental
system was calibrated by an integrating sphere of 12 in. in diameter
(USS-1200V-LL Low-Light Uniform Source, Labsphere, North Sutton,
NH) [33]. Meanwhile, luminescent images performed the mapping to
the object surface and processed them as normalized results [34].

The mouse torso section was scanned using micro-CT and
segmented into major anatomical components, including muscle,
heart, lungs, liver and kidneys. The optical parameters of each organ
are listed in Table 2 [5]. In the mouse experiment, the coordinates
(19.68, 18.40, and 19.20) of the actual source's center were obtained
by micro-CT scanning. The permissible source region was set to be
P={(x,y,z)|0bxb100,15byb21,10bzb30} according to the surface
photon flux distributionmapped from two-dimensional photographic
images. The model was discretized into 6503 nodes and 32578
tetrahedral elements. The reconstruction results are shown in Fig. 5.
Table 2
Optical parameters of the organs of the mouse [5].

Organ μa (mm−1) μ′s (mm−1)

Muscle 0.009 1.258
Heart 0.138 1.077
Lungs 0.460 2.265
Liver 0.829 0.736
Kidney 0.155 2.533
The reconstructed location of our proposed algorithm was (20.06,
18.85, and 18.95) with a location error of 0.64 mm, and the
reconstructed power density was 56.638 nW/mm3 with a relative
error of 5.60%. The reconstructed location of the CGLS algorithm was
(19.82, 14.29, and 19.33) with a location error of 4.11 mm, and the
reconstructed power density was 2.61 nW/mm3 with a relative error
of 95.65%. As shown in Fig. 5(g) and (h), we see that the reconstructed
source is near the edge of the mouse torso. In contrast, we obtained
good results by utilizing the proposed method in Fig. 5(c) and (d). In
the in vivo experiment, the PDIP achieved better reconstruction than
the CGLS in localization and quantification of the luminescence
source.

4. Conclusion and discussion

Because of the ill-posedness of the BLT inverse problem, multiple
solutions and aberrant source reconstructions are frequent problems.
Therefore, regularization methods are generally adopted to ease ill-
posedness in the inverse problem. Among these methods, l1 regulariza-
tion has become apowerful tool for solving the underdetermined inverse
problembecause of the inherent sparse distribution characteristics of the
bioluminescence source and the insufficientmeasurement data in BLT. In
this paper, we presented an l1-norm-based primal-dual interior-point
method for the first time for the BLT inverse problem. In order to assess
and analyze the reliability of the proposed method, we carried out two
experiments.

In the numerical simulation, we used MC-based synthetic data to
reconstruct the BLT source. Despite the location error or the relative
error of the source density, PDIP yielded better results than that of
CGLS in the single source simulation. Although the multiple source
reconstruction was very challenging and unstable, the PDIP method
still obtained encouraging results compared to the CGLS method in
terms of spatial resolution and the quantitative results in double
source simulation. In the in vivo mouse experiment where the source
was in deeply embedded locations, PDIP still had more accurate and
robust results than CGLS. The experimental reconstructions further
showed the possibility of utilizing the PDIP method for complex in
vivo mouse BLT applications. We can see that the results of CGLS are
close to the edge of the permissible source region in Fig. 5. It is due to
the fact that PDIP is based on l1 regularization and the l1 regularization
method tends to provide better initial results and obtain more sparse
solutions than the l2 regularization method.

However, there is a limitation to the proposed method in that the
run time of PDIP still needs to be improved with respect to CGLS.
However, this problem could be solved if we consider continuation.
The idea of continuation has been shown to be a very successful tool to
improve the speed of convergence, especially when dealing with
large-scale problems and highly dynamic range signals.

In conclusion, we developed a new reconstruction method for
three-dimensional BLT and demonstrated its feasibility and accuracy
in numerical simulation and an in vivo experiment. In future work, we

image of Fig.�4


Fig. 5. Reconstructed results using PDIP and CGLS in the mouse experiment. (a)–(d) are the reconstructed results using PDIP, (e)–(h) are the reconstructed results using CGLS;
(a) and (e) are 3D views, (b) and (f) are coronal views, (c) and (g) are axial views, and (d) and (h) are sagittal views.
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will develop a new interior-point algorithm with the continuation
technique to improve the primal-dual interior-point method. In vivo
mouse tumor studies will be reported in the future as well.
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