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Background: Glypican 3 (GPC3) expression has proved to be a critical risk factor related to prognosis in hepatocellular car-
cinoma (HCC) patients.
Purpose: To investigate the performance of MRI-based radiomics signature in identifying GPC3-positive HCC.
Study Type: Retrospective.
Population: An initial cohort of 293 patients with pathologically confirmed HCC was involved in this study, and patients
were randomly divided into training (195) and validation (98) cohorts.
Field Strength/Sequences: Contrast-enhanced T1-weight MRI was performed with a 1.5T scanner.
Assessment: A total of 853 radiomic features were extracted from the volume imaging. Univariate analysis and Fisher scor-
ing were utilized for feature reduction. Subsequently, forward stepwise feature selection and radiomics signature building
were performed based on a support vector machine (SVM). Incorporating independent risk factors, a combined nomogram
was developed by multivariable logistic regression modeling.
Statistical Tests: The predictive performance of the nomogram was calculated using the area under the receive operating
characteristic curve (AUC). Decision curve analysis (DCA) was applied to estimate the clinical usefulness.
Results: The radiomics signature consisting of 10 selected features achieved good prediction efficacy (training cohort:
AUC = 0.879, validation cohort: AUC = 0.871). Additionally, the combined nomogram integrating independent clinical risk
factor α-fetoprotein (AFP) and radiomics signature showed improved calibration and prominent predictive performance
with AUCs of 0.926 and 0.914 in the training and validation cohorts, respectively.
Data Conclusion: The proposed MR-based radiomics signature is strongly related to GPC3-positive. The combined nomo-
gram incorporating AFP and radiomics signature may provide an effective tool for noninvasive and individualized predic-
tion of GPC3-positive in patients with HCC.
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HEPATOCELLULAR CARCINOMA (HCC) is the
most common primary hepatic malignancy and the sec-

ond cause of cancer mortality worldwide.1 The prognosis of
HCC has improved with advances in surgical resection and
imaging technology; however, there still remains a high
intrahepatic recurrence after hepatic resection.2 Glypican
3 (GPC3) is a 70 kDa cell-surface protein that belongs to
heparan sulfate proteoglycans and takes part in cellular
growth, migration, and differentiation.3,4 GPC3 is highly
expressed in HCC tissues but is negative in benign hepatic
diseases and adjacent normal liver tissue.5

Among the prognosis factors of HCC, GPC3 has been
shown to be closely related to metastasis/recurrence in
patients with HCC after operation.6 Indeed, GPC3 expres-
sion in HCC is a significant independent factor predicting
the poor prognosis for patients. GPC3 is involved in cellular
growth, migration, and differentiation. It may contribute to
angiogenesis, invasion, and apoptosis, possibly through its
interactions with the Wnt and Hedgehog pathways.7,8 More-
over, GPC3 has great promise to be an immunotherapeutic
target in monoclonal antibody-based HCC therapy, especially
for patients with advanced unresectable HCC and portal vein
tumor thrombus.9 Thus, in order to choose an optimal treat-
ment strategy, it is key to identify GPC3-positive HCCs as
early as possible.

One of the procedures for preoperative evaluation of
CPC3 is fine-needle biopsy. But as an invasive method and
has occasional complications, such as hemorrhage, local pain,
and pneumothorax.10 Additionally, the relationship between
tumor and peritumoral hepatic tissues cannot be adequately
assessed with a biopsy specimen due to unavoidable sampling
error.11 Fine-needle biopsy does not reflect the heterogeneity
of the entire tumor, and thus could lead to a false-negative
result of GPC3 expression. GPC3 can also be detected in the
serum of HCC patients, but the detection rate is limited.8 In
addition, the reported serum GPC3 levels in HCC and nor-
mal subjects were variable among previous studies.12–14 This
may suggest that an accurate result cannot be achieved when
detecting GPC3 in serum. For the abovementioned reasons,
we proposed to identify GPC3-positive HCC patients
through the use of noninvasive medical imaging.

Radiomics analysis with medical images has attracted
attention as an emerging technique in medical imaging analy-
sis in recent years.15,16 Radiomics can obtain a variety of
high-dimensional minable features that cannot be found with
human vision via a high-throughput extraction algorithm.17,18

These features may have the potential to capture intratumor
heterogeneity, which can reflect the tumor tissue microenvi-
ronment and the cancer phenotype.15 Recently, magnetic res-
onance imaging (MRI) has been successfully applied in
predicting the pathological grading of tumor, assessing the
malignancy and treatment response due to its advantages of
multiparametric, multiorientation imaging and the high

contrast of soft tissues.19–22 It was reported that the radiomics
signature based on contrast-enhanced MRI could act as an
imaging biomarker to predict the microvascular invasion of
HCC.23 However, to our best knowledge, few studies have
attempted to identify GPC3-positive HCC with a radiomics
signature.

Therefore, we aimed to investigate the performance of a
radiomics signature in identifying GPC3-positive HCC based
on contrast-enhanced MR images in this study.

Materials and Methods
Study Population and MRI Protocol
This study was approved by our Institutional Review Board and
written informed consent was waived for all participants. Patient
medical records were reviewed to identify the patients who under-
went liver dynamic MRI and subsequently underwent liver re-
section for HCC at our institution between April 2014 and
December 2017. The subject inclusion criteria were as follows: 1)
patients had single HCC at preoperative MRI; 2) patients had liver
MRI with optimal image quality; 3) an interval of less than 1 month
between MR examination and surgery; and 4) a pathologic report of
HCC and underwent routine immunochemical staining for GPC3.
The exclusion criteria for patients included: i) HCC lesion deter-
mined by three experienced radiologists was too small to displayed
clearly on MRI; or ii) patients received treatment previously, such as
transcatheter arterial chemoembolization, partial hepatectomy, che-
motherapy, radiation therapy, or needle biopsy. According to patho-
logic reports, all participants with a single HCC were categorized by
the presence or absence of GPC3 expression on immunochemical
staining. Finally, a total of 293 HCC lesions in 293 patients
(241 males and 52 females; mean age, 56.4� 10.0 years; range,
23–86 years) were identified in this study, consisting of 203 patients
with HCCs positive for GPC3 and 90 patients with HCCs negative
for GPC3. All 293 patients were divided randomly into two groups
at a ratio 2:1, including a training cohort with 195 patients
(160 males and 35 females; mean age, 56.2� 10.3 years; range,
23–86 years) and a validation cohort with 98 patients (81 males and
17 females; mean age, 57.0� 9.3 years; range, 29–76 years). We
used all the MR images that had been archived in the hospital’s pic-
ture archiving and communication system (PACS). The detailed
MRI protocol is explained in Supplementary Method 1.

Workflow
The radiomics workflow is summarized in Fig. 1, including tumor
segmentation, feature extraction, radiomics signature modeling, and
model analysis. First, a region of interest (ROI) was delineated man-
ually along the contours of the HCC lesions on each axial slice.
Then high-dimensional shape, intensity, and textural and wavelet
features were extracted. Next, feature selection and modeling were
performed for the development of the radiomics signature. Finally,
model analysis with different metrics evaluated the performance of
the developed models.

ROI Placement and Feature Extraction
Detailed descriptions of ROI placement and feature extraction are
presented in Supplementary Method 2. All the feature definition
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and extractions were performed by the guidelines of the Image Bio-
marker Standardisation Initiative.24 The processes of ROI placement
and feature extraction were performed on the whole cohort.

Radiomics Feature Selection and Signature
Modeling
In order to eliminate the effect of dimension differences of data, all
radiomic features were normalized to zero-mean and unit-variance,
with further analysis performed on these transformed variables. First,
a reproducibility analysis with 20 repeated segmented lesions was
performed to remove unstable features; the common features that
have reproducibility in both intra- and interobserver were adopted.
Second, univariable analysis with the Mann–Whitney U-test was
performed for each radiomic feature. Next, Fisher information was
conducted to determine the score of each feature. Finally, a support
vector machine (SVM) classifier was utilized for radiomics modeling.
The detailed processes including radiomics feature selection and sig-
nature modeling are described in Supplementary Method 3. All the
processes were implemented in the training cohort.

Nomogram Development and Validation
A combined model integrating clinical risk factors and radiomics sig-
nature with backward stepwise multivariable logistic regression analy-
sis was constructed using the training cohort data. In addition, to
provide an individual predictive graphical presentation, a nomogram
for the combined multivariable model was developed. The nomo-
gram could help calculate the predicted probability of
GPC3-positive for each individual patient. Furthermore, the calibra-
tion performance was assessed with the Hosmer–Lemeshow test.25

Decision curve analysis was performed to validate the clinical utility
of the nomogram.26 Net benefits at different thresholds were derived
by calculating the difference between the true-positive rate and false-
positive rate.

Model Evaluation and Comparison
The performance of the clinical model, radiomics signature, and
combined model were evaluated by receiver operating characteristics
curve (ROC) analysis in both the training and validation cohorts.
The predictive accuracy of each model was quantified with the area
under the curve (AUC). We compared different predictive perfor-
mance using the Delong test. The best cutoff value calculated with
Youden’s index of the predictive probability for each model in the
training cohort was given for classification of GPC3-positive and
-negative.27 Then, compared with the true GPC3 results, we calcu-
lated the evaluation indices of accuracy, sensitivity, and specificity. A
stratification analysis of the predictive nomogram in patients
grouped by age and sex was validated.

Model Robustness Test
To validate the robustness and reliability of the developed models
and results, we performed additional 10-fold cross-validation using
the whole cohort. The whole cohort was randomly partitioned into
10 equal-size subsamples. The same processes of feature analysis and
model building were executed on nine subsamples (training data)
and validated on the remaining one subsample (validation data). We
repeated this procedure 10 times and ensured that each of the
10 subsamples was used exactly once as the validation data.

Statistical Analysis
Univariable statistics analysis was performed for the clinicopathologic
risk factor selection. First, the normality assumption was tested for
each quantitative variable. Then, association between the quantita-
tive clinicopathologic factor and GPC3 was evaluated with a t-test
for variables in normal distribution or Mann–Whitney U-test for
variables in nonnormal distribution. Moreover, a qualitative clinico-
pathologic factor was evaluated using the chi-square test. Variables
with P < 0.05 in a statistics test in the training cohort was consid-
ered significantly related to GPC3, and subsequently entered into a
backward stepwise multivariable logistic regression analysis with the

FIGURE 1: Workflow for the radiomics analysis
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likelihood ratio test. Finally, the remaining variables after the multi-
variable analysis were regarded as potential risk factors and included
for clinical modeling in the training cohort.

Statistical analyses in this study were conducted with the soft-
ware IBM SPSS Statistics v. 20.0 (Armonk, NY) and R software
(v. 3.5.0, Vienna, Austria). A detailed description for R packages
used in statistics analysis are listed in Supplementary Method 4.

Results
Clinicopathologic Characteristics and Clinical
Modeling
The preoperative clinicopathologic information between
GPC3-positive and GPC3-negative patients in both training
and validation dataset are shown in Table 1. No significant
differences were observed between the training and validation
cohorts through all the clinical factors with P-values ranging
from 0.102 to 0.978.

Univariate analysis in the training cohort showed that
age, diameter, α-fetoprotein (AFP), total bilirubin (TBIL),
and hepatitis were significantly association with GPC3
(P < 0.05 in all cases). All the significant factors were entered
into the backward stepwise multivariable logistic regression
analysis. Finally, the diameter (odds ratio [OR] = 0.978; 95%
concordance index [CI]: 0.967–0.989, P < 0.05) and AFP
(OR = 4.311; 95% CI: 2.540–7.319; P < 0.05) were consid-
ered the independent risk factors for clinical model building
with logistic regression, while the age, TBIL, and hepatitis
were filtered out in the analysis. The clinical model yielded
an AUC of 0.815 (95% CI: 0.752–0.878) in the training
cohort and 0.758 (95% CI: 0.661–0.855) in the validation
cohort (Fig. 2).

Feature Selection and Radiomics Signature
Development
After the feature robustness analysis (Figure S1), we derived
215 and 224 radiomic features with intra- and inter-
correlation coefficients greater than 0.75 separately. Then the
180 robust features were adopted. Univariate analysis showed
that 168 features were significantly different between
GPC3-positive and GPC3-negative groups. Fisher scores of
the top-ranked 20 features are presented in Figure S2, and
the results of mean cross-validation AUCs with different fea-
ture numbers are plotted in Figure S3. It can be concluded
from the curve that the SVM classifier obtained the best dis-
crimination performance, with 10 features. The visualization
of the first-order statistical radiomics feature is shown in
Figure S4.

Diagnosis of Radiomics Signature
The radiomics signature showed a good discrimination ability
for GPC3 with an AUC of 0.879 (95% CI, 0.822–0.936) in
the training cohort and 0.871 (95% CI, 0.783–0.960) in the
validation cohort (Fig 2a,b). Meanwhile, the radiomics

signature for individual patients in both the GPC3-positive
and GPC3-negative groups are shown in Fig. 3a,b, indicating
a significant distribution difference (P < 0.05). Calculated
with the Youden Index, the best cutoff value of the radiomics
signature was 0.539. Classified by the cutoff value, an accu-
racy of 83.1% and 75.5% were obtained in the training and
validation cohorts, respectively. Detailed predictive perfor-
mance of the radiomics signature is shown in Table 2.

Performance of the Combined Model
After the backward stepwise selection, the AFP and radiomics
signature were selected as significant predictors for GPC3 and
remained in the combined model. The combined model
yielded an AUC of 0.926 (95% CI, 0.884–0.969) in the
training cohort, and an AUC of 0.914 (95% CI,
0.848–0.980) in the validation cohort, which were signifi-
cantly better than the clinical results (P < 0.05). Moreover,
the model had good accuracies for predicting the GPC3 in
the training (accuracy: 86.7%; sensitivity: 86.7%, specificity:
86.7%) and the validation (accuracy: 79.6%; sensitivity:
73.5%, specificity: 93.3%) cohorts (Table 2). Stratification
analysis also showed good performance in both subgroups of
age and sex (Table S1). ROC curves of the clinical model,
radiomics signature, and combined models are shown in
Fig. 2. The classification results for all the patients of each
model are presented in Table S2. The results of robustness
and the reliability test of the developed models with 10-fold
cross-validation are shown in Tables S3 and S4. Stable and
powerful prediction performance of the combined model in
training cohort (mean AUC� standard deviation [SD],
0.939 � 0.011) and validation cohort (mean AUC�SD,
0.921 � 0.027) were obtained.

Development and Validation of the Nomogram
The developed nomogram is shown in Fig. 4a. The distribu-
tion of our nomogram predicted probabilities for each patient
with the recommend threshold in GPC3-positive and
GPC3-negative groups is presented in Fig. 3c,d. The thresh-
old to differentiate GPC3 was 0.703 as calculated by the
Youden Index. Calibration curves are shown in Fig. 4b,c,
with good agreement in both the training (P > 0.221) and
the validation (P > 0.394) cohorts. The results of the decision
curve analysis for clinical and combined models are shown in
Fig. 5. The predictive nomogram obtained more net benefits
than the clinical model and “treat-all” or “treat-none” strate-
gies for most of the threshold probabilities (P > 1%).

Discussion
In this retrospective study we proposed and validated a com-
bined nomogram that could preoperatively diagnose
GPC3-positive HCC patients with MR images. The com-
bined nomogram, integrating the radiomics signature and
clinical risk factor AFP, showed more competitive
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performance in the training and validation cohorts compared
with the clinical and radiomic predictive models alone. More-
over, nomograms displayed high sensitivity in both patient
cohorts, which suggested a higher detected rate of
GPC3-postive, especially compared with the serum screening
for GPC3.5 Thus, we consider the nomogram as an effective

tool for preoperative noninvasive and individualized predic-
tion of GPC3-positive in HCC patients.

GPC3 has become a novel tumor biomarker for HCC
since first identified in 1988 by Filmus et al.28 Although
GPC3 has been explored as a clinical diagnostic factor for
HCC in many previous studies, few studies proposed effective

TABLE 1. Patient Characteristics in the Training and Validation Cohorts

Characteristics

Training dataset (N = 195) Validation dataset (N = 98)

P
GPC3 (+) GPC3 (−) P GPC3 (+) GPC3 (−) P

Age (years) 55�10 60�9 <0.05 55�9 60�9 0.061 0.526

Diameter (mm) 50�31 66�33 <0.05 55�34 56�30 0.989 0.922

ALT (U/L) 44�64 45�36 0.883 42�33 39�30 0.606 0.628

Sex 0.926 0.645 0.899

Male 111 (82.2) 49 (81.7) 57 (83.8) 24 (80.0)

Female 24 (17.8) 11 (18.3) 11 (16.2) 6 (20.0)

AFP (ng/ml) <0.05 <0.05 0.730

<20 42 (31.1) 43 (71.7) 22 (32.4) 22 (73.3)

20–400 34 (25.2) 12 (20.0) 20 (29.4) 6 (20.0)

>400 59 (43.7) 5 (8.3) 26 (38.2) 2 (6.7)

ALB (g/L) 0.128 0.773 0.227

<40 29 (21.5) 19 (31.7) 13 (19.1) 5 (16.7)

>40 106 (78.5) 41 (68.3) 55 (80.9) 25 (83.3)

TBIL (μmol/L) <0.05 0.050 0.827

<21 97 (71.9) 52 (86.7) 49 (72.1) 27 (90.0)

>21 38 (28.1) 8 (13.3) 19 (27.9) 3 (10.0)

Hepatitis <0.05 0.367 0.517

Absent 37 (27.4) 28 (46.7) 22 (32.4) 7 (23.3)

Present 98 (72.6) 32 (53.3) 46 (67.6) 23 (76.7)

Cirrhosis 0.060 0.609 0.102

Absent 28 (20.7) 20 (33.3) 24 (35.3) 9 (30.0)

Present 107 (79.3) 40 (66.7) 44 (64.7) 21 (70.0)

Ascites 0.672 0.381 0.896

Absent 112 (83.0) 52 (86.7) 59 (86.8) 24 (80.0)

Present 23 (17.0) 8 (13.3) 9 (13.2) 6 (20.0)

Total 135 (69.2) 60 (30.8) — 68 (69.4) 30 (30.6) — 0.978

GPC3 (+), GPC3-positive; GPC3 (−), GPC3-negative; ALT, alanine aminotransferase; AFP, α-fetoprotein; albumin, ALB; TBIL, total
bilirubin. Qualitative variables are in n (%) and analyzed using the chi-square or Fisher’s exact tests, while quantitative variables are in
mean�SD and analyzed using t-test or Mann–Whitney U-test, as appropriate. P represents the result of statistics test between GPC3 (+)
and GPC3 (−). P represents the results of statistics test between the training and validation cohorts.
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quantitative predictors to identify GPC3 expression. Fu et al
explored the relationship between 15 clinicopathologic char-
acteristics and GPC3 expression, finding that tumor number,
AFP level, and TNM stage were significantly associated with
GPC3.29 Yasuda et al found that GPC3 expression tended to

increase with decreasing differentiation of HCC.30 However,
these studies did only a statistical correlation analysis without
developing a model and assessing the predicted performance.

In this work we utilized radiomic features of the 3D pri-
mary tumor to predict GPC3-positive in HCC. Compared

FIGURE 2: Comparison of receiver operating characteristics (ROC) curves for prediction of GPC-3 expression. ROC curves of the
radiomics signature, clinical model, and combined model in training (a) and validation (b) cohorts

FIGURE 3: The predicted distribution of patients in GPC3-positive and GPC3-negative groups. The radiomics signature for individual
patients in GPC3-positive and GPC3-negative groups in the training (a) and validation (b) cohorts. The predicted probabilities of
nomogram for individual patients in GPC3-positive and GPC3-negative groups in the training (c) and validation (d) cohorts. The
dashed lines represent the thresholds used for the classification of GPC3 expression for each patient
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with 2D tumor slice, the 3D tumor volume might provide
more complete shape information and contain more repre-
sentative information of tumor heterogeneity.31,32

In the analysis presented here, all of the selected fea-
tures were wavelet features derived from imaging after
wavelet filtering; this indicated the effectiveness of wavelet
decompositions from the original image. The features in
the wavelet domain focused on different frequency ranges,
which can distinguish the difference of the tumor micro-
environment.15 Specifically, tumor features with high fre-
quency reflected the tumor edge and detailed information,
while features with low frequency obtained the tumor out-
line information and filtered the noise at the same time.
Furthermore, we discovered one feature, “wavelet-
HLH_firstorder_Range,” that corresponded to the biologi-
cal characteristics. The range of the intensity histogram
represents the discrete degree of gray level in different
tumor areas on the image, and the variance between the
GPC3-positive and GPC3-negative HCC could be attrib-
uted to intratumoral heterogeneity (eg, angiogenesis, inva-
sion, and apoptosis) involved with GPC3 expression.7,8

During the construction of the clinical model, the
potential clinical risk factor of AFP level showed a signifi-
cant correlation with GPC3-positive, which is consistent
with previous studies.33,34 Moreover, it was found that the
levels of GPC3 mRNA in HCC tissue were correlated
with the serum AFP level.34 GPC3 and AFP may share
the transcription factors zinc fingers, AFP regulator
2 (Arf2), and homeoboxes 2 (Zfh2), because some other
tumors such as Yolksac tumors produce both AFP and
GPC3.35,36

The radiomics signature comprised of all the selected
radiomic features showed superior performance in
predicting GPC3. In addition, the combined model inte-
grated with clinical risk factors and a radiomics signature
yielded improved performance remarkably. This suggested
the complementary power of the radiomics and clinical
signatures, which could be due to the fact that radiology
can capture the phenotype of tumor at a macroscopic
level, while the histopathology can provide the detailed
quantification of underlying biological process at a micro-
scopic level.

Finally, to explore clinical use, we provided the com-
bined nomogram as an easy-to-use visual tool to calculate
the predictive probability of GPC3-positive. According to
the nomogram-predicted probability, patients could be
stratified into high- and low-risk groups. For those
patients with low risk, they can not only avoid unneces-
sary medical examination or therapy, but also reduce the
burden of follow-up costs. Therefore, the nomogram
could provide effective treatment guidance to assist clini-
cians for cancer management.
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Limitations
Our study has several limitations. First, as this is a single-
center study, external validation through a multisite study is
required to assess the generalizability of results. Secondly, we
did not include genomic factors related with GPC3, which
may provide additional information for GPC3 prediction.
Lastly, it should be noted that the multimodal radiological
data were not included in this research. In the future, MRI
and CT data could be incorporated to explore the predicted
performance of GPC3.

Conclusion
Our study shows that a radiomics signature based on

contrast-enhanced MR images can be used as a preoperative
predictor for identifying GPC3-positive HCCs, which may
enable clinicians to choose optimal and individual treatment
strategies to improve clinical outcomes.
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FIGURE 4: Nomogram and calibration analysis. (a) The nomogram based on the combined model incorporating clinical risk factor
AFP and the radiomic signature. Calibration curves for the (b) training and (c) validation cohorts. The y-axis represents the actual
rate of GPC3-postive in the patients; x-axis represents the nomogram-predicted probability of GPC3-positive. The blue diagonal
solid line means an ideal agreement fitted by a perfect model

FIGURE 5: Decision curves for the combined model and clinical
model in the training cohorts. The y-axis represents the net
benefit; x-axis represents the threshold probability. The orange
line measures the benefit for the combined model, and the
green line measures the benefit for the clinical model. The blue
and black lines represent the “treat all” and “treat none”
strategies, respectively
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