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Disturbance observer–based super-
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Abstract
This paper presents a super-twisting sliding mode control method for the formation maneuvers of multiple robots. In
the real world of applications, the robots suffer from many uncertainties and disturbances that trouble the super-twisting
sliding mode formation maneuvers very much. Especially, this issue has the adverse effects on the formation performance
when the uncertainties and disturbances have an unknown bound. This paper focuses on this issue and utilizes the tech-
nique of disturbance observer to meet this challenge. In terms of the leader–follower framework, this paper investigates
the integration of the super-twisting sliding mode control method and the disturbance observer technique. This kind of
formation design has the guaranteed closed-loop stability in the sense of Lyapunov. Some simulations are implemented
through a multi-robot platform. The results demonstrate that the superiority of the formation design regardless of
uncertainties and disturbances.
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Introduction

Recently, multi-robot systems have paid great atten-
tion.1 Compared with a complex robot, multi-robot
systems are of merit. Not only such systems simplify
individual robots, but also they are a platform to dis-
play collective behaviors.2,3 Multi-robot systems have
broad applications, including but not limited to search
and rescue, military reconnaissance, and collaborative
projects.4,5

In many cases, the achievement of a given task needs
to form up multiple robots according to some patterns.
In order to coordinate and supervise the robots, the
formation problem raises up.6 This problem is rooted
from some biological systems. In weird nature, schools
of fishes in swimming always form up some patterns in
order to protect themselves as well as team of ants in
moving.7,8 As far as these biological systems are con-
cerned, their formation patterns demonstrate strict
hierarchy and high robustness because of the inherent
existence of a certain formation mechanism.

Similarly, a multi-robot system also desires such a
mechanism to coordinate the robots. It is reported that
some typical mechanisms have been developed for

multiple robots, that is, the virtual structure technique,
the behavior-based algorithm, the artificial potential
field approach, and the leader–follower framework.9

Although the leader–follower framework among these
typical mechanisms is criticized for its drawback of
‘‘single point of failure,’’10 this framework is well struc-
tured and even friendly from the aspect of control
design. Especially, the leader–follower framework has
visibly blossomed for the small- and medium-scale for-
mation problem. Consequently, this paper does not
focus on how to design a novel formation mechanism,
but it works at the formation control design.
Consequently, the leader–follower framework is
directly adopted.

Considering the individual robots of a multi-robot
system, they suffer from uncertainties and disturbances
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from the viewpoint of reality. Without doubt, the for-
mation dynamics of this multi-robot system become
uncertain.11,12 Affected by the adverse factors, the for-
mation control problem of the multiple robots becomes
interesting and challenging. Some control strategies
have been reported, that is, iterative learning–based
control methods,13,14 model predictive formation con-
trol,15 type-2 fuzzy formation control,16,17 and so on.

The sliding mode control is a synthetic tool. It is
alternative for the formation problem of uncertain
multi-robot systems. Hitherto, some sliding mode–
based control methods have been presented in the for-
mation field of multiple robots, that is, the first-order
sliding mode control,18,19 the integral sliding mode con-
trol,8 the derivative and integral terminal sliding mode
control,4 and the terminal sliding mode control.20 With
regard to the sliding mode control, its invariance is the
most attractive property. This property can guarantee
that a sliding mode control system is completely robust
despite the matched uncertainties and disturbances.21

Actually, the sliding mode control is not perfect, and
it is confronted with the dilemma of chattering. As a
result, many ideas have been devoted to the decrease
and elimination of chattering. Among these ideas, the
super-twisting–based sliding mode control technique is
advocated. Partly, it only needs the information of a
sliding mode variable, and it gets rid of the dependence
on the time derivative of this sliding mode variable.22

On the assumption that the bound of uncertainties
and disturbances is known, this technique is able to
effectively force the sliding mode variable and its time
derivative to the origin in finite time.23,24

Unfortunately, this assumption is not mild in terms of
uncertain multi-robot systems. In reality, one has to
overestimate this bound from the aspect of the closed-
loop formation stability.25,26 However, the overesti-
mate definitely enlarges the gain of the super-twisting
sliding mode control technique. A potential solution is
to design a module that can estimate these uncertainties
and disturbances.

Motivated by this solution, the disturbance observer
technique27 is taken into consideration. Inherently, the
technique is a kind of compensation mechanisms
because it can estimate the uncertainties and distur-
bances via some measurable information. The tech-
nique can contribute to the ability of disturbance
attenuation for a control system. Concerning the super-
twisting sliding mode formation maneuvers, it is possi-
ble to avoid the overestimate problem of the gain by the
disturbance observer technique. So far, it is reported
that the disturbance observer technique has been suc-
cessfully applied to mechatronics systems,28–31 chemical
and process systems,32 biological systems,33 aerospace
systems,34 and so on. This paper adopts the technique
for the super-twisting sliding mode formation maneu-
vers of uncertain multi-robot systems. The purpose is to

refine the formation performance when the bound of
the uncertainties and disturbances is unknown.

The remainder of this paper is organized as follows.
Section ‘‘Formation model’’ models both a mobile
robot and a leader–follower pair. Section ‘‘Formation
design’’ addresses the super-twisting sliding mode con-
trol, adopts the disturbance observer technique to esti-
mate the uncertainties and disturbances, and analyzes
the closed-loop formation stability in the sense of
Lyapunov. Section ‘‘Simulation results’’ implements the
presented control method on a multi-robot system plat-
form, and also illustrates some numerical results and
comparisons. Finally, section ‘‘Conclusion’’ draws the
conclusion.

Formation model

A mobile robot

The unicycle-like robot in Figure 1 moves in the hori-
zontal plane. It is round and the diameter is 2r. Its two
parallel wheels have a same axis, independently con-
trolled by two direct current motors. The robot can
simultaneously rotate and translate, which is described
by

q= x y u½ �T ð1Þ

In equation (1), (x and y) located at the center of the
robot represents its translational coordinates and u

indicates its rotational coordinate. To know the posi-
tion, a positioning sensor at the front castor of this
robot is set up. The axis of the sensor is orthogonal to
the axis of the two wheels.

On the assumption of pure rolling and no slipping,
the ideal kinematic model of this robot4,8 has the form
of

_q=
_x
_y
_u

2
4
3
5= cos u 0

sin u 0
0 1

2
4

3
5 � v

v

� �
ð2Þ

s:t: _x sin u� _y cos u=0 ð3Þ

Figure 1. Sketches of the unicycle-like robot.
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where v is the robot’s linear velocity in the x–y coordi-
nates and v represents the angular velocity. The direc-
tions of the two vectors are that v is positive when the
robot moves in the positive direction of the x-axis and
that v is positive when the robot rotates
counterclockwise.

Concerning the constraint (3), the time derivative of
equation (2), namely, the ideal dynamic model, can be
written as

€x
€y
€u

2
4
3
5=

� _y _u
_x _u
0

2
4

3
5+

cos u 0
sin u 0
0 1

2
4

3
5 � u ð4Þ

In equation (4), u= ½ _v _v �T, in which the derivatives
of v and v represent the acceleration and the angular
acceleration of the robot, respectively.

Since the robot in reality suffers from a variety of
uncertainties and disturbances—for example, friction,
slip, and slide shift—the real dynamic model8 can be
derived from equation (4)

€x
€y
€u

2
4
3
5=

� _y _u
_x _u
0

2
4

3
5+

cos u 0
sin u 0
0 1

2
4

3
5�(u+D � u)+p q, _qð Þ

ð5Þ

In equation (5), the term p(q, _q) represents the lumped
uncertainties and disturbances, which is defined by

p q, _qð Þ= px py pu½ �T

where px,py, and pu are the functions of the vectors
q and _q. D indicates the physical parameter changes of
this robot, which is described by

D=
e 0
0 e0

� �

where e and e0 are the changes of the mass and the iner-
tia of the robot, respectively.

A leader–follower pair

Consider a multi-robot system containing N robots.
Each robot is the same as the robot in Figure 1.
Without loss of generality, the robot i is selected as the
leader, and it makes up N2 1 leader–follower pairs
with the left robots. Figure 2 illustrates such a leader–
follower pair made of the leader i and the follower k.8

In Figure 2, the subscript i is adopted to label the
individual variables of the leader, the subscript k is
employed to describe the individual variables of the fol-
lower, and the subscript ik is used for the relative vari-
ables of this pair. Here, the relative distance lik means
the distance between the leader’s center and the fol-
lower’s front castor, which is formulated by

lik =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � �xkð Þ2 + yi � �ykð Þ2

q
ð6Þ

where

�xk = xk + r cos uk

�yk = yk + r sin uk

The relative bearing angle cik of the leader–follower
pair is determined by

cik =p + zik � ui ð7Þ

where

zik = arctan
yi � yk � r sin uk

xi � xk � r cos uk

The purpose of the paper is to investigate the super-
twisting sliding mode formation maneuvers of this
multi-robot system via extreme learning machine
(ELM). Motivated by the purpose, the formation
objective of the leader–follower scheme is that each
leader–follower pair of the multi-robot system has to
keep the desired relative distance and the desired rela-
tive bearing angle in spite of uncertainties and distur-
bances. In order to focus on the objective, we consider
some ideal conditions as follows: (1) there are neither
collisions nor communication delays; and (2) the fol-
lower is well-known, that is, it knows its position and
velocity, meanwhile, it can obtain the position and the
velocity of the leader as well.

Formation dynamics by the first-order and second-
order differential equations

Let

Tik = lik cik½ �T ð8Þ

In equation (8), the second derivatives of lik andcik with
respect to time can be written by

€Tik =Gikuk +Dik ð9Þ

where

Figure 2. Sketches of a leader–follower pair.
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Gik =
cosuik r sinuik

� sinuik

lik

r cosuik

lik

" #

Lik =
� coscik 0

sincik

lik
�1

" #

Dik = Dik, 1 Dik, 2½ �T =GikDkuk +Lik I2 +Dið Þui
+Fik +Pik

Fik =
F1

F2

� �

Pik =
P1

P2

� �
ð10Þ

In equation (10), I2 2 <232 is an identity matrix;
uik=cik+ uik; and F1, F2, P1, and P2 have the form of

F1 = _cik

� �2
lik +2 _cik

_uilik + _ui

� �2
lik � r cosuik

_uk

� �2 � _yk _uk � _yi _ui

� �
cos cik + _ui

� �
� _xi _ui � _xk _uk

� �
sin cik + uið Þ

F2 =
� _yk _uik � _cik _yi
� �

sin cik + uið Þ � r _uk _uik sinuik

lik

� _xk _uik � _cik _xi
� �

cos cik + uið Þ+ iik _yi � _ykð Þ cos cik + uið Þ � _xi � _xkð Þ sin cik + u
i

ð Þ � r _uk _uik cosuik

� �
lik

P1 = � pix � pkxð Þ cos cik + uið Þ � piy � pky

� �
sin cik + uið Þ+ rpku sinuik

P2 =
pix � pkxð Þ sin cik + uið Þ � piy � pky

� �
cos cik + uið Þ+ rpku sinuik � likpiu

lik

Assumption 1. The vector Dik 2 <231 in equation (9)
contains two parts, which is depicted by

Dik =Dik0 +Dik1 ð11Þ

Here, their N-norm satisfy

Dik0k k‘4�d1 and _Dik1

�� ��
‘
4�d2 ð12Þ

where Dik0 is the time-invariable part, and Dik1 is the
time-variable part; both the parts are bounded, but
�d1 and d2 are unknown.

Define a vector xik=[x1x2x3x4]
T. Let x1 = lik,

x2 = _lik, x3 =cik, andx4 = _cik. According to the for-
mation objective, the relative distance lik and the rela-
tive bearing angle cik are determined as the formation
control output. Then, the formation dynamics of this
leader–follower pair in light of the leader–follower
scheme can have the form of

_xik = f xik, dik,Dkð Þ+ g xikð Þuk
yik = h xikð Þ

ð13Þ

where xik is the system state vector, and yik is the system
output vector. Furthermore

f xik, dik,Dkð Þ=Aikxik +Bik, 2dik
g xikð Þ=Bik, 1

ð14Þ

Aik, Bik,1, Bik,2, and h(xik) are depicted by

Aik =

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

2
664

3
775, Bik, 2 =

0 0
1 0
0 0
0 1

2
664

3
775,

Bik, 1 =

0 0
cosuik r sinuik

0 0
� sinuik

lik

r cosuik

lik

2
664

3
775, h xikð Þ= x1

x3

� �

dik has the form of

dik =Bik, 1Dkuk +Lik I2 +Dið Þui +Fik +Pik ð15Þ

In equation (15)

Lik =

0 0
� coscik 0

0 0
sincik

lik
�1

2
664

3
775, Fik=

0
F1

0
F2

2
664

3
775, Pik=

0
P1

0
P2

2
664

3
775

Both equations (9) and (13) describe the formation
dynamics, where equation (9) is in the form of the
second-order differential equations, and equation (13)
has the expressions of the first-order differential equa-
tions. Inherently, they are equivalent to each other, and
both of them can help the following control design.

Formation design

Sliding surfaces and input–output dynamics

The super-twisting law is a powerful and effective tech-
nique that can realize the second-order sliding mode
control design. The technique can effectively deal with
the controlled plant with a relative degree equal to one
with respect to the control input. With regard to the
matched uncertainties and disturbances, it can make
the sliding mode variable and its time derivative con-
vergent to the origin in finite time. Consequently, we
consider this technique as a solution for formation
maneuvers of the leader–follower pair in Figure 2. In
order to implement the control design, the sliding
surfaces—that is, the sliding mode vector—have to be
predefined
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sik =
sik, 1
sik, 2

� �
=C1eik +C2 _eik ð16Þ

where eik = ½ lik cik �T � ½ ldik cd
ik �

T, with ldik andcd
ik

being the desired relative distance and the desired rela-
tive bearing angle of the leader–follower pair, respec-
tively. C1 andC2 are the 23 2 constant diagonal
matrices, which are given by

C1 = c1I2 and C2 = c2I2 ð17Þ

where both c1 and c2 are the positive and the predefined
constants.

Differentiate sik in equation (16) with the respect to
time and substitute the formation dynamics equation
(9) into the derivative of sik. Then, the input–output
dynamics are determined by

_sik =C1 _eik +C2€eik ð18Þ

Substituting equation (9) into equation (18) yields

_sik =C1 _eikik +C2Dik +C2Gikuk ð19Þ

In order to achieve the super-twisting sliding mode
control design, the first step is to calculate the relative
degree of the dynamics equation (14) with respect to the
control input. From equations (16) and (19), we obtain

∂sik

∂uk
=0 and

∂_sik
∂uk

=C2Gik 6¼ 0 ð20Þ

From equation (20), it is apparent that the relative
degree of sik with respect to uk is equal to 1. In other
words, the super-twisting sliding mode control design is
available for formation maneuvers under the leader–
follower scheme.

Super-twisting sliding mode control design

Let _sik=-k in equation (17). Then, the super-twisting
sliding mode control for the nominal formation of the
leader–follower pair can be designed as

uk = C2Gikð Þ�1 -k � C1 _eikð Þ ð21Þ

where

-k =-k1 +-k2

-k1 = � ak

ffiffiffiffiffiffiffiffiffiffiffiffi
sikk k2

q
sgn sikð Þ and -k2 = � xksgn sikð Þ

ð22Þ

In equation (21), ak andxk are positive, which need to
be predefined. The signum function sgn(sik) in equation
(22) is defined by sgn(sik)= ½ sgn(sik, 1) sgn(sik, 2) �T.
Select a Lyapunov function equation (23)

V0 = sikk k2 ð23Þ

Note sikk k1 = sTiksgn(sik) and
Ð t
0 sgn(sik)dt=sgn(sik)Ð t

0 dt. On Assumption 1, substituting equations (21)
and (22) into the time derivative of equation (23)
yields

_V0 =
sTik _sik
sikk k2

=
sTik
sikk k2

C1 _eik +C2Dik +C2Gikukð Þ

=
sTik
sikk k2

-k +C2Dikð Þ

=
sTik
sikk k2

�ak

ffiffiffiffiffiffiffiffiffiffiffiffi
sikk k2

q
sgn sikð Þ � xksgn sikð Þ

ðt
0

dt+C2Dik

0
@

1
A

= � ak

ffiffiffiffiffiffiffiffiffiffiffiffi
sikk k2

p
sikk k2

sikk k1 �
xk

sikk k2
sikk k1

ðt
0

dt+ c2
sTik
sikk k2

Dik0 +Dik1ð Þ

= � ak

ffiffiffiffiffiffiffiffiffiffiffiffi
sikk k2

p
sikk k2

sikk k1 + c2
sTik
sikk k2

Dik0 �
xk

sikk k2
sikk k1

ðt
0

dt+ c2
sTik
sikk k2

ðt
0

_Dik1dt

4

ffiffiffiffiffiffiffiffiffiffiffiffi
sikk k2

p
sikk k2

sikk k1 �ak + c2d1ð Þ+ sikk k1
sikk k2

ðt
0

�xk + c2d2ð Þdt

ð24Þ

where d1 = �d=
ffiffiffiffiffiffiffiffiffiffiffiffi
jjsikjj2

p
1
.

Concerning equation (24), one can have _V0 \ 0 by
picking up ak andxk if d1 and d2 are known.
Unfortunately, these constants are hardly known in
advance, that is, equation (21) theoretically holds true
but it is not available in reality. In order to make equa-
tion (21) hold true, one possible approach is to overes-
timate ak andxk so that _V0 \ 0 can be guaranteed and
the closed-loop formation system can have the stability
in the sense of Lyapunov. However, the approach
inevitably enlarges the gain of the super-twisting sliding
mode control technique, which can definitely have the
adverse effects on the formation performance. For this
issue, this paper touches the disturbance observer tech-
nique and fuses it with the super-twisting sliding mode
control, where the disturbance observer can estimate
the uncertainties and disturbances online. Their inte-
gration can guarantee the formation stability while the
super-twisting sliding mode control technique can have
a suitable gain.

Design of disturbance observer

From equation (12), it is apparent that Dik contains two
parts, that is, the time-invariant and time-variant parts.
Concerning the time-invariant component Dik0, we have
_Dik0[0. For the time-variant component Dik1, we have
the following assumption.

Assumption 2. Compared with the dynamic characteris-
tics of the disturbance observer, the change rate of the
time-variable component Dik1 is slow, that is, _Dik1 ’ 0
exists in the formation dynamics from the viewpoint of
the observer dynamics.

The fulfillment of the disturbance observer needs to
define the observer dynamics so that we define the dis-
turbance observer as
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_pik= � LikBik, 2pik � Lik Bik, 2Likxik+Aikxik +Bik, 1ukð Þ
D̂ik= pik+Likxik

ð25Þ

where pik 2 <231 is the state vector of the disturbance
observer; D̂ik 2 <231 is the estimate of the real distur-
bance vector Dik; and Lik 2 <234 is the gain matrix of
the disturbance observer, which needs to be predefined
from the aspect of the observer stability.

Now, let us consider the observer stability. This dis-
turbance observer is employed to estimate the distur-
bances and uncertainties so that the estimate errors are
adopted to evaluate the observer stability. Define the
estimate error vector as

eDik = eDik, 1 eDik, 2½ �T =Dik � D̂ik ð26Þ

On Assumptions 1 and 2, the time derivative of eDik
in equation (26) yields

_eDik = _Dik � _̂
Dik

= _Dik0 + _Dik1 � _̂
Dik

’ �D̂ik = � _pik � Lik _xik

=LikBik, 2pik +Lik Bik, 2Likxik +Aikxik +Bik, 1ukð Þ
� Lik Aikxik +Bik, 1uk +Bik, 2dDikð Þ
=LikBik, 2 D̂ik � Likxik

� �
+Lik Bik, 2Likxik +Aikxik +Bik, 1ukð Þ
� Lik Aikxik +Bik, 1uk +Bik, 2Dikð Þ
=LikBik, 2 D̂ik � Dik

� �
= � LikBik, 2eDik

ð27Þ

The solution of _eDik = � LikBik, 2eDik has the form of

eDik = exp �Hiktð ÞeDik 0ð Þ ð28Þ

In equation (28), Hik=LikBik, 2. Select Lik so that all
the eigenvalues of Hik are positive. This fact indicates
that the estimate error eDik may be exponentially con-
vergent to ½ 0 0� T as t! ‘.

Super-twisting sliding mode control via disturbance
observer

With regard to the disturbance observer, _eDik is strictly
equal to �LikBik, 2eDik in equation (27). They are just
approximately equal. Thus, eDik in equation (27) can be
exponentially convergent to ½ 0 0� T as t! ‘ if eDik(0)
is finite. To deal with the issue, the following mild
assumption is taken into consideration.

Assumption 3. The estimate error vector eDik is bounded
by eDikk k‘4e�

D
, in which e�

D
. 0 is unknown.

In order to integrate the super-twisting sliding mode
control method and the disturbance observer technique,
we revise the sliding surfaces equation (16) and intro-
duce the estimate vector D̂ik into the sliding surfaces so
that the redefined sliding surfaces have the form of

sik =C1eik +C2 _eik + D̂ik ð29Þ

In equation (29), differentiate sik with respect to time.
Then, the input–output dynamics of the sliding surfaces
can be obtained by

_sik =C1 _eik +C2€eik +
_̂
Dik ð30Þ

Substituting the formation dynamics equation (9)
into equation (30) yields

_sik =C1 _eik +C2 Gikuk +Dikð Þ+ _̂
Dik ð31Þ

Select the super-twisting sliding mode control via the
disturbance observer as

uk = C2Gikð Þ�1

�ak

ffiffiffiffiffiffiffiffiffiffiffiffi
sikk k2

q
sgn sikð Þ �

ðt
0

xksgn sikð Þdt� C2
_̂
Dik � C1 _eik

0
@

1
A

ð32Þ

where ak andxk are positive, which are determined by
the following Theorem 1.

Replacing uk in equation (31) by equation (32) gives

_sik = � ak

ffiffiffiffiffiffiffiffiffiffiffiffi
sikk k2

q
sgn sikð Þ

�
ðt
0

xksgn sikð Þdt+C2 Dik � D̂ik

� �
+

_̂
Dik ð33Þ

Theorem 1. Concerning the leader–follower pair, its for-
mation dynamics on Assumptions 1, 2, and 3 are deter-
mined by equations (9) and (13), its disturbance
observer is designed by equation (25), its sliding surface
vector is described by equation (29), and its super-
twisting sliding mode control law via the disturbance
observer is given by equation (32). Then, the closed-
loop control system of this pair becomes asymptotically
stable despite the uncertainties and disturbances if
equation (34) holds true

ak . C2 +Hikk k‘e
�
D

xk . 0
ð34Þ

Proof. Similarly, we also pick up the Lyapunov function
as equation (23), differentiate it with respect to time,
and replace the time derivative of sik by equation (33).
Then, we can obtain

_V=
sTik _sik
sikk k2

=
sTik
sikk k2

�ak

ffiffiffiffiffiffiffiffiffiffiffiffi
sikk k2

q
sgn sikð Þ �

ðt
0

xksgn sikð Þdt+C2 Dik � D̂ik

� �
+

_̂
Dik

0
@

1
A
ð35Þ

From equation (27), there exists
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_̂
Dik = �Hik D̂ik � Dik

� �
ð36Þ

Substituting equation (36) into equation (35) yields

_V=
sTik _sik
sikk k2

=
sTik
sikk k2

�ak

ffiffiffiffiffiffiffiffiffiffiffiffi
sikk k2

q
sgn sikð Þ �

ðt
0

xksgn sikð Þdt+ C2 +Hikð Þ Dik � D̂ik

� �0
@

1
A

= � ak

ffiffiffiffiffiffiffiffiffiffiffiffi
sikk k2

p
sikk k2

sTiksgn sikð Þ �
xk

Ðt
0

dt

sikk k2
sTiksgn sikð Þ

+
sTik
sikk k2

C2 +Hikð Þ Dik � D̂ik

� �
ð37Þ

According to equation (26) and the concepts of vec-
tor norm, equation (37) can be written by

_V= � ak

ffiffiffiffiffiffiffiffiffiffiffiffi
sikk k2

p
sikk k2

sikk k1

�
xk

Ðt
0

dt

sikk k2
sikk k1 +

sTik
sikk k2

C2 +Hikð ÞeDik ð38Þ

Concerning Assumption 3, equation (38) has the
form of

_V4� ak

ffiffiffiffiffiffiffiffiffiffiffiffi
sikk k2

p
sikk k2

sikk k1 �
xk

Ðt
0

dt

sikk k2
sikk k1

+
sTik
sikk k2

C2 +Hikð ÞeDikk k‘

C2 +Hikð ÞeDikk k‘

� �

= � ak

ffiffiffiffiffiffiffiffiffiffiffiffi
sikk k2

p
sikk k2

sikk k1 �
xk

Ðt
0

dt

sikk k2
sikk k1

+
C2 +Hikð ÞeDikk k‘

sikk k2
sTik

1

1

� �

4� ak

ffiffiffiffiffiffiffiffiffiffiffiffi
sikk k2

q
sikk k1
sikk k2

� xk

ðt
0

dt
sikk k1
sikk k2

+ C2 +Hikð ÞeDikk k‘

sikk k1
sikk k2

4� ak

ffiffiffiffiffiffiffiffiffiffiffiffi
sikk k2

q
sikk k1
sikk k2

� xk

ðt
0

dt
sikk k1
sikk k2

+ C2 +Hikð Þk k‘ eDikk k‘

sikk k1
sikk k2

= �ak

ffiffiffiffiffiffiffiffiffiffiffiffi
sikk k2

q
� xk

ðt
0

dt+ C2 +Hikð Þk k‘e
�
D

2
4

3
5 sikk k1

sikk k2

ð39Þ

In equation (39), we will have _V\ 0 if equation (34)
holds true. This indicates that the leader–follower pair
is of asymptotically stable in the sense of Lyapunov.

Compared with equations (24) and (39), both of
_V\ 0 are dependent on ak andxk. But the two control

approaches make some difference to each other. In
equation (24), ak andxk have to be overestimated from
the aspect of the closed-loop stability, the gain of the
super-twisting sliding mode control can be enlarged,
and the formation performance may be deteriorated.
On the contrary, ak andxk are still unknown in equa-
tion (39), which also need to be estimated. However,
we know that xk can be an arbitrary positive constant
and that ak . 0 is related to e�

D
. Although e�

D
is still

kept unknown, it can be exponentially convergent if
the estimate error vector eDik is bounded.

Finally, the structure of the closed-loop formation
system is displayed in Figure 3. From Figure 3, it is
apparent that both the sliding surface vector and the
observer employ the states of the formation dynamics
to calculate the sliding surfaces and the disturbance
estimation, and that they feed the super-twisting sliding
mode controller located at the feedback channel to
achieve the formation task.

Simulation results

Platform

This section will integrate the super-twisting sliding
mode control method and the disturbance observer
technique for an uncertain multi-robot system. In order
to verify the presented method, we only consider the
small-scale formation so that a multi-robot simulation
platform with three mobile robots is taken into consid-
eration. The Robot 1 acts as the leader, the Robot 2
and the Robot 3 act as the followers, and there are two
leader–follower pairs in this platform. The two fol-
lowers are coordinated by the leader. In the small-scale
multi-robot system, some assumptions such as no colli-
sions and no communication delay can easily hold true
so that we can focus on the formation control design
and investigate the feasibility of the disturbance
observer–based super-twisting sliding mode control
method.

The diameter of these robots is set to 0.10m. This
size is large enough for the robots to carry some sen-
sors. The uncertainties in each robot are set by

D1 =D2 =D3 =
�D 0
0 �D

� �
ð40Þ

where �D is determined by 0:33rad� 0:2, and the rad
means a random number in the closed interval ½0 1�. In
equation (5), �D is concerned to the changes of the
robots’ physical parameters. Here, we assume that they
are the same.

Equation (9) contains pix � pkx and piy � pky so
that it is not representative to choose pi =pk.
Concerning this multi-robot platform, we pick them up
as

p1x =p1y =p1u =0:5 sin 2ptð Þ ð41Þ
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p2x =p2y =p2u =p3x =p3y =p3u =0:3 sin 2ptð Þ
ð42Þ

As far as the formation tasks of this multi-robot sys-
tem are concerned, the leader takes charge of tracking
a desired trajectory while the two followers keep the
desired relative distance and the desired relative bearing
angle with respect to the leader. Shown in equation (9),
the designed control method is applied to the followers
that fulfill the formation tasks. Meanwhile, the leader
just tracks and maintains a desired trajectory regardless
of the followers.

In general, the same parameters of the super-
twisting sliding mode control and the disturbance
observer are chosen for the two followers. Considering
the super-twisting sliding mode control, the parameters
are determined by a2 =a3 =18, x2 = x3 =80, C1 =
1600I2, and C2 =78I2, respectively. Concerning the
disturbance observer, its gain matrix is depicted by

L12 =L13 =
0 2 0 2
0 2 0 2

� �

Simulations

Triangular formation moving along a straight line. In Figure
4, the multi-robot platform carries out the task of trian-
gular formation when moving along a straight line tra-
jectory, in which the red means the leader robot and the
green and the blue delegate the two followers. The ini-
tial postures of the three robots are allocated at

q1 = 0m 0:5m 0:5prad½ �T,

q2 = �0:4m 0:8m 0rad½ �T, and

q3 = �0:5m 1:1m 0:33prad½ �T ð43Þ

According to the initial postures equation (43) and
the formation task, the initial states of the formation
dynamics equation (13) can be calculated as

x12 0ð Þ= 0:46m 0m=s 1:22prad 0rad=s½ �T

and x13 0ð Þ= 0:77m 0m=s 1:30prad 0rad=s½ �T

ð44Þ

In accordance with the formation task, the desired
states can be determined by

xd12 = 0:3m 0m=s 1:3prad 0rad=s½ �T

and xd13 = 0:6m 0m=s 1:7prad 0rad=s½ �T ð45Þ

Figure 5 demonstrates the state variables when the
multi-robot system fulfills the formation task in Figure
4. For the purpose of comparisons, the other two clas-
sic control methods are also implemented on the same
platform to accomplish the same formation task besides

Figure 3. Structure of the disturbance observer–based super-twisting sliding mode control system.

Figure 4. Triangular formation of the multi-robot system while
moving along a straight line.
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the presented integration (short for ST-SMC-DoB in
Figure 5). These control methods are listed as the slid-
ing mode control with disturbance observer18 (short for
SMC-DoB in Figure 5) and the sole super-twisting slid-
ing mode control without ELM (short for ST-SMC in
Figure 5). From Figure 5, the presented method can
improve the performance of the system state variables.
Note that the sole super-twisting sliding mode control
is with the same sliding surfaces formulated by equa-
tion (11). From this aspect, the disturbance observer
technique can benefit the improvement of the control
performance.

The control inputs of the three control methods
applied to the follower 2 and the follower 3 are illu-
strated in Figures 6 and 7, respectively. In Figures 6
and 7, the presented method can decrease the chatter-
ing phenomenon effectively. In theory, the integrated
method can compensate the disturbances and uncer-
tainties entering the formation control system.

Figure 8 illustrates the sliding surfaces. The estima-
tions of uncertainties and the estimation errors are illu-
strated in Figures 9 and 10. Proven in Theorem 1, the
formation control system is asymptotically stable. From
Figure 10, we know the errors are large at the outset,
but they are dramatically decreased with respect to time.

Triangular formation moving along a circular trajectory. This
platform in Figure 11 forms up a triangle when moving
along a circular trajectory. Both the super-twisting slid-
ing mode control parameters and the ELM parameters
are kept unchanged. They are the same as the forma-
tion task in Figure 4. Concerning this task, the initial
postures of the three robots are set by

q1 = 0:5m 0m 0:5prad½ �T,

q2 = 0:8m� 0:2m
1

3
prad

� �T
, and

q3 = 1:1m� 0:3mprad½ �T ð46Þ

According to this control task and the initial pos-
tures, the initial states of the formation dynamics can
be calculated by

x12 0ð Þ= 0:36m 0m=s 1:36prad 0 rad=s½ �T and

x13 0ð Þ= 0:63m 0m=s 1:34prad 0 rad=s½ �T

ð47Þ

Similarly, the desired states can be obtained on
account of the leader’s trajectory

xd12 = 0:13m 0m=s 1:8prad 0 rad=s½ �T and

xd13 = 0:26m 0m=s 1:2prad 0rad=s½ �T ð48Þ

The state variables and the control inputs are also
similar to the formation task in Figure 4 as proven in
Theorem 1 so that these curves are not be demon-
strated, owing to the limited space.

Triangular formation moving along a U-shape trajectory. This
platform in Figure 12 forms up a triangle when moving
along a U-shape trajectory. Both the super-twisting
sliding mode control parameters and the ELM para-
meters are kept unchanged. They are the same as the
formation task in Figure 4. Concerning this task, the
initial postures of the three robots are set by

Figure 5. Comparisons of the state variables by different methods: (a) l12, (b) c12, (c) l13, and (d) c13.

916 Measurement and Control 53(5-6)



Figure 6. Comparisons of the control inputs from the follower 2: (a) acceleration by the ST-SMC-DoB, (b) angular acceleration by
the ST-SMC-DoB, (c) acceleration by the ST-SMC, (d) angular acceleration by the ST-SMC, (e) acceleration by the SMC-DoB, and (f)
angular acceleration by the SMC-DoB.

Figure 7. Comparisons of the control inputs from the follower 3: (a) acceleration by the ST-SMC-DoB, (b) angular acceleration by
the ST-SMC-DoB, (c) acceleration by the ST-SMC, (d) angular acceleration by the ST-SMC, (e) acceleration by the SMC-DoB, and (f)
angular acceleration by the SMC-DoB.
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q1 = 0:5m 0m 0:5prad½ �T,

q2 = 0:8m 0:1m 0:5prad½ �T, and

q3 = 1:2m 0:2m 0:33prad½ �T ð49Þ

According to this control task and the initial pos-
tures, the initial states of the formation dynamics can
be calculated by

x12 0ð Þ= 0:36m 0m=s 1:63prad 0 rad=s½ �T and

x12 0ð Þ= 0:68m 0m=s 1:59prad 0 rad=s½ �T

ð50Þ

Similarly, the desired states can be obtained on
account of the leader’s trajectory

Figure 8. Sliding surfaces of the two followers: (a) s12, 1, (b) s12, 2, (c) s12, (d) s13, 1., (e) s13, 2, and (f) s13.

Figure 9. Disturbance observer outputs of the two followers: (a) estimation of D12, 1, (b) estimation of D12, 2, (c) estimation of
D13, 1, and (d) estimation of D13, 2.
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xd12 = 0:5m 0m=s 1:4prad 0 rad=s½ �T and

xd13 = 1m 0m=s 1:6prad 0 rad=s½ �T ð51Þ

The state variables and the control inputs are also
similar to the formation task in Figure 4 as proven in
Theorem 1 so that these curves are not be demon-
strated, owing to the limited space.

Conclusion

This paper has investigated the formation control prob-
lem of multi-agent mobile robots. In order to fulfill the
formation task and resist the inevitable uncertainties
and disturbances, the super-twisting sliding mode
control method is adopted, which suffers from the
overestimate of the control gains. Motivated by the

improvement of the formation performance, the distur-
bance observer technique is deduced. Theoretically, the
integration of the super-twisting sliding mode control
and the disturbance observer for the formation maneu-
vers has the guaranteed stability in the sense of
Lyapunov. In reality, the method is applied to a multi-
robot platform with three mobile robots. Some compari-
sons via other two control methods have been illustrated,
that is, the sliding mode control with disturbance obser-
ver and the sole super-twisting sliding mode control.
Although all the three methods can realize the formation
tasks, the numerical results demonstrate that the inte-
grated method has the best performance. This method
can be a solid support to deal with the formation maneu-
vers of multi-agent mobile robots.

Figure 10. Estimation errors of the disturbance observers for the two followers: (a) eD12, 1, (b) eD12, 2, (c) eD13, 1, and (d) eD13, 2.

Figure 12. Triangular formation of this multi-robot platform
when moving along a U-shape trajectory.

Figure 11. Triangular formation of this multi-robot platform
when moving along a circular trajectory.
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