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a b s t r a c t

Robotic skill learning suffers from the diversity and complexity of robotic tasks in continuous domains,
making the learning of transferable skills one of the most challenging issues in this area, especially
for the case where robots differ in terms of structure. Aiming at making the policy easier to be
generalized or transferred, the graph neural networks (GNN) was previously employed to incorporate
explicitly the robot structure into the policy network. In this paper, with the help of graph neural
networks, we further investigate the problem of efficient learning transferable policies for robots with
serial structure, which commonly appears in various robot bodies, such as robotic arms and the leg
of centipede. Based on a kinematics analysis on the serial robotic structure, the policy network is
improved by proposing a weighted information aggregation strategy. It is experimentally shown on
different robotics structures that in a few-shot policy learning setting, the new aggregation strategy
significantly improves the performance not only on the learning speed, but also on the control accuracy.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Owing to the inability to summarize and update skill knowl-
edge, a robot typically needs considerably large number of train-
ing samples, which may be impractical in rapidly-changing en-
vironments. On the other hand, a key signature of human intel-
ligence is the ability to implement skill transfer leaning. People
have the ability to make ‘‘infinite use of finite means’’ [1], in
which a small set of elements can be adequately composed in
boundless ways. This indicates the principle of combinatorial gen-
eralization, that is, constructing new skills from known building
blocks. Therefore, how to mimic the human learning process to
realize transfer learning is crucial for robotic control.

In recent years transfer learning in particular has been con-
sidered to be an important direction in robotic skill learning [2].
Some previous works have been proposed to establish the di-
rect mapping between state spaces and transfer skills between
robots with different structures [3–5]. The transfer algorithms
considered thus far have assumed that a hand-coded mapping be-
tween tasks was provided. Nevertheless, these algorithms require
specific domain knowledge to form the hand-coded mapping,
which makes these algorithms more sophisticated. A paramount

∗ Corresponding author at: State Key Lab of Management and Control for
Complex Systems, Institute of Automation, Chinese Academy of Science, Beijing,
100190, China.

E-mail address: zhiyong.liu@ia.ac.cn (Z. Liu).

problem is that the policies learned by these methods lack clear
structure information, making it difficult to utilize what was
learned previously for a new robot with different structures [6].

Wang et al. [7] proposed learning structured policies by in-
corporating a prior on the structure via graph neural networks
(GNN) [8], which can be viewed as a kind of making ‘‘infinite use
of finite means’’. Specifically, as the policy network of the agent,
NerveNet [7] first propagates information through the structure
of the agent and then outputs actions for different parts of the
agent. To verify the transfer or generalization ability of NerveNet
from one structure to another, with the goal of running as fast
as possible along one direction, Wang et al. directly generalized
the policy learned on a bilateral eight-leg centipede to a six-leg
one, by just correspondingly dropping two leg modules in the
NerveNet. It is easy to understand that when the agent loses
its two bilateral legs, it does not affect the direction in which
the agent runs. The reason is that the structure of the agent is
symmetrical. Although the agent loses two legs, the remaining
symmetrical structure still allow it to complete the task. NerveNet
can directly achieve transfer learning for the customized task as
most of the model weights are shared across the nodes. While, the
reason the robots with serial structures are not transferable we
consider is because the model weights are not able to be directly
reused across the joints. Therefore, the model weights of some
robots with serial structures are not transferable, in which case
GNN model still needs to prove its potential in transfer learning.
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Serial structures are the most common structures existed in
robots [9]. Therefore, there is incentive in establishing techniques
to learn transferable policy for robots with serial structures.
Robots with serial structures classified into two categories. One
type of robots with serial structure have the characteristics of
serial in the whole structure (e.g. PR2), while the other type of
robots with serial structure have the characteristics of serial in
the local structure (e.g. Centipede).

In order to explore the performance of GNN on the tasks
whose model weights are not transferable, we explore the prob-
lem on both two types of robots with serial structures above. To
be specific, we consider the problem of transferring information
across robots with different structures, including varying number
of joints. Yet withal, the discrepancy in the structure of the robots
and the goals of the tasks prevent us from directly reusing policy
parameters learned on different robots for a new combination.
Instead of throwing away experience learned from past tasks, this
work aims at learning structured policies from its past experience
to obtain new skills more quickly via GNN model. We further
explore the potential of the GNN model in transfer learning tasks.
On the other hand, given that the joint information of the serial
robotic structure has different importances at different positions,
the average aggregation is inapplicable. Hence, a kinematic anal-
ysis of robotic arms with serial structures is performed. Based on
the physical characteristics of robots with serial structures, we
further propose a novel aggregation method of GNN model.

The main contributions of this paper are summarized as fol-
lows.

• We investigate the problem of skill transfer learning for the
robot with serial structures via graph neural networks.
• For both two types of robots with serial structures, we

propose a Weightedly Aggregated Graph Neural Network
(WAGNN) based policy network to accelerate the conver-
gence process and improve the learning performance.

The rest of this paper is organized as follows. Preliminaries
and a brief review of related work are presented in Section 2.
Section 3 shows the weighted aggregation method to learn trans-
ferable policies on two simulated tasks. In Section 4, the main
experimental result is presented and discussed. Finally, some
concluding remarks are given in Section 5.

2. Related works

Recently, researches on transfer learning have been receiving
more and more attention [2] because of its potential for reduc-
ing the burden of data collection for learning complex policies.
Ammar et al. [4] designed a common feature space between
the states of two tasks, and learn a mapping between states
by using the common feature space. Later research by Ammar
et al. [3] applies unsupervised manifold alignment to assign pair-
ings between states for transfer learning. In Gupta et al. [5], the
authors tried to improve transfer performance via learning invari-
ant visual features. Efforts have also been made by reusing policy
parameters between environments [10–12] to transfer policies.
Nevertheless, most of these methods need more domain knowl-
edge to determine how to form the invariant features, making
these algorithms more complex. The proposed method is ex-
tremely different from these policy transfer methods, since our
aim is not to directly transfer a policy, which is typically impos-
sible in the presence of structural differences. This paper adopts
GNN model to learn structured policies.

This paper improves on policy network by utilizing graph
neural networks [8]. A graph data structure consists of a finite
set of vertices (objects) and edges (relationships). It is worth
noting that graphs have complex structure with rich potential

information [13]. Researches of graph with machine learning
methods have been receiving more and more attention, given
that graph structure data is ubiquitous in the real world. GNN
was introduced in [8] as a generalization of recursive neural
networks that can process graph structure data. Due to its good
generalization performance and high interpretability, GNN has
become a widely used graph analysis method in recent years.
GNN [14–17] has been explored in a diverse range of problem
domains, including supervised, semi-supervised, unsupervised,
and reinforcement learning settings. GNN has been used to learn
the dynamics of physical systems [18–20] and multi-agent sys-
tems [21–23]. These GNN models have also been used in both
model-free [7] and model-based [24,25] continuous control. GNN
models also have potential applications in model-free reinforce-
ment learning [26–29], and for more classical approaches to
planning [30].

In this paper, the work is based on the idea of representing
a robot as a graph. Here, we define the graph structure of the
robot as G = (u, V , E). u is the global attribute of the graph.
V = {vi}i=1:Nv is the set of nodes(of cardinality Nv), where each vi
is the attribute of a node. E = {ej, sj, rj}j=1:Ne is the set of edges (of
cardinality Ne), where each ej is the attribute of an edge, sj is the
index of the sender node and rj is the index of the receiver node.
In our tasks, the nodes correspond to the joints and the edges
correspond to the bodies.

Battaglia et al. [31] presented the Graph Networks(GN) frame-
work that unified and extended various graph neural networks.
The GN framework defined a set of functions for relational rea-
soning on graphs and supported constructing complex structures
from simple blocks. The main unit of the GN framework is the
GN block which takes a graph as input and returns a graph as
output. A GN block contains three ‘‘update’’ functions, φ, and
three ‘‘aggregation’’ functions, ρ.

e′k = φe(ek, vsk , vrk , u) e′i = ρe→v(E ′i )

v′i = φv(e′i, vi, u) e′ = ρe→u(E ′) (1)
u′ = φu(e′, v′, u) v′ = ρv→u(V ′)

where E ′i = {e
′

k, sk, rk}rk=i,k=1:Ne , V
′
= {v′i}i=1:Nv , and E ′ = ∪iE ′i =

{e′k, sk, rk}k=1:Ne
As a graph, G, is the input value of a Graph Network, the

computations propagate from the edge, to the node and the global
level. Algorithm 1 shows the steps of computation for details.

Algorithm 1 Steps of computation in Graph Networks

Input: Graph, G = (u, V , E)
for each edge {ej, sj, rj} do
Compute updated edge attributes e

′

k ← φe(ek, vsk , vrk , u)
end for
for each node{ni} do

Let E ′i = {e
′

k, sk, rk}rk=i,k=1:Ne

Aggregate edge attributes for each node e
′

i ← ρe→v(E
′

i )
Compute updated node attributes v

′

i ← φv(e
′

i, vi, u)
end for
Let V ′ = {v′i }i=1:Nv , E

′

= {e
′

k, sk, rk}k=1:Ne

Aggregate edge and node attributes globally e
′

←

ρe→u(E
′

), v
′

← ρv→u(V
′

)
Compute updated global attribute u

′

← φu(e
′

, v
′

, u)
Output: Graph, G

′

= (u
′

, V
′

, E
′

)

Recent work by Wang et al. [7] modeled the structure of the
reinforcement learning agents using NerveNet model. Relying on
the fact that bodies of most robots have discrete graph struc-
tures, they aim to transfer policies between robots by learning
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Algorithm 2 Steps of computation in NerveNet

Input: Graph, G = (u, V , E)
for each node{ni} do
Let V ′i = {v

′

i }i=1:Nvi

Aggregate attributes from neighbors of node m
′

i ← A(V
′

i )
Compute updated node attributes v

′

i ← φv(m
′

i, vi)
end for

Output: Graph, G
′

= (u, V
′

, E)

structured policies. Nodes of the graph represent joints of the
robots, and edges represent the physical dependencies between
different joints. Particularly, they define the agent’s policy using
the graph neural networks (GNN) [8], which is a neural network
that operates on graph structures. For the customized task in [7],
the two legs the agent lost did not affect the direction in which it
ran. Although the agent lost two legs, the remaining symmetrical
structure still had the ability to complete the task. Therefore,
GNN model is not able to show its potential in transfer perfor-
mance in the customized environment. While for robots with
serial structures, whose structures are asymmetric, GNN model
cannot achieve satisfactory transfer performance, as witnessed by
Section 4.1.1.

Algorithm 1 shows the steps of computation in NerveNet
model in [7]. NerveNet receives state vector of joints from the
environment and performs a few internal propagation steps in
order to output the action to be taken by each joint. In NerveNet,
the mean value of state information is used to do the aggregation,
which means that function A in the algorithm takes the average
function as follows,

m′i = A
(
V ′i

)
=

∑
j∈Nvi

v′j

Nvi

(2)

where m′i is the aggregated state vector which contains the infor-
mation sent from the neighborhood of the joint, Nvi is the number
of joints adjacent to joint i, and v′j is the state vector of joint which
is the neighbor of joint i.

The way of doing the aggregation by the average function is
that the information of nodes in the neighborhood is considered
without discrimination. However, for robots with serial struc-
tures, the information of nodes in the neighborhood may be of
quite different importance, as analyzed in the following section.
Thus, in this paper we propose the weighted aggregation GNN
(WAGNN) to make use of the importance of different nodes.

3. Proposed method

In this section, taking the robotic arm as a typical example, we
first give a kinematic analysis on the serial robotic structure. Then
based on the results we propose the WAGNN and give specific
implementations on two types of robots, i.e., the PR2 arm and
Centipede.

3.1. The kinematic analysis on serial structures

The forward kinematics of a robotic arm is to calculate the
position and attitude of the end actuator relative to the base co-
ordinate system according to the parameters of each joint. Fig. 1
shows the D-H parameter coordinate system of two adjacent
coordinate systems. Where αi−1 represents the angle from Ẑi−1
to Ẑi measured about X̂i−1; ai−1 is the distance from Ẑi−1 to Ẑi
measured along the X̂i−1 direction(ai > 0); θi represents the angle
from X̂i−1 to X̂i measured about the Ẑi; di is the distance from X̂i−1
to X̂i measured along the Ẑi direction.

Fig. 1. Coordinate system of D-H parameter.

Fig. 2. Coordinate system of D-H parameter of arm.

From Fig. 1, the transformation matrix of the joint coordinate
system can be derived, as shown in (2).

i−1
i T =

⎡⎢⎢⎢⎢⎣
cos(θi) − sin(θi) 0 ai−1

sin(θi) cos(αi−1) cos(θi) cos(αi−1) − sin(αi−1) − sin(αi−1)di
sin(θi) sin(αi−1) cos(θi) sin(αi−1) cos(αi−1) cos(αi−1)di

0 0 0 1

⎤⎥⎥⎥⎥⎦
(3)

Eq. (3) is a general matrix representation of the D-H conver-
sion. According to Fig. 2, the D-H parameters determined by the
length and position of the connecting joint are shown in Table 1.

From Table 1 and Eq. (2), the forward kinematics formula can
be expressed as:

T =0
1 T 1

2 T
2
3 T

3
4 T

4
5 T =

⎡⎢⎣ Px
R Py

Pz
0 0 0 1

⎤⎥⎦ (4)

In (4), R is a matrix representing the spatial attitude of the
endpoint of the robotic arm, and Px, Py, and Pz represent the

windbreaker_zhang
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position coordinates of the endpoint of the robotic arm.

Px = a3 cos θ1 cos θ2 cos θ3 − a3 cos θ1 sin θ2 sin θ3

+ a2 cos θ1 cos θ2 + a1 cos θ1 (5)

Py = a3 sin θ2 cos θ3 + a3 cos θ2 sin θ3 + a2 sin θ2 + d1 (6)

Pz = −a3 sin θ1 cos θ2 cos θ3 + a3 sin θ1 sin θ2 sin θ3

− a2 sin θ1 cos θ2 − a1 sin θ1 (7)

In (6), the partial derivative of Py is constructed as follows,

∂Py
∂θ2
= a3 cos θ2 cos θ3 − a3 sin θ2 sin θ3 + a2 cos θ2 (8)

∂Py
∂θ3
= a3 cos θ2 cos θ3 − a3 sin θ2 sin θ3 (9)

∂Py
∂θ2
−

∂Py
∂θ3
= a2 cos θ2 (10)

Given the actual physical structure, we have θ2 ∈ [0, π
2 ]. Then,

we can obtain
∂Py
∂θ2

>
∂Py
∂θ3

. (11)

P ′y − Py = ∆Py =
∂Py
∂θ2

∆θ (12)

P ′′y − Py = ∆P ′y =
∂Py
∂θ3

∆θ (13)

With the constraint of (11), we have,

∆Py > ∆P ′y (14)

The results, as shown in (14), indicate that θ3 cause a smaller
change in the end position of the robotic arm when joint angle
θ2 and θ3 change the same angle ∆θ . When the joint near the
pedestal and the joint near the end are identically rotated by ∆θ ,
the former one will change the position of the end of the arm
more.

3.2. Weighted aggregation graph neural network

Based on the results of kinematic analysis above, we then
propose the following weighted aggregation function for graph
neural networks,

m′i = A
(
V ′i

)
=

∑
j∈Nvi

ρjiv
′

j (15)

where ρji is given by

ρji = softmax(fji) =
exp(fji)∑

k∈Nvi
exp(fki)

, (16)

where fji is the serial number of the node in the graph. Nvi is the
set of nodes adjacent to node i. ρji indicates the importance of
node j’s features to node i.

WAGNN can be obtained by substituting ρji in Eq. (16) into
Eq. (15) yields.

Next, we will give two specific weighted aggregation methods
for two tasks of robots with serial structures. For PR2 task, when
the joint near the pedestal and the joint near the end are identi-
cally rotated by ∆θ , the latter will change the position of the end
of the arm less, as can be seen in Fig. 3. For the task of getting the
end of the PR2 arm to the precise point, when the endpoint of the
robotic arm is near to the target, we do not need to change θ2 a
lot, just adjust θ3. Therefore, we consider the joint information at
the end of the robotic arm to be more important. In Eq. (15), the
closer the joint is to the end of the robotic arm, the larger the

weight of the node is. For PR2 task, if u < v, then the following
inequality holds,

ρuw < ρvw (17)

where both joint u and joint v are the neighbors of joint w.
To be specifical, for the serial robotic task, the WAGNN with

weight1 we consider is to say that in such case, fji can be obtained
by the serial number of the node in the graph as follows,

fji = j (18)

where j is the serial number of joint j, which is the neighbor of
joint i.

For Centipede task, in the case of the joint near the center
axis and the joint near the end being identically rotated by ∆θ ,
the former will change the position of the end of the robot
more. In order to make Centipede run as fast as possible along
a certain direction, we need to make the end of the leg move
more. Accordingly, an important point to note here is that the
joint information near the center axis of the robot to be more
crucial. In Eq. (14), the closer the joint is to the center axis of the
robot, the larger the weight of the node is. For Centipede task, if
u < v, the following inequality holds,

ρuw > ρvw (19)

where both joint u and joint v are the neighbors of joint w.
Concretely, for the robotic task that has the characteristics

of serial in the local structure, the WAGNN with weight2 we
consider is that fji has been simply formulated as:

fji = N − j (20)

where j is the serial number of joint j, which is the neighbor
of joint i. N + 1 is the total number of joints in the local serial
structure (see Fig. 4).

4. Experimental illustrations

In this section, we first investigate the feasibility of GNN on a
transfer learning task. Then, the weighted aggregation method is
applied on two simulated robots with serial structures. To fully
investigate the transfer performance of the Weightedly Aggre-
gated Graph Neural Network (WAGNN), we build two weighted
models for structure transfer learning.

4.1. PR2 task

We run experiments on a simulated continuous control task
from Gym, Brockman et al. [32], which is based on MuJoCo,
Todorov et al. [33]. All of the experiments were implemented
on Window 10, NVIDIA GeForce GTX 1060. Particularly, we use
a robotic arm task: PR2 arm. The maximum number of training
steps is set to be 1 million. In this paper, the proximal policy
optimization(PPO) [34] is used to optimize the expected reward.

4.1.1. Transfer in a zero-shot setting
Two types of structural transfer learning tasks are investigated

in this section. The first type is to train a model with a robotic arm
of small size (small graph) and transfer the learned model to a
robotic arm with a larger size. As increasing the size of the robotic
arm, state and action space also increase which makes learning
more difficult. In the second type of structural transfer task, we
first learn a policy for the robotic arm and then transfer it to the
robotic arm with a smaller size. Note that for both transfer tasks,
none of the environmental factors change except the structure of
the robotic arm.
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Table 1
D-H parameter table.
Joint Joint angle θi Offset distance di Twist angle αi−1 Rod length ai−1
1 θ1 d1 −π/2 0
2 θ2 0 π/2 a1
3 θ3 0 0 a2
4 θ4 0 0 a3
5 θ5 0 0 0

Fig. 3. Different joints with the same angle of rotation for PR2.

Fig. 4. Different joints with the same angle of rotation for Centipede.

Experimental settings. The environment in which the agent has a
similar structure to a PR2 arm is used in this section. The goal
of the agent is to get the end of the PR2 arm to the precise
point. By linking copies of arms, we create agents with different
lengths. Specifically, the shorter arm consists of seven joints and
the longer one is made up of eight joints. For each time step, the
total reward is the negative value of the distance from the end of
the arm to the target point.

Results. In the PR2 environment, we first run experiments of
NerveNet models on PR2 with seven joints and PR2 with eight
joints to get the learned policies for transfer learning.

This work then explores the transfer performance of Ner-
veNet applied in PR2 environment in a zero-shot setting where
zero-shot means directly transferring the policy trained with one
structure to the other without any fine-tuning. NerveNet model
does not achieve satisfactory transfer performance on PR2 tasks.
On one hand, NerveNet has an average reward value of −135.02
when the policy learned from the PR2 arm with 8 joints is trans-
ferred to the PR2 arm with 7 joints. On the other hand, NerveNet
model has an average reward value of −266.13 when we transfer
the policy learned from the PR2 arm with 7 joints to the PR2 arm
with 8 joints. Both of them achieve poor transfer performance

since the average reward value of −60 is considered as solved
for the PR2 task, which is reported in Table 2. Consequently,
NerveNet models can be used to learn structured policies. Fur-
thermore, NerveNet model achieves poor transfer performance
for transfer learning tasks in a zero-shot setting.

4.1.2. Transfer in a few-shot setting
In this section, we show that GNN model has excellent transfer

performance for PR2 arms in a few-shot learning setting. In
the following experiments, it is experimentally shown that the
weighted aggregation method has a better potential of trans-
fer learning by incorporating physical structure prior into the
network structure.

Experimental settings. To show the better transfer performance
of the weighted aggregation method, we compare the WAGNN
with the NerveNet [7] on simulated environment from the Gym.
The weighted aggregation method is applied to a robot whose
overall structure has a serial feature. More specifically, for the PR2
task whose overall structure has a serial feature, we use an equal
number of time steps for each policy’s update and calculate the
information separately.
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Table 2
Performance of zero-shot learning on PR2 task. For each task, we run policy for 10
episodes and record the average reward.
Task 7to8 8to7

Average reward −135.02 −226.13
Average reward of solving PR2 task −60 −60

Fig. 5. Results of WAGNN for training on the seven-joint PR2 environment.

Results on training. By including the results of different weighted
method, we further evaluate the performance of different
weighted aggregation method and show the training curves in
Fig. 5.

WAGNN with weight1 reduces about 26.61% time required to
reach the level of reward which is considered as solved. At the
same time, WAGNN with weight1 increases the control accuracy
by about 8.8 percentage points, which are listed in Table 3.
Especially for the robotic arm tasks that require precise control,
the increase of 8.8 percentage points has important practical ap-
plication significance. The improvement of WAGNN with weight1
is due to the fact that the joint information at the end of the
robotic arm with serial structures to be more important, which
not only accelerates the training process, but also improves the
control accuracy.

However, as can be seen from Fig. 5, for PR2 task that requires
precise control, the WAGNN with weight2 cannot even complete
the task in the same time step setting. The results indicate that for
the task of getting the end of the PR2 arm to the precise point,
the joint information at the end of the robotic arm to be more
important than the joint information at the base of the robotic
arm. An important point to note here is that the weighted method
is so crucial that choosing the appropriate weighted method
can get superior learning performance, but instead choosing the
unsuitable weighted method will result in worse performance.

Results on transferring. Experiments of all model are run on
seven-joint PR2 to get the learned policies for transfer learning.
We then fine-tune for eight-joints PR2 to show the transfer
performance of WAGNN.

The transfer performance of WAGNN for PR2 is summarized
in Fig. 6. From the figure, we can observe that by using the
learned policies, WAGNN model has a superior initialization. In
addition, when training from scratch, the policy network needs
more onerous samples to accomplish the training process com-
pared to transferring. WAGNN model significantly decreases the

Fig. 6. Results of WAGNN for transferring from the seven-joint PR2 to the
eight-joint PR2.

number of episodes required to reach the level of reward which is
considered as solved. WAGNN model can also achieve satisfactory
transfer performance in a few-shot learning setting. From Fig. 6,
we notice that WAGNN with weight1 has the ability to achieve
comparable performance to NerveNet. Moreover, for WAGNN
with weight1, the time required to reach the level of reward
which is considered as solved is reduced by 34.98%. Therefore,
WAGNN with weight1 can accelerate the training process without
affecting the transfer performance.

Similarly, the same experimental phenomena have also been
observed in transfer learning. The WAGNN with weight2 achieve
poor transfer performance in the same time step setting, as
shown in Fig. 7. Results on transfer learning, including an appli-
cation to PR2 task, demonstrate that sensible weighted method is
crucial for WAGNN to achieve satisfactory transfer performance.

4.2. Centipede task

In order to illustrate the transfer ability of the WAGNN model,
we use a robotic task: Centipede. The maximum number of train-
ing steps is set to be 1 million for the Centipede task.

4.2.1. Transfer in a zero-shot setting
Similar in vein to Section 4.1.1, two types of structural transfer

learning tasks are also investigated in this section. The first one is
to train a policy for CentipedeSix and transfer the learned policy
to CentipedeEight. Another type of structure transfer learning is
to learn a policy for CentipedeEight and then transfer the learned
policy to CentipedeSix. An important point to note here is that
for both two types of transfer tasks, only the structure of the
Centipede is changed in the environment.

Experimental settings. We use the second environment in which
the agent whose local structure has a serial feature has a similar
structure to a centipede, which is common in robotics [7]. The
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Table 3
Results of WAGNN on PR2 environment.
Model Average reward Solved time (Number of iteration)

NerveNet −30.26 248
WAGNN −27.57 182

Fig. 7. Results of WAGNN for training on the CentipedeSix environment.

goal of the agent is to run as fast as possible along a certain direc-
tion in the MuJoCo environment. The agent is composed of three
repetitive torso bodies where each one has two legs attached.
Each leg of the agent has two joints, accordingly the agent has
fifteen joints totally. For Centipede task, the total reward is the
speed reward minus the energy cost and force feedback from the
ground. CentipedeSix means that the agent has six legs in the
structure of the robot. And CentipedeEight refers to the fact that
the agent has eight legs.

Results. For the Centipede environment, we first run experiments
of NerveNet models on CentipedeSix and CentipedeEight to get
the learned policies for transfer learning.

This section then evaluate the transfer performance of Ner-
veNet and WAGNN applied in Centipede environment in a zero-
shot setting. The zero-shot transfer performance for Centipede is
reported in Table 4. By examining the results videos, we notice
that the average reward value of 2500 is considered as solved
for Centipede task. Therefore, as can be seen from the table,
both NerveNet model and WAGNN model have the ability to
achieve satisfactory transfer performance on Centipede tasks in
a zero-shot setting.

4.2.2. Transfer in a few-shot setting
In this section, we show that GNN model has excellent transfer

performance for Centipede task in a few-shot learning setting.
Furthermore, we evaluate the weighted aggregation method on
transfer learning by incorporating physical structure prior into
the network structure for Centipede task.

Experimental settings. The weighted aggregation method is uti-
lized in a robot whose local structure has a serial feature. For
NerveNet, information is aggregated and the mean value of in-
formation is applied to update the network. While the WAGNN
model adopts the weighted value of information to update the
network.

Fig. 8. Results of WAGNN for transferring from the CentipedeSix to the
CentipedeEight.

Results on training. The performance of WAGNN for CentipedeSix
task is shown in Fig. 7. As can be seen from Table 5, the WAGNN
with weight2 reduces about 28.05% time required to reach the
level of reward which is considered as solved. In the meantime,
it has the ability to improve performance by 6.94%. The improve-
ment of the WAGNN with weight2 is due to the fact that for
the Centipede task of running as fast as possible along a certain
direction, the joint information at the center axis of the Centipede
robot to be more important than the joint information at the end
of the Centipede robot, which not only accelerates the training
process, but also improves the learning performance.

Nevertheless, from Fig. 7, one can observe that the WAGNN
with weight1 does not have the ability to achieve satisfactory per-
formance. One possible reason is that the WAGNN with weight1
learns a policy that does not have the ability to make the Cen-
tipede to run as fast as possible. Therefore, it is crucial for specific
task to adopt appropriate weighted method to do the aggregation.

Results on transferring. We run experiments of all models on
CentipedeSix to get the learned policies for structural transfer
learning. Then the fine-tune experiment for CentipedeEight is run
and the training process is shown in Fig. 8. From the figure, we
can see that by using the learned policy, GNN model has a sensi-
ble initialization. The results, as shown in this figure, indicate that
the WAGNN with weight2 can achieve comparable performance
to the NerveNet. Moreover, the WAGNN with weight2 reduces
about 26.11% time required to reach the level of reward which is
considered as solved. Accordingly, without reducing the transfer
performance, the WAGNN with weight2 have the ability to speed
up the convergence process.

Similar in vein to the results on training, note that the WAGNN
with weight1 does not even have the ability to complete the
transferring task, as shown in Fig. 8. The result indicates that
the weight method of the aggregation is related to not only
the structure of the robot, but the specific task of the robot.
More importantly, the weight method of the aggregation has a
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Table 4
Performance of zero-shot learning on Centipede task. For each task, we run policy
for 10 episodes and record the average reward.
Task 6to8 8to6

NerveNet 2507.73 2543.87
WAGNN 2567.32 2583.45

Table 5
Results of WAGNN on Centipede environment.
Model Average reward Solved time (Number of iteration)

NerveNet 2508.04 303
WAGNN 2682.21 218

significant impact on both learning performance and transferring
performance.

5. Conclusions

GNN model is naturally suitable for learning individual fea-
ture for each joint by incorporating a prior on the structure
of the robot, making it an ideal springboard for tackling state
decomposition problems. In this paper the WAGNN is proposed to
improve the GNN based robot skill leaning on serial structure. The
weighted aggregation method in WAGNN learns structured poli-
cies by aggregating and propagating information among joints.
Aggregation is done by the proposed aggregation method which
considers the joints information of the serial structures are of
different importance. Extensive experimental comparisons, on
both robotic arm and Centipede, witnessed that the WAGNN
achieved satisfactory transfer performance on robots with serial
structures in a zero-shot setting, and also the policies learned
by the WAGNN are significantly better than policies learned by
traditional GNN models.

While the WAGNN models were most powerful for robots skill
learning on serial structure, they typically needed longer training
times than traditional MLP models. A promising direction for
future work is to explicitly explore how GNN model performs
state decomposition and then use the feature vectors learned by
GNN methods to reduce algorithm complexity and training time.
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