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Abstract: In this paper, we present an incomplete variables truncated 
conjugate gradient (IVTCG) method for bioluminescence tomography 
(BLT). Considering the sparse characteristic of the light source and 
insufficient surface measurement in the BLT scenarios, we combine a 

sparseness-inducing (1 norm) regularization term with a quadratic error 

term in the IVTCG-based framework for solving the inverse problem. By 
limiting the number of variables updated at each iterative and combining a 
variable splitting strategy to find the search direction more efficiently, it 
obtains fast and stable source reconstruction, even without a priori 
information of the permissible source region and multispectral 
measurements. Numerical experiments on a mouse atlas validate the 
effectiveness of the method. In vivo mouse experimental results further 
indicate its potential for a practical BLT system. 
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1. Introduction 

Bioluminescence tomography (BLT) is a promising optical imaging technique that offers the 
possibilities to monitor physiological and pathological processes at cellular and molecular 
levels in vivo [1–4]. Based on a photon propagation model, the anatomical structure 
information and the associated tissue optical properties, BLT attempts to reconstruct 3D 
distribution of the probe inside of a small animal from the detection of light emission on the 
body surface [5]. Due to the insufficient measurements and highly diffusive nature of the 
photon propagation within biological tissues, BLT reconstruction is still a very challenging ill-
posed inverse problem. 

The ill-posedness is the crucial issue that reconstruction algorithms have to address. In 
most existing reconstructions so far, multi-spectral measurement [6–10] and a priori 
information of the permissible source region [11–15] are two common ways to reduce ill-
posedness of BLT by means of increasing the measurement and/or restricting the region of 
interest respectively. Although these techniques improve reconstruction qualities to a certain 
degree, they in turn impose some limitations on practical applications. For example, multi-
spectral or spectrally-resolved BLT usually need more signal acquisition time and have a high 
computational cost. Additionally, the size of the permission region has a serious impact on the 
reconstruction results [11] and a relatively small permission region is adopted to obtain 
meaningful results, which is not available in most cases. Recently, an iteratively shrunk 
permissible region strategy has been incorporated in a two-step reconstruction algorithm to 
improve the reconstruction quality [16]. 

No matter which approach is adopted, it is essential to combine regularization techniques 
to overcome the ill-posedness when trying to recover source distribution from noisy 
measurements. Most regularization methods used in BLT, such as Tikhonov regularization, 

try to stabilize the problem by achieving a trade-off between a loss term and an 2-norm 

regularization term [11–14]. However, due to the inherent characteristic of the 2 norm, these 

methods usually produce smooth solutions which will result in the loss of high-frequency 
parts of the original signal and introduce some artifacts in the reconstruction images. 

Over the past years, compressed sensing (CS) has attracted more interests especially in 
signal processing due to its ability of capturing salient information of sparse or compressible 
signals at a rate significantly below the demands of the Nyquist sampling theorem [17,18]. 
Coincidently, in practical BLT applications, the bioluminescent source distribution is usually 
sparse and only insufficient boundary measurements are available. In view of the 
characteristics in BLT scenarios, the CS techniques potentially bring benefits in spatial 
resolution and algorithm stability to BLT reconstruction. Recently, the CS inspired methods 
have emerged in BLT with different photon propagation models. Lu et al. presented a 
reconstruction algorithm for a spectrally-resolved BLT based on the diffusion approximation 

(DA) model where the 2 norm in Tikhonov regularization was replaced by the 1 norm and a 

limited memory variable metric optimization method was used to solve the bound constrained 
BLT inverse problem [19]. Cong et al. proposed a reconstruction method of bioluminescence 
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sources based on the phase approximation model, in which the CS technique is applied to 

regularize the inverse source recovery [20]. Gao et al. developed an 1-regularized multilevel 

FEM approach for BLT based on the radiative transfer equation (RTE) [21]. Based on the DA 

model, we applied a truncated Newton interior-point method (1-s) on multilevel adaptive 

meshes for solving the BLT inverse problem, which can achieve simultaneous recovery of 
density and power as well as accurate source location with the gradually reduced permissible 
region [22,23]. These works demonstrated the feasibility and potential of the CS techniques 
with numerical simulation and phantom experiments. However, all of these previous 
reconstructions required either permissible region constraint or multi-spectral measurements. 
Furthermore, these methods were demonstrated with only regular phantoms or homogeneous 
phantom simulations and presented no in vivo experiment validation. 

In this paper, we propose an incomplete variables truncated conjugate gradient (IVTCG) 
algorithm for whole domain BLT reconstruction. In view of the characteristics of 
bioluminescent source distribution in most BLT applications, the solution should be in a 
sparse format where most of its elements are zeros. We first reformulate the BLT inverse 

problem into minimizing an objective function which integrates a sparseness-inducing (1 

norm) regularization term with a quadratic error term. The IVTCG algorithm is then applied 

to solve this 1-norm minimization problem. 

Numerical simulations on the mouse atlas model and in vivo mouse experiments validate 
the proposed scheme and the performance is assessed in terms of location accuracy, relative 
error of reconstructed power, reconstruction time, robustness to noise, and robustness to 
optical parameters perturbation. 

The paper is organized as follows. In section 2, we present the DA model and its finite 
element solution. Section 3 elaborates on the IVTCG based sparse reconstruction method for 
BLT. We then validate the proposed method with a mouse atlas in section 4 and show an in 
vivo experiment and results in section 5. Finally, we provide the discussion and conclusion. 

2. Bioluminescence tomography framework 

2.1 Photon propagation model 

BLT reconstruction must take into account photon propagation through the underlying 
biological tissues. The RTE is a precise mathematical model describing light transport in 
turbid media [20,21,24,25], but a high computation burden limits its application in practice. 
Under the assumption that scattering dominates absorption for near-infrared light in biological 
tissues, the RTE can be simplified by diffusion approximation [26]. In this paper, we model 
the photon propagation with the steady diffusion equation complemented by a Robin 
boundary condition [11,24–27]: 

              ,aD        r r r r S r r   (1) 

             2 ; , 0 ,A n n D v     r r r r r r   (2) 

where 3Rr  is the position vector in domain  ,  S r represents the power density of the 

internal bioluminescence source,   r denotes the photon fluence rate, ν denotes the unit 

outer normal at boundary  ,  ; ,A n nr is the boundary mismatch factor [25], 

       '1/ 3 a sD   r r r  is the optical diffusion coefficient with  a r  being the 

optical absorption coefficient and  '

s r  is the reduced scattering coefficient respectively. In 

a bioluminescent imaging experiment, the measured quantity is the outgoing photon density 

on Ω [5]: 
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1

2 ; , .Q D v A n n


      r r r r r r r   (3) 

2.2 BLT inverse model 

Given the optical properties of the underlying medium, the linear relationship between the 
interior source density and the boundary photon flux rate are derived by solving Eq. (2) and 
(3) with the finite element method [11,28], and the matrix equation that connects the 
discretized fluence rate Φ  and the discretized source distribution S  can be expressed as: 

 ,MΦ=FS   (4) 

where M is a positive definite matrix and F is the source weight matrix. Thus, the photon 
fluence rateΦ is derived by 

 .-1
Φ=M FS = AS   (5) 

Since only partial photons on the boundary are captured by CCD in BLT experiments by 

retaining those rows associated with the boundary measurements m
Φ in the coefficient 

matrix A , A becomes A , and then we obtain the inverse model of BLT: 

 ,mAS Φ   (6) 

where ( )M NR M N A . It is known that this linear system of equations is under-

determined and typically ill-conditioned. 

3. Sparse reconstruction method 

3.1 Sparse regularization 

In view of the insufficient measurement and sparse characteristic of the light source in BLT 
applications, source reconstruction is equivalent to finding a sparse solution to Eq. (6). 
Inspired by the CS theory, we convert the BLT inverse model to the following minimization 

problem with 1 regularization: 

 
2

12

1
min ,

2

m  
S

AS Φ S   (7) 

where NRS , m MRΦ , ( )M NR M N A , 0  is a regularization parameter, 
2

  

denotes the Euclidean norm, and
1 ii

sS is the 1 norm. 

3.2 IVTCG method 

Since the objective function in Eq. (7) is convex but not differentiable, we reformulate it as a 
convex quadratic program with nonnegative constrained conditions by a similar method used 
in gradient projection for sparse reconstruction (GPSR) [29], an efficient algorithm for large 
scale sparse problems in compressed sensing and other inverse problems in signal processing 
and statistics. Specifically, we introduce vectors u  and v , and make the substitution 

, S u v  0,u  0v . Hence, Eq. (7) can be rewritten as the following program: 

 

1
min ( ),

2

. . 0,

T T F

s t

 



z
c z z Bz z

z

  (8) 
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where  
T

z u v ,  2

T

N c 1 -b b ,  2 1,1, ,1
T

N 1 , T mb A Φ , and 

   
T 

  
 

T T

T T

A A -A A
B A,-A A,-A

-A A A A
. The equivalence of the problems (8) and (7) has been 

proven in [29]. 

Assuming * [( *) ,( *) ]T T Tz u v  is the optimal point of programming (8), since 

bioluminescence source distribution is sparse in space, *z should be in a sparse format where 

most of its elements are zeros. Let 0sN   be a constant, and we assume that the number of 

the nonzero (NNZ) entries of *z  is less than
sN . 

Let the index set of nonzero components in *z  be * * *,I  u v  where 
**={ {1, , } | 0}ii N u u , ** { { 1, ,2 }| 0}ii N N   v v . If we obtain *I , programming 

(8) can be solved by optimizing a small sub-problem only involving variables in *I . 

In this paper, we design an iterative algorithm named IVTCG to seek a better kI  as an 

approximation of *I  in each iteration, and then optimize the sub-problem formed by setting 
the other variables to zero. 

Unlike most optimization methods which update the entire solution vector in each step of 
the iterative process, the IVTCG algorithm modifies only partial variables per iteration. 
Consequently, we need to select a working set first. 

According to the optimization theory, Karush-Kuhn-Tucker (KKT) conditions are 
necessary and sufficient for optimality. The KKT system of Eq. (8) is 

 ( *) * *,F  z Ιυ υ   (9) 

 * 0, * 0,( *) * 0,T  υ z υ z   (10) 

where *υ  is a length-2N vector constituted by KKT multipliers. 

If for all {1, 2 }i N there is one and only one of ( *)iυ  and ( *)iz , which is 0, then 

programming (8) satisfies the strict complementary slackness at *z . It follows that the KKT-
system is equivalent to 

 ( *) 0, * 0,( ( *)) * 0, ( *) * 0.TF F F       z z z z z z   (11) 

Following a similar method used in [30] and [31], a working set k  can be derived by the 
violation of the KKT optimal conditions at the k-th iteration. 

   | 1, ,2 , ( ) 0,( ( )) 0 ( ) 0,( ( )) 0 ,k k k k k

i i i ii i N F or F              z z z z  (12) 

where k
z is the current iteration point. 

It is easy to see that condition (11) is equivalent to min{ *, ( *)} 0z F z  .Consequently, if 

min{ *, ( *)}Fw z z , 
2

0w is another necessary and sufficient condition for optimality. 

Moreover, since the strict complementary slackness holds, when *k z z  it follows that, 

 
( )

*,
( ( *))

k

i

i

i I
F

  


z

z
  (13) 

 
( )

0 *.
( ( *))

k

j

j

j I
F

  


z

z
  (14) 

Equation (13) and (14) can help us to form the kI . First, we define an index set 
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   ˆ 1, ,2 | ( ) 0,( ) / ( ( ))k k k k

i i iI i N F     z z z .  (15) 

where 0  is a constant. Then, we sort ( ) / ( ( ))k k

i iFz z in descending order as 

 1 2

1 2

( ) ( )
.

( ( *)) ( ( *))

k k

i i

i iF F
  

 

z z

z z
 

The index set kI is obtained 

   ˆ ˆ| min , ,k k k

l sI i I l I N     (16) 

where ˆkI  denotes the cardinality of ˆkI . It is obvious that the constant and sN control the 

size of kI . 

Let ˆ \k k kJ I  . For the other variables corresponding to ˆ kJ , we sort ( ( *)) jF z in 

descending order and define it as: 

   max
ˆ ˆ| min , ,k k k

l sJ j J l J N N      (17) 

where
max sN N  is a constant that controls the size of kJ . 

The variables related to kI and kJ will be updated at the current iteration. However, 

different search directions and methods are used for kI and kJ . Specifically, for kI  the search 

direction k

k

I
d  is determined by solving a sub-problem that optimizes only the variables 

corresponding to kI , i.e. 

 

min ( , ),

. . 0,

k k k k
k k
Ik

k k

k k k k

I I I I

k k

I I

F

s t

 

 

d

z d z d

z d

  (18) 

where  1, ,2 \k kI N I . By omitting the constant in Eq. (16), the sub-problem can be 

rewritten as 

 

1
min ( ),

2

. . 0,k

T T

sub sub sub

k

I

F

s t

 

 

x
b x x B x x

z x

  (19) 

where ( ( )) k

T k

sub I
F b z and k ksub I I

B B . For kJ we define the direction k k

k

J J
 d w . The other 

entries of k
d are set to 0. After synthesizing the descent direction vector with k

k

I
d , k

k

J
d and 0, 

the next iteration point can be obtained by backtracking according to the Armijo rule [30]. 
The main algorithm of IVTCG is summarized in Algorithm1. 

Algorithm1: main algorithm of IVTCG 

Step 0 (initialization): Given a length-2N initial vector 0 z 0 , choose parameters 0  , 

0 1/ 2,   max0 1, 0, 0,s sN N N      , and set 0k  . 

Step 1: Calculate  min , ( )k k kF w z z . 
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Step 2: If
2

k w , stop; otherwise, go to Step 3. 

Step 3: Update kI and kJ according to Eq. (16) and Eq. (17). 

Step 4: Calculate
k

k

Id by solving the sub-problem of Eq. (19) with the truncated conjugate 

gradient method and synthesize in a descending direction [( ) , ( ) , ]
k k

k k T T T

I J d d w 0 . 

Step 5: Calculate the minimum nonnegative integer q such that 

( ) ( ) ( )k q k k q k T kF F   z d z g d and let 1 , 1,k k q k k k    z z d go to Step 1. 

The truncated conjugate gradient method used for solving the sub-problem in Eq. (19) is 
summarized in Algorithm 2 [32]. 

Algorithm2: the truncated conjugate gradient method for the sub-problem 

Step 0: Let 0 0x , 0( )sub subF x b , 0 0( )sub subF d x , max 0  , 0sub  , and 
max 0iter  ; set 0t  . 

Step 1: If 
2

2
( )t

sub subF  x  or maxt iter , then go to step 4; otherwise, let 

 

2

max max 2

2 2

max2 2

, ( ) ( )

( ) ( ) ( ) ( )

t T t t

sub sub sub sub

t
t t T t t T t t

sub sub sub sub sub sub sub sub

if F

F if F

 




  
 
   


d B d x

x d B d d B d x

. 

Step 2: If 0
k

k t t

I t sub  z s d , then set 1t t t

t sub  x x d , 1( ) ( )t t t

sub sub t sub subF F   x x B d , 

2
1

2

2

2

( )

( )

t

sub

t
t

sub

F

F







x

x
, 1 1( )t t t

sub sub t subF    d x d , 1t t  , and go to step 1; otherwise, go to step 3. 

Step 3: Calculate the maximum nonnegative scalar *  such that 0
k

k t t

I t sub  z x d . Let 
*t t t

sub x x d  

and go to step 4. 

Step 4: 
k

k t

I d x  and stop. 

For all of the experiments in this paper, IVTCG adopts the following parameter settings: 

/10sN M    , max / 8s sN N N     , max7, 0.01, 0.9, 1 10, 1 10sube e          , and 

max siter N . 

We can make a concise analysis of the time complexity of the IVTCG algorithm as 

follows. For the gradient
1 1( ) ( )k k k q kF F      z c Bz z Bd , the multiplication 

operations focus on 1 1[ , ] [ , ]k T k   Bd A A A A d . Since the NNZ entries of 1k
d  are less 

than maxN , it need maxM N multiplications to compute 1k
Ad .The amount of multiplication 

1T k
A Ad is M N . Therefore, the total cost of k

g  is max( ) ( ) ( )O MN O MN O MN  . As for 

the back-tracking step, we find that the cost is max( )O MN . In addition, suppose m is the size 

of the sub-problem (i.e. km I , and m<Ns), since it needs at most m iterations for solving 

the sub-problem and the cost per iteration is ( )O Mm , the computational cost regarding the 

sub-problem is 
2( )O Mm . Thus, the overall cost for each iterative step of IVTCG is 

2( ) ( )O Mm O MN . 
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From the above analysis, one can find that parameter Ns controls the size of the sub-
problem and the computational cost may increase sharply for a non-very sparse problem. In 
fact, by adjusting the parameters of IVTCG with slight modification, it can also be applied to 

other inverse problems in which this type of 1-regularized least squares minimization 

appears, which we will discuss in another paper [33]. 

4. Simulation studies in the mouse atlas 

In our numerical simulations, a mouse atlas of CT and cryosection data was employed to 
provide anatomical information [34], and only the torso section with a height of 40 mm was 
selected as the volume to be investigated. The optical properties of this model are listed in 
Table 1 [35–37]. 

4.1 Quantitative reconstruction in a single source 

In the first set of experiments, a cylindrical source with a 0.5 mm radius and 1 mm height was 
placed in the left kidney with the center at (10.2 mm, 15.5 mm, 24.5 mm) as shown in Fig. 
1(a). 

The synthetic measurements on the boundary were generated by using the FEM to solve 
the forward model [11]. Specifically, the atlas model with the interior bioluminescent source 
was discretized into a tetrahedral-element mesh consisting of 142920 elements and 26587 
nodes. In addition, Lagrange quadratic shape functions were adopted to make the surface flux 
density more accurate. Figure 1(b) presents the simulated photon distribution on the boundary 
and the mesh used for reconstruction. The actual source density was set at 1 nanoWatts/mm3, 
the actual source volume was 0.5404 mm3 after tetrahedralization with FEM, and thus we 
could figure out the initial source power was 0.5404 nanoWatts. The reconstruction mesh 
consisted of 14776 elements and 3098 nodes with 1155 nodes on the surface; hence, the size 
of the system matrix was 1155 × 3098. 

Table 1. Optical properties for the mouse organs 

Material Muscle Lungs Heart Liver Kidneys Stomach 

a  [mm1] 0.23 0.35 0.11 0.45 0.12 0.21 

s  [mm1] 1.00 2.30 1.10 2.00 1.20 1.70 

Previous studies in [19–22] demonstrated the superiority of 1-norm regularization to 2-

norm for sparse reconstruction in BLT, thus no such comparisons were presented in this 

paper. We compared the IVTCG method with 1-s and GPSR to exhibit the advantages of 

the proposed scheme, the former has been used in BLT [21,22] and the latter is a gradient 
projection algorithm that is very efficient for large scale sparse inverse problems [29]. All of 
the algorithms were coded in MatlabTM and carried out on a personal computer with 2.6 GHz 
Intel® PentiumTM E5300 processor and 2GB RAM. 
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Fig. 1. Reconstruction model in a single source case. (a) The torso of the mouse atlas model 
with a cylindrical source in the left kidney, (b) the mesh for reconstruction and the simulated 
photon distribution on the surface. 

In order to quantitatively evaluate the reconstruction quality, besides the source location 
error (LE) and reconstructed density, the reconstructed source power was also considered. 
This is because reconstructed total power is very important for practical BLT, for example, it 
can reflect the total tumor cell number, which maybe crucial for longitudinal monitoring using 
BLT. Additionally, the reconstructed density is usually related to mesh dimension and it is 
difficult to differentiate the influence of a small source with high density and a large one with 
low density [8]. In this paper, LE was the Euclidean distance between centers of the 
reconstructed and the actual source; the source power was computed with the source integral 
method [11,15] and the relative error (RE) of power was calculated by 

r a aPower Power Power , where 
aPower denoted the actual value and 

rPower  was the 

reconstructed value. 
Because the regularization parameter plays an important role in regularization methods, 

we performed three groups of comparison experiments with different regularization 
parameters using the three methods. The detailed information about parameters and the final 
quantitative reconstruction results are summarized in Table 2. 

We found that the reconstructed positions by IVTCG and 1-s were identical in all cases 

considered in this set of experiments. Specifically, the reconstructed center was (9.91 mm, 
15.87 mm, 24.45 mm) with an LE of 0.47 mm from the actual source, whereas the LE by 

GPSR was up to 2.23 mm. For each , GPSR performed faster than IVTCG and 1-s, but the 

quantitative results were inferior to that of the other two methods in terms of location, density 

and power. As for IVTCG, it performed slightly slower than GPSR but much faster than 1-

s; for example, for 1e 5    although 1-s and IVTCG produced comparative quantitative 

results, the reconstruction time of 1-s was about 319 times of that of IVTCG. 

The reconstruction results in Table 2 demonstrate that the regularization parameter does 
affect the final reconstruction quality. Although the reconstructed positions do not vary 
with , the quantitative values of density and power descend when  decreases. The figures in 

Table 2 witness an increase in the relative error of reconstructed power by IVTCG i.e., from 
15.80% at 1e 3   to 44.1% at 1e 5   . In this set of experiments, 1e 3    was the 

optimal regularization parameter and the final reconstruction results in this case are shown in 

Fig. 2. Although the quantitative results by 1-s and IVTCG are comparative, there are some 

artifacts in the results of 1-s as shown in Fig. 2(d), which indicates the solution is not sparse 

enough. In this case, IVTCG produced a very sparse solution with only 3 nonzero entries, 

whereas the NNZ of the counterparts were 7 for GPRS and 15 for 1-s respectively. 
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Table 2. Reconstruction results in single source case with different parameters 

τ 
Recon. 
Method 

Recon. 
Time(s) 

Recon. 
Position(mm) 

LE 
(mm) 

Recon. Density 
(nW/mm3) 

Recon. Power 
(nW) 

RE of 
Power 

1e-3 

1-s 87.37 (9.91,15.87,24.45) 0.47 0.0191 0.4402 18.54% 

GPSR 0.19 (8.46,16.90,24.55) 2.23 0.0056 0.0670 87.60% 

IVTCG 0.38 (9.91,15.87,24.45) 0.47 0.0201 0.4550 15.80% 

1e-4 

1-s 357.22 (9.91,15.87,24.45) 0.47 0.0137 0.3299 38.95% 

GPSR 0.17 (8.46,16.90,24.55) 2.23 0.0040 0.0622 88.49% 

IVTCG 1.16 (9.91,15.87,24.45) 0.47 0.0145 0.3468 35.83% 

1e-5 

1-s 1340.76 (9.91,15.87,24.45) 0.47 0.0132 0.3188 41.01% 

GPSR 0.17 (8.46,16.90,24.55) 2.23 0.0037 0.0593 89.03% 

IVTCG 4.21 (9.91,15.87,24.45) 0.47 0.0123 0.3021 44.10% 

 

Fig. 2. Reconstruction results at 1e 3   . (a), (c) and (e) are respectively the isosurface 

views of the results by IVTCG, 1-s and GPSR, where the small red cylinder denotes the 

actual source; (b), (d) and (f) are the corresponding transverse views at z = 24.5mm where the 
small black circle denotes the actual source. 
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4.2 Reconstruction robustness to measurement noise 

It is well known that the system matrix A  is typically ill-conditioned which make the BLT 
reconstruction very sensitive to measurement noise. A set of simulations were performed to 
test the reconstruction robustness by adding different levels of noise to boundary 
measurements. We conducted 100 independent reconstructions for each noise level. For all of 
the noise levels considered, the source locations were identical to those without noise. 
Furthermore, we found that the reconstructed power varied slightly with the increase in noise 
level, and the maximum deviation of the power occurred at 30% noise level, which possessed 
a maximum 9.4% deviation to the actual power. The error bar chart of the reconstructed 
power under different noise level is shown in Fig. 3. The results show that the proposed 
method is robust to measurement noise. 

 

Fig. 3. Error bar chart of power under different noise levels. 

4.3 Reconstruction robustness to optical parameters perturbation 

In most BLT applications, there is inevitable discrepancy between the optical properties used 
in the reconstruction and the actual physiological values which would affect the 
reconstruction accuracy significantly [27,38]. In this section, we investigated the robustness of 
the proposed method against inaccurate optical parameters by adding 10% perturbation to 

absorption and reduced scattering coefficients of different organs. The simulations were 
performed on the same model in the single source case. We considered all of the 9 cases of the 

combination of different deviations in a and s . 

The reconstructed source center was not affected by the optical parameter perturbation. 
The results in Table 3 show that the proposed method is robust against optical parameter 
perturbation especially in source location. We can observe an interesting phenomenon that the 
reconstructed results in case 1 to case 4 are superior to those without any perturbation. It is 
noted that the common feature of the four cases is the ratio of the reduced scattering 
coefficient to the absorption coefficient increase, which means such cases better satisfy the 
hypothesis of the DA model, i.e. scattering predominates over absorption. 
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Table 3. Reconstruction results with optical parameter perturbation 

Case Deviation in a  Deviation in s  
Density 

(nW/mm3) 
Power 
(nW) 

RE of 
Power 

1 10% 10% 0.0255 0.5660 4.74% 

2 10% 0 0.0240 0.5354 0.93% 

3 10%  + 10% 0.0213 0.4790 11.36% 

4 0 10% 0.0235 0.5224 3.33% 

5 0 0 0.0201 0.4550 15.80% 

6 0  + 10% 0.0167 0.3860 28.57% 

7  + 10% 10% 0.0194 0.4393 18.71% 

8  + 10% 0 0.0154 0.3600 33.38% 

9  + 10%  + 10% 0.0118 0.2846 47.34% 

4.4 Double source case evaluation 

We also investigated the proposed method by a double source experiment. Two sources were 
located in the left kidney with their centers at (10.2 mm, 15.5 mm, 24.5 mm) and (10.2 mm, 
16 mm, 28.5 mm) respectively. The size and density of each source were the same as in the 
single source case, but the initial power of source-1 was 0.5404 nanoWatts, whereas that of 
source-2 was 0.5378 nanoWatts, mainly due to the influence of the mesh. The final 
reconstruction results presented in Table 4 and Fig. 4 indicate that the sources can be 
accurately distinguished, although there is some difference in the reconstructed density and 
power. 

Table 4. Reconstruction results in the double-source case 

Source 
Actual 

Position(mm) 
Recon. 

Position(mm) 
LE 

(mm) 
Density 

(nW/mm3) 
Power 
(nW) 

RE of 
Power 

Source-1 (10.2,15.5,24.5) (9.91,15.87,24.45) 0.47 0.0260 0.5866 8.55% 

Source-2 (10.2,16,28.5) (9.33,16.46,28.63) 0.99 0.0232 0.4375 18.65% 

 

Fig. 4. Reconstruction results in the double source case (a) The isosurface view (b) The 
corresponding coronal view at Y = 15.8mm. The small red cylinders in (a) and small black 
squares in (b) denote actual sources. 
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5. In vivo experiment validation 

To further test the proposed method, an in vivo experiment was performed on an adult 
BALB/C mouse. The animal procedures were in accordance with the Fourth Military Medical 
University (FMMU) approved animal protocol. 

A luminescent catheter filled with 5μl luminescent liquid was implanted into the abdomen 
to serve as the testing source in this experiment. The luminescent solution was extracted from 
a red luminescent light stick (Glow products, Canada) and the generated luminescent light had 
an emission peak wavelength of about 644 nm. The initial total power was 300 nanoWatts 
(the total power = luminescent solution volume × luminescent solution flux density = 5μl × 60 
nanoWatts/μl). 

The experimental data were acquired by a dual-modality BLT/micro-CT system developed 
in our lab [39]. The anesthetized mouse was first photographed and luminescent images were 
taken by a calibrated CCD camera from four directions at 90 degree intervals with different 
exposure times. Specifically, the luminescence images were acquired with a binning value of 
2, integration time of 12 seconds and an aperture number f 8. The CCD camera was calibrated 
by an integrating sphere 12 inches in diameter (USS-1200V-LL Low-Light Uniform Source, 
Labsphere, North Sutton, NH) and the calibration formula is the same as used in [39]. The 
multi-view superimposed photographs and luminescent images are shown in Figs. 5(a)-(d). 
After the optical data were acquired, the intact mouse was scanned using the Micro-CT. The 
volume data were reconstructed by GPU-accelerated FDK algorithm [40]. Because of the 
limited field of view, only the torso section was scanned. The center coordinates (22.08 mm, 
22.24 mm, 18.08 mm) of the actual luminescent source were obtained from the CT slices. 

 

Fig. 5. Multi-view superimposed images of photographs and luminescent images. (a)-(d) 
Anterior -posterior, right-lateral, posterior-anterior, and left-lateral views respectively. 

For implement reconstruction, the CT slices were segmented into major anatomical 
components, including lungs, heart, liver, kidneys, and muscle as shown in Fig. 6(a). The 
optical parameters for different organs were calculated based on the literature [36] as listed in 
Table 5. 

Table 5. Optical properties of the mouse model 

Material Muscle Heart Lungs Liver Kidneys 

a  [mm1] 0.0086 0.1382 0.4596 0.8291 0.1550 

s  [mm1] 1.2584 1.0769 2.2651 0.7356 2.5329 

Note that bioluminescent images did not contain any structural information, thus we 
needed to match optical data to the coordinate system of the volume data. In the experiment, 
each optical data acquisition consisted of a visible-light photograph and a corresponding 
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luminescent emission image. Because these photographs were acquired with the same camera, 
these images were expressed in the same coordinate space, and could therefore be used for 
registering the optical data with the CT data. 

By using the rotation stage and the mouse holder, there was no substantial deformation of 
the mouse during the entire process. Therefore, a landmarks-based rigid-body registration 
method was adopted in this work. Four identical polyethylene balls placed on every side of 
the mouse holder served as landmarks for subsequent registration. The positions of the 
landmarks were read from the volume data. Meanwhile, 2D coordinates of the same marks on 
the planar optical photographs could be obtained. In addition, the third coordinate could be 
calculated through the optical imaging principle with the basic parameters, including the 
perpendicular distance between the image and the lens system, the distance between the object 
and the lens system, the focus of the lens system, and the magnification of the optical system. 
After registering the bioluminescence images and the volume data of the micro-CT, the 
absolute irradiance distribution was mapped onto the mouse surface using a 3D surface flux 
reconstruction algorithm based on the hybrid radiosity-radinace theorem as shown in Fig. 6(b) 
[41]. 

 

Fig. 6. In vivo model (a) The 3D view of the segmented micro-CT slices of the imaged mouse 
with a luminescent source implanted beneath the liver. (b) Surface view of the reconstruction 
mesh, with the detected photon distribution mapping on it. 

In the reconstruction process, the segmented mouse torso was discretized into a 
tetrahedral-element mesh containing 11085 elements and 2390 nodes for subsequent 
reconstruction. It took about 6 seconds to complete the reconstruction using the IVTCG 
method without any a priori information of the permissible source region. The final result is 
presented in Fig. 7, where the source center is (23.58 mm, 24.17 mm, 18.05 mm) with a 
deviation of 2.44 mm to the actual center. The reconstructed power was 276.7 nanoWatts 
possessing a relative error of 7.8%. 
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Fig. 7. The reconstruction result (a) the isosurface view of the reconstruction result. (b) the 
transverse view of the result and the comparison with the corresponding CT slices. The cross of 
the green lines denotes the actual source center and the cross of the red lines denotes the 
reconstructed center. 

6. Conclusion and discussion 

In this paper, we present a novel BLT sparse reconstruction method without any a priori 
information of the permissible source region. Based on the simulation experiments on a 
mouse atlas model we demonstrate that the proposed reconstruction method is able to 
accurately localize and quantify light source distribution of the entire region even with noisy 
measurements and inaccurate optical parameters. The in vivo experiment further indicates its 
capability of quantitative reconstruction on whole bodies of mice. 

It is well known that the ill-posedness of the reconstruction problem and large scale 
numerical problems involved in tomography are two vital issues that reconstruction 

algorithms need to address. Our simulations indicate that sparseness-inducing (1 norm) 

regularization can effectively reduce the ill-posedness of BLT and thus produce a very sparse 
and stable solution without permissible region constraint. On the other hand, by limiting the 
size of the variables updated in the current iteration and locating the nonzero entries of the 
sparse solution more efficiently, the IVTCG based reconstruction algorithm can decrease the 
computational costs and converge after finite iterations, which make it more appropriate for 
practical BLT applications. 

It can be noted that in vivo experiments are not as accurate as simulation ones, but they are 
reasonable for such a newly developed imaging system. The reconstruction quality could be 
enhanced by improving the imaging system and the experimental procedures. For the location 
error, one of the error sources may originate from 3D surface mapping. In addition, although 
the reconstruction is based on a heterogeneous model, some organs are ignored for simplicity 
which would also lead to errors. 

Since bioluminescence signals are generally very weak and the designation of volume of 
interest needs human intervention, reconstruction algorithms that need no explicit knowledge 
of the permissible region are thus very meaningful. Recently, a generalized graph cuts based 
approach has been proposed for localizing the bioluminescent source in the entire region [42]. 
Nevertheless, it cannot quantify the source distribution, and that is why we did not compare it 
with our method. 

Mathematically, the goal of bioluminescence source reconstruction can be considered to 
find sparse solutions from large underdetermined systems of linear equations, which is 
essentially the same as that of compressive sensing tasks. Although verifying the restricted 
isometry property (RIP) condition or incoherence condition of the CS theory is very difficult 
[43], the experiment results in this paper demonstrate that the CS techniques enhance the 
numerical stability of the BLT reconstruction. 
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In general, the proposed scheme is an efficient quantitative reconstructions method for 
complex BLT applications. Although it can recover the interior source efficiently, the error 
caused by the limitation of the DA model is still inevitable, more precise models should be 
considered for the practical BLT problem. In the future, we will further investigate this 
method for BLT reconstruction based on a more accurate forward model. 
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