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a b s t r a c t 

Recently, many methods have united low-level and high-level features to generate the desired accurate 

high-resolution prediction for human parsing. Nevertheless, there exists a semantic-spatial gap between 

low-level and high-level features in some methods, i.e., high-level features represent more semantics and 

less spatial details, while low-level ones have less semantics and more spatial details. In this paper, we 

propose a Semantic-Spatial Fusion Network (SSFNet) for human parsing to shrink the gap, which gener- 

ates the accurate high-resolution prediction by aggregating multi-resolution features. SSFNet includes two 

models, a semantic modulation model and a resolution-aware model. The semantic modulation model 

guides spatial details with semantics and then effectively facilitates the feature fusion, narrowing the 

gap. The resolution-aware model sufficiently boosts the feature fusion and obtains multi-receptive-fields, 

which generates reliable and fine-grained high-resolution features for each branch, in bottom-up and top- 

down processes. Extensive experiments on three public datasets, PASCAL-Person-Part, LIP and PPSS, show 

that SSFNet achieves significant improvements over state-of-the-art methods. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Human parsing [1–11] is a fine-grained semantic segmenta-

ion task. It aims to predict the pixel-wise mask of body parts or

lothing items for human images. Understanding the details of hu-

an images makes sense in some applications, for example, per-

on re-identification [12] , human behavior analysis [13] , clothing

tyle recognition and retrieval [14] , clothing category classification

15] , to name a few. However, repeated down-sampling operations

f pooling and convolution strides make the prediction lose some

etails compared to initial images. There are two mainstreams

f the low-level and high-level feature fusion networks to obtain

he high-resolution prediction. One type of methods [10,11,16] em-

loys the “U-net [17] ” structure, which fuses high-level and low-

evel features with skip connections. The other type of methods

18,19] fuses features by residual connections. The drawback of

hese above methods is that there is a semantic-spatial gap be-

ween features of two different levels [20] . 

The semantic-spatial gap in the feature fusion is that deep fea-

ures represent more semantics and less spatial details compared

ith low features, and vice versa. Consider the extreme case that
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ow-level features only have the capacity to distinguish shallow

oncepts such as points, lines or edges. Intuitively, it is difficult

o fuse high-level features with low-level ones because low-level

eatures are too noisy to provide high-resolution semantic guid-

nce. Similarly, high-level features have little spatial details, and

hus, low-level features may not take advantage of the semantics

f the high-level. As shown in Fig. 1 , some examples can verify the

bove insights, i.e., there exists the semantic-spatial gap of these

redictions generated by MMAN [10] in the second column. Some

arts have less spatial details or some spatial details with wrong

emantic labels in the second column. 

In this paper, we propose a Semantic-Spatial Fusion Network

SSFNet) for human parsing to shrink the gap, which generates

n accurate high-resolution prediction. SSFNet mainly includes

wo models, a semantic modulation model and a resolution-aware

odel. There are fine-grained gaps compared with semantic seg-

entation because human parsing segments human bodies into

mall parts rather than the whole body as done in semantic seg-

entation. Thus, SSFNet gradually shrinks the fine-grained gap by

mporting two models in different branches to obtain a coarse-to-

ne prediction. Especially, SSFNet fuses multi-resolution features to

btain the desired high-resolution prediction. 

The semantic modulation model effectively facilitates the fea-

ure fusion between low-level and high-level features, which

hrinks the semantic-spatial gap, as shown in Fig. 2 (b). Specif-

cally, our semantic modulation model takes features of two
tic-spatial fusion network for human parsing, Neurocomputing, 
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Fig. 1. Examples of predictions. The original images and ground truth come from PASCAL-Person-Part dataset [21] . Predictions are generated by MMAN [10] in the second 

column. Predictions are generated by our SSFNet in the third column. 

Fig. 2. Overview of the proposed SSFNet (a), it consists of two models: the semantic modulation model (b), and the resolution-aware model (c). (d) is the branch of the 

semantic modulation model. 
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different levels as inputs, and generates features with more se-

mantics and spatial details, in a dual branch structure. As shown

in Fig. 2 (d), in each branch, a convolutional layer applies to the

high-level features to generate a modulation tensor, which guides

low-level spatial details with high-level semantics and makes spa-

tial details have related semantic labels. For example, the spa-

tial details of the head position(i.e., edges, corners) have the head

labels. Then, high-level features may have a chance to fuse them-

selves with semantic spatial details. Hence, the model can alle-

viate the semantic-spatial gap between low-level and high-level

features by effective feature fusion. Moreover, this model not only

up-samples high-level features but also down-samples low-level

features, which is more robust and accurate than these methods

[10,11,16] only up-sampling high-level features without regard to

low-level features. 

In order to obtain more reliable and fine-grained high-

resolution features, we present the resolution-aware model, as

shown in Fig. 2 (c). This model sufficiently boosts the feature fu-

sion and further shrinks the gap, which can achieve multi-scales

and multi-receptive-fields fusion to parse human parts. The or-

dinary hourglass network [22] centers its attention on one in-

put, whereas our resolution-aware model is different from it. Our

model takes two inputs to remedy the missing details along with a

series of convolutional operations. Thus, this model has the capac-

ity of extracting deep semantics and keeping the shallow details,

and then generates reliable and fine-grained features with differ-

ent resolutions in different branches, in bottom-up and top-down

processes. 
Please cite this article as: X. Zhang, Y. Chen and B. Zhu et al., Seman
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Extensive experiments show that SSFNet achieves a new state-

f-the-art consistently on three public benchmarks, including

ASCAL-Person-Part [21] , LIP [8] and PPSS [23] . And LIP can be well

eneralized on a relatively small dataset PPSS. Specifically, SSFNet

utperforms the competing methods by 1.42%, 1.43%, and 5.16% on

ASCAL-Person-Part, LIP, and PPSS in terms of mIoU, respectively. 

In summary, our contributions can be summarized in three

olds: 

1. We present a Semantic-Spatial Fusion Network (SSFNet) which

shrinks the semantic-spatial gap and achieves new state-of-the-

art results on three benchmark datasets. 

2. We propose a semantic modulation model which guides spa-

tial details with semantics and then effectively facilitates fea-

ture fusion to narrow the semantic-spatial gap between low-

level and high-level features. 

3. We develop a resolution-aware model which achieves multi-

scales and multi-receptive-fields fusion to generate reliable and

fine-grained high-resolution features, in bottom-up and top-

down processes. 

. Related work 

.1. Human parsing 

Many research efforts have been devoted to human parsing

4,5,10,11,16,19] . Gong et al. [4] presented PGN to fuse semantic

eatures and edge features, which generated the prediction with
tic-spatial fusion network for human parsing, Neurocomputing, 
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ccurate boundaries. Li et al. [5] proposed a network that fused

etectable features with semantic features for human parsing. Nie

t al. [19] introduced MuLA network to joint features of human

arsing and pose estimation. Liu et al. [11] fused multi-scale fea-

ures to leverage the useful properties to conduct human pars-

ng. Different from the above methods, our SSFNet can shrink the

emantic-spatial gap between low-level and high-level features,

hich introduces more semantic information into low-level fea-

ures and more spatial high-resolution information into high-level

eatures. 

.2. High-resolution prediction 

Most deep convolutional networks [2–6,9,11,24–27] adopted to

p-sample final features for obtaining the desired pixel-wise pre-

iction. The overall strides may hinder the accuracy of results.

ijay et al. [28] proposed SegNet to generate the pixel-wise se-

antic segmentation by skip connections. Lin et al. [18] presented

efinenet, which gradually recovered the size of features. However,

e not only gradually recover the features by some branches but

lso fuses the outputs of these branches, which combines the ad-

antages of both cascaded and parallel architectures. Zhang et al.

20] proposed ExFuse to bridge the semantic-spatial gap of seman-

ic segmentation. Different from ExFuse, we import some models

o shrink the gap gradually because human parsing segments the

uman body into small parts rather than the whole body as done

n semantic segmentation, and we propose a dual structure to

ake full use of the superiority of high-level semantics and low-

evel spatial details in our semantic modulation model. Thus our

SFNet is more effective than ExFuse. Chen et al. [29] designed

eepLabv3+ which took advantages of multi-scale features in the

nal stage to generate the prediction. However, our SSFNet uses

 resolution-aware model to obtain multi-scale features in many

tages (branches) to obtain more multi-scale features. 

.3. Feature fusion 

Newell et al. [22] proposed a stacked hourglass network by re-

eating bottom-up, top-down processes. Ke et al. [30] introduced

 multi-scale structure-aware network. Yang et al. [31] designed

 Pyramid Residual Module (PRMs) to enhance the invariance in

cales of DCNNs. Nie et al. [32] presented PPN to address the chal-

enging multi-person pose estimation problem. Tang et al. [33] pre-

ented DLCM to exploit deep neural networks to learn the compo-

itionality of human bodies. All the above methods take features of

ne resolution as inputs. In contrast, our resolution-aware model

akes features of different resolutions as inputs in a dual structure.

n addition, our semantic modulation model can guide spatial de-

ails with semantics to facilitate the feature fusion. 

. Proposed network 

In this section, we elaborate on our proposed SSFNet including

ts overall structure and individual components, as shown in Fig. 2 .

e first introduce the whole network, then the semantic modula-

ion model, finally the resolution-aware model. 

.1. Semantic-spatial fusion network 

We aim to alleviate the semantic-spatial gap between high-level

nd low-level features and obtain the accurate high-resolution pre-

iction. As shown in Fig. 2 (a), our SSFNet is based on the PSP-

et [34] framework, and then we divide the framework into three

ranches on the basis of its resolution, i.e., 1/8, 1/4 and 1/2 size of

he initial, respectively. We employ an hourglass network [22] at

he top of PSPNet (branch-3) and two SSFNet blocks at branch-1
Please cite this article as: X. Zhang, Y. Chen and B. Zhu et al., Seman
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nd branch-2, respectively. Note that each SSFNet block is com-

osed of the semantic modulation model and the resolution-aware

odel, as shown in Fig. 2 (b)–(c). 

We denote SSFNet- l as the SSFNet block that connects to the

utputs of branch- l in PSPNet. In practice, the output of each

ranch is passed through one convolutional layer to adapt the di-

ensionality. Parameters of SSFNet block are not tied, allowing

or a more flexible adaptation for an individual branch. Following

he illustration in Fig. 2 (a) bottom-up, we start from the bottom

ranch (branch-3) of PSPNet and connect the output of branch-3 to

 common hourglass network. In the next stage, the outputs of the

ourglass network and the PSPNet branch-2 are fed into SSFNet-

. SSFNet-2 combines the advantages of high-level semantics and

ow-level spatial details and facilitates the feature fusion to shrink

he semantic-spatial gap, generating high-resolution features. Sim-

larly, SSFNet-1 repeats operations of SSFNet-2. 

The overall architecture of the network has two strengths. On

he one hand, our network cascades multi-resolution branches by

he two SSFNet blocks to gradually shrink the fine-grained gap. On

he other hand, our network provides a generic means to fuse fea-

ures, improving performance. As shown in Fig. 2 (a), the network

an capture features of three resolutions. We up-sample these fea-

ures bottom-up by 8 times, 4 times and 2 times, respectively. In

his way, our SSFNet can generate an accurate high-resolution pre-

iction. 

.2. Semantic modulation model 

Low-level and high-level features are complementary by nature,

here low-level features are rich in spatial details but lack seman-

ic information and vice versa [20] . However, as above mentioned,

here is a semantic-spatial gap between high-level and low-level

eatures when they are fused. To alleviate the gap between fea-

ures of two different levels and facilitate feature fusion, we design

he semantic modulation model, as shown in Fig. 2 (b). Our seman-

ic modulation model takes features of two different levels as in-

uts, that is, high-level but low-resolution features and low-level

igh-resolution features. Note that the high-resolution features are

 times larger than the low-resolution ones in the semantic mod-

lation model. 

Our semantic modulation model has two branches which are

amed low-resolution branch and high-resolution branch, respec-

ively. Specifically, each branch of the model takes features of two

ifferent levels as inputs. In the low-resolution branch, we down-

ample low-level high-resolution features F h 
l 

to the size of low-

esolution features to generate low-level low-resolution features

 

l 
l 
, where F h 

l 
are passed through a convolutional layer with stride

. In the high-resolution branch, we up-sample high-level low-

esolution features F L H to the size of high-resolution features to ob-

ain high-level high-resolution features F H 
H 

, where F L 
H 

are passed

hrough a bilinear up-sampling with 2 times. That is, 

F h 
l 

→ F h 
l 

↘ F l 
l 
, 

F L H → F H H 

↘ F L H . 

(1) 

In each branch, one convolutional layer applies to the high-level

eatures to produce a modulation parameter β , which guides spa-

ial details with semantics. In this way, spatial details have related

emantic labels. Unlike other methods, β is not the vector, but

ensors with spatial dimensions. Then, high-level features have a

hance to fuse themselves with low-level details, which can allevi-

te the semantic-spatial gap between low-level and high-level fea-

ures by effective feature fusion. Finally, the model generates fea-

ures with semantics and spatial details, as shown in Fig. 2 (d).
tic-spatial fusion network for human parsing, Neurocomputing, 
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That is, 

β lL = W 

lL ∗ F 

L 
H + b lL , 

βhH = W 

hH ∗ F 

H 
H + b hH , 

F 

L 
s = sum ((F 

l 
l × β lL ) , F 

L 
H ) , 

F 

H 
s = sum ((F 

h 
l × βhH ) , F 

H 
H ) , (2)

where ∗ denotes the convolutional operation, β lL and βhH de-

note the modulation parameters of the low-resolution and high-

resolution branch, respectively, W 

lL and W 

hH refer to weights, b lL 

and b hH refer to biases, × denotes the element-wise multiplica-

tion, sum denotes the element-wise sum, F 

L 
s denotes the output of

the low-resolution branch, and F 

H 
s denotes the output of the high-

resolution branch. 

In this way, low-level and high-level features can be fused in a

dual branch structure, which can afford more choices for the net-

work to accommodate the importance of inputs. Meanwhile, the

features, the outputs of the semantic modulation model, can be

learned to the features from early convolutional layers which en-

code low-level spatial visual information like edges, corners, cir-

cles, etc., and also learned to high-level features from deeper layers

which encode high-level semantic information, including object- or

category-level evidence. 

3.3. Resolution-aware model 

To acquire more reliable and fine-grained high-resolution fea-

tures, we present the resolution-aware model that takes out-

puts of the semantic modulation model as inputs, as shown in

Fig. 2 (c). Here, high-resolution features are 2 times larger than

low-resolution features, which is the same as our semantic mod-

ulation model. Hourglass network [22] has one input, so its se-

quential operations take this as the source of information. Different

from [22] , our resolution-aware model has two inputs, which not

only takes the features of high-resolution as the input but also ab-

sorbs the features of low-resolution during the single pipeline. This

way preserves fine-grained semantic-spatial features in bottom-up

and top-down processes. Every resolution-aware model reaches its

lowest resolution at the one forth of high-resolution features and

generates features with high-resolution. 

In the bottom-up process, high-resolution features F 

H 
s and low-

resolution features F 

L 
s are operated by convolutional layers, gener-

ating F 

H 
d 

and F 

L 
d 
, respectively. Then F 

H 
d 

is down-sampled 2 times

by a convolutional layer and concatenated with F 

L 
d 

. Finally, they

are sent into a convolutional layer with stride 2 to generate the

smallest features to obtain F 

1 / 2 l 
d 

, that is, 

F 

H 
s −→ F 

H 
d , 

F 

L 
s −→ F 

L 
d , 

F 

H 
d 

d, 1 / 2 −−−→ F 

l 
d , 

concat(F 

l 
d , F 

L 
d ) −→ F 

l 
d , 

F 

l 
d 

d, 1 / 2 −−−→ F 

1 / 2 l 

d 
. (3)

After reaching the lowest resolution, the model begins the top-

down sequence. The smallest features F 

1 / 2 l 
d 

are zoomed 2 times

by bilinear up-sampling. Meanwhile, the low-resolution semantic-

spatial features F 

L 
s also are up-sampled 2 times. Then, these fea-

tures are pass through a series of operations, that is, 

F 

1 / 2 l 

d 

u, 2 −→ F 

l 
u , 

concat(F 

l 
u , F 

L 
d ) 

u, 2 −→ F 

h 
u , 

F 

L 
d 

u, 2 −→ F 

H 
u , 

concat(F 

H , F 

h 
u , F 

H 
u ) −→ F 

H , (4)
d 

Please cite this article as: X. Zhang, Y. Chen and B. Zhu et al., Seman
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here F 

l 
u and F 

h 
u denote features up-sampled 2 times by bilinear

nterpolation, F 

H 
u denotes the F 

L 
d 

features up-sampled 2 times, F 

H 

enotes the outputs of the resolution-aware model. 

Finally, reaching the output resolution of the branch, two con-

ecutive rounds of 1x1 convolutional layers are applied to produce

he high-resolution features of this model. 

.4. Loss function 

Following PSPNet [34] , our SSFNet employs two deep auxiliary

osses, which are named as L aux 1 and L aux 2 , respectively. L aux 1 lo-

ates at the end of our baseline and L aux 2 is applied after the

wenty-second block of the fourth stage of ResNet101, i.e., the

es4b22 residue block. In addition, there is a loss at the end of

SFNet named as L softmax . The total loss can be formulated as: 

 = λL sof tmax + λ1 L aux 1 + λ2 L aux 2 , (5)

here we fix the hyper-parameters λ = 0.6, λ1 = 0.5, and λ2 =
.4 in our experiments. Following PSPNet, the auxiliary loss weight

2 is the same as PSPNet. We experiment with setting hyper-

arameters λ and λ1 from 0 to 1, respectively. And then λ = 0.6

nd λ1 = 0.5 yield the best performance. 

. Experiments 

To evaluate the performance of the proposed SSFNet, we

erform the experiments on three datasets, including PASCAL-

erson-Part [21] , LIP [8] and PPSS [23] . The first is a single-

erson and multiple-person dataset, the last two are single-person

atasets. The accuracy of each part (clothes) is measured by pixel

ntersection-over-Union (IoU) in human parsing. The mean pixel

ntersection-over-Union (mIoU) is computed by averaging the IoU

cross all parts. We use both IoU and mIoU as evaluation metrics

or these three datasets. 

.1. Implementation details 

We take the PSPNet [34] followed an hourglass network [22] as

he baseline. Additionally, we train SSFNet in an end-to-end man-

er. As for the input size, we resize it to 473 × 473. We train all

he networks using stochastic gradient descent (SGD) solver, mo-

entum 0.9 and weight decay 0.0 0 05. The batch sizes are 8 on

he three different datasets. The epochs of three datasets are 100.

or data augmentation, we apply the random scaling (from 0.5 to

.5), and left-right flipping during training. In the inference pro-

ess, we test images on the multi-scale to acquire multi-scale con-

exts as similar to most semantic segmentation tasks. All networks

re trained on NVIDIA GTX TITAN X GPU with 12 GB memory. 

.2. Results on PASCAL-Person-Part 

In PASCAL-Person-Part [21] , there are multiple personal ap-

earances in an unconstrained environment. Each image has 7

abels: background, head, torso, upper-arm, lower-arm, upper-leg

nd lower-leg. We use the images containing human for training

1716 images) and validation (1817 images). 

Discussion about Baseline. Because the hourglass network

22] has the capacity of processing across all scales features to cap-

ure the various spatial relationships, so we use it to improve the

erformance of the baseline. In order to exploit the suitable base-

ine without any proposed models, we follow [22] to repeat dif-

erent quantities of hourglass networks from 1 to 3 in a cascaded

ay. They are named as Baseline, Baseline-D, Baseline-T, Baseline-

 -A, respectively. In Table 1 , we use the same hyper-parameters

o train Baseline, Baseline-D, and Baseline-T, i.e., learning rate, in-

ut size, batch size, epochs, and so on. These hyper-parameters
tic-spatial fusion network for human parsing, Neurocomputing, 
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Table 1 

Discussion about baselines. The results are obtained on the validation set of 

PASCAL-Person-Part [21] . Baseline is PSPNet with an hourglass network [22] . 

Baseline-D is PSPNet with dual hourglass networks. Baseline-T is PSPNet with three 

hourglass networks. Baseline-T-A is Baseline-T with appropriate hyper-parameters. 

Method one two three Ave. 

Baseline � 65.67 

Baseline-D � 65.85 

Baseline-T � 65.46 

Baseline-T-A � 65.98 

Table 2 

Ablation study of our SSFNet. H denotes the high-level features up-sampled. HL de- 

notes the high-level features up-sampled and the low-level features down-sampled. 

SMM is our semantic modulation model. CH denotes the common hourglass net- 

work. L denotes the low-resolution semantic-spatial features to employ at the first 

concatenation of our models. RAM is the resolution-aware model. SSFNet-3D is the 

network adding the third branch with the smallest features. SSFNet-3U is the net- 

work adding the third branch with the largest features. 

Method Ave. 

Semantic Modulation Model 

Baseline + H 65.80 

Baseline + HL 66.09 

Baseline + SMM 67.19 

Resolution-Aware Model 

Baseline + SMM+CH 67.73 

Baseline + SMM+L 68.55 

Baseline + SMM+RAM 69.62 

Semantic-Spatial Fusion Network 

SSFNet-3D 69.76 

SSFNet-3U 69.83 

SSFNet 70.08 
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F  
re appropriate for Baseline-D that achieves the best performance,

ut not appropriate for Baseline-T. We further adjust these hyper-

arameters to Baseline-T named Baseline-T-A, i.e., increasing the

pochs from 100 to 120. The performance of Baseline- T-A is im-

roved and exceeds Baseline-D. From Table 1 , we find that increas-

ng the number of hourglass networks from 1 to 3 improves little

ccuracy. We conclude that PSPNet with an hourglass network (the

aseline) yields the best trade-off between performance and cost,

ith a performance of 65.67% in terms of mIoU. And the number

f parameters for the baseline is the smallest in these baselines. 

Ablation study for semantic modulation model. In order to in-

estigate the effectiveness of our semantic modulation model, we

onduct experiments with three settings. The first is to only up-

ample high-level features 2 times to the resolution of the high-

esolution features and then fuse them, which is similar to most

ethods [17,35] and named Baseline+H. The second is named as

aseline+HL, which not only up-samples high-level features but

lso down-samples low-level features in a dual branch structure,
nd then we fuse them. The third is to use our modulation mech- 

Table 3 

Performance comparison in terms of mean pixel Interse

methods on PASCAL-Person-Part. 

Method Head Torso U-arms L-ar

HAZA [2] 80.76 60.50 45.65 43.1

LIP [8] 83.26 62.40 47.80 45.5

MMAN [10] 82.58 62.83 48.49 47.3

Graph LSTM [36] 82.69 62.68 46.88 47.7

SE LSTM [6] 82.89 67.15 51.42 48.7

Joint [3] 85.50 67.87 54.72 54.3

PCNet [9] 86.81 69.06 55.35 55.2

Holistic [5] – – – –

RefineNet [18] – – – –

SSFNet(ours) 87.82 73.22 62.75 61.5

Please cite this article as: X. Zhang, Y. Chen and B. Zhu et al., Seman

https://doi.org/10.1016/j.neucom.2020.03.096 
nism to guide the low-level features with semantics, named as

aseline+SMM. As shown at the top of Table 2 , the performance

f Baseline+HL outperforms Baseline+H by 0.29% in terms of mIoU.

he performance is further improved by our modulation mecha-

ism, achieving 67.19%. 

Ablation study for resolution-aware model. To evaluate the ef-

ectiveness of absorbing the other input in the resolution-aware

odel, we also conduct experiments with three settings. First, we

dd a common hourglass network [22] at the top of each se-

antic modulation model, which is named as Baseline+SMM+CH.

hen, in the resolution-aware model, the low-resolution features

re employed at the first concatenation, named Baseline+SMM+L.

hird, based on Baseline+SMM+L, we up-sample low-resolution

eatures to high-resolution features and concatenate them, to com-

ose our resolution-aware model, the whole network is named

aseline+SMM+RAM. As shown in the middle of Table 2 , our per-

ormance makes further improvements by our resolution-aware

odel, achieving 69.62%. 

Ablation study for semantic-spatial fusion network. We try more

eatures with different resolutions to structure our SSFNet block,

,e., the semantic modulation model has more branches and gener-

tes outputs of different resolutions, so the resolution-aware model

as more inputs. Such as, we add the third branches in the seman-

ic modulation model, and it corresponds to 1/4 time smaller or 2

imes larger than the high-resolution features. They are named as

SFNet-3D and SSFNet-3U, respectively. The performance of those

ranches does not improve. Thus, we conclude that the semantic

odulation model with two branches has the best trade-off be-

ween performance and cost. 

Comparison with state-of-the-art methods. We compare SSFNet

ith state-of-the-art human parsing methods including HAZA [2] ,

IP [8] , MMAN [10] , Graph LSTM [36] , SE LSTM [6] , Joint [3] , PCNet

9] , Holistic [5] and RefineNet [18] . As shown in Table 3 , the pro-

osed SSFNet outperforms those human parsing methods for all

etrics and exceeds them by 12.54%, 10.72%, 10.17%, 9.47%, 6.51%,

.69%, 4.18%, 3.78% and 1.48%, respectively. 

We propose a semantic modulation model to alleviate the

emantic-spatial gap between high-level and low-level features,

hich combines high-level semantics and low-level spatial de-

ails. Our SSFNet has similar properties and common advantages

ike these methods in Table 3 and further improves the proper-

ies to improve accuracy. Firstly, we gradually refine the features

ike RefineNet [18] , whereas we further fuse the features of multi-

cales in parallel to obtain the rich contextual information. Sec-

ndly, Holistic [5] , MMAN [10] and LIP [8] only fuse features of

igh-level semantics in one stage. However, our SSFNet fuses fea-

ures in many stages to improve accuracy. Thirdly, PCNet [9] and

AZA [2] hierarchically segment the human parts to reduce the

rrelevant information. In our SSFNet, the latter SSFNet-blocks in-

erit the results of formers to reduce the irrelevant information.

ourthly, Joint [3] , SE LSTM [6] and Graph LSTM [36] use the global
ction-over-Union (mIoU) (%) with state-of-the-art 

ms U-legs L-legs Background Ave. 

1 41.21 37.74 93.78 57.54 

8 42.32 39.48 94.68 59.36 

7 42.80 40.40 94.92 59.91 

1 45.66 40.93 94.59 60.61 

2 51.72 45.91 97.18 63.57 

0 48.25 44.78 95.32 64.39 

7 50.21 48.54 96.07 65.90 

– – – 66.3 

– – – 68.6 

4 55.54 53.41 96.29 70.08 

tic-spatial fusion network for human parsing, Neurocomputing, 
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Fig. 3. Qualitative comparison between our SSFNet and the baseline on PASCAL- 

Person-Part [21] dataset. In the first two rows, SSFNet can correctly parse human 

parts and extract more spatial details. In the third row, SSFNet segments differ- 

ent human parts more accurately, such as torso and lower-leg. In the last row, our 

SSFNet accurately parses the whole upper-leg compared to the baseline. 
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semantic to improve the performance, our resolution-aware model

can obtain multi-scale features to generate multi-receptive-fields

to improve the performance. Benefit from the above properties,

SSFNet has a better capacity to classify each part and a better

performance on human parsing task than other human parsing

methods. 

Qualitative Comparison. The qualitative comparison of human

parsing results on PASCAL-Person-Part [21] is visualized in Fig. 3 .

There are some failure cases of the baseline, nevertheless, our

SSFNet can emend them effectively. In the first row, we find that

our SSFNet has better performance in extracting spatial details and

producing correct prediction from a complex scene, compared with

the baseline. It is because that our semantic modulation model can

guide spatial details with semantics to facilitate the feature fusion

and extract more accurate details. In the second row, ours per-

forms well on the upper-arm with salient and correct boundary

in the image compared with the baseline because our resolution-

aware model can obtain multi-receptive-fields to parse small parts

effectively. In the third row, the baseline mistakes torso, upper-

arm and lower-leg, however, but these parts can be well seg-

mented by our network gradually refining the features. For upper-

leg in the last row, SSFNet can accurately parse it due to the ef-

fective semantic-spatial fusion and the rich contextual information,

whereas the baseline misses it entirely. 

4.3. Results on LIP 

LIP [8] contains 50,462 images in total, including 30,362 for

training, 10,0 0 0 for testing and 10,0 0 0 for validation. LIP defines

19 human parts (clothes) labels, including hat, hair, sunglasses,

upper-clothes, dress, coat, socks, pants, gloves, scarf, skirt, jump-

suits, face, right-arm, left-arm, right-leg, left-leg, right-shoe and

left-shoe, and a background class. We use its training set to train

our network and its validated set to test our SSFNet. 

We compare SSFNet with state-of-the-art networks on the val-

idation set, which are SegNet [28] , FCN-8s [37] , Attention [24] ,

DeepLab-ASPP [25] , LIP [8] , MMAN [10] , JPPNet [38] and CE2P [39] .

As shown in Table 4 , our SSFNet outperforms all prior methods.
Please cite this article as: X. Zhang, Y. Chen and B. Zhu et al., Semantic-spatial fusion network for human parsing, Neurocomputing, 
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Table 5 

Top: performance comparison of the model trained on LIP to test the PPSS [23] . Bottom: performance comparison 

in terms of mean pixel Intersection-over-Union (mIoU) (%) with the state-of-the-art methods on PPSS. The p- 

values of MMAN [10] and SSFNet (ours) come from two-tail t -tests using paired sample ( α= 0.05). 

Method Hair Face U-cloth arms L-cloth Legs Background Ave. 

MMAN [10] 53.1 50.2 69.0 29.4 55.9 21.4 85.7 52.1 

SSFNet (ours) 59.67 58.15 64.54 43.66 59.75 27.93 87.09 57.26 

p-value(MMAN,SSFNet) 0.02 0.01 0.05 0.05 0.01 0.01 0.02 0.01 

DDN [23] 35.5 44.1 68.4 17.0 61.7 23.8 80.0 47.2 

ASN [40] 51.7 51.0 65.9 29.5 52.8 20.3 83.8 50.7 

SSFNet (ours) 70.95 62.43 83.61 48.08 73.36 29.93 92.60 65.85 

Fig. 4. Qualitative comparison between our SSFNet and state-of-the-art method MMAN on LIP [8] dataset. In the first row, because of most parts or clothes with similar 

colors, MMAN fails to segment pants, legs in the left panel and skirt, pants in the right panel. Yet our SSFNet can generate those parts accurately. In the second row, our 

SSFNet distinguishes the most parts compared with MMAN, such as pants, left-leg, right-leg, left-shoes and right-shoes. In the last row, our SSFNet corrects the prediction 

for shoes and skirt. 

Fig. 5. Comparison of our method and state-of-the-art methods on PPSS [23] . In 

the second and third columns, these models only train on LIP and test on PPSS, the 

second is MMAN and the third is ours. The last two columns show that ours is able 

to segment parts correctly. 
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he proposed method yields the result of 54.53% in terms of mIoU

n the LIP. Compared with other methods, ours exceeds 36.36%,

6.24%, 11.61%, 10.80%, 9.80%, 7.72%, 3.16% and 1.43%, respectively.

he comparison of some parts is slightly inferior to CE2P, such as

ock, right-leg. This is probably due to the human scale variance in

his dataset. 

Four examples are illustrated in Fig. 4 . In the first row, due to

ost parts with similar colors, MMAN fails to segment the pants

nd legs, but SSFNet accurately segments all of human parts with

pecific details. In the second row, MMAN generates the wrong

oundaries of a skirt and regards pants as right-leg, while our

SFNet corrects the errors. In the next row, MMAN regards pants

s skirt and mistakes left-legs, right-legs and shoes, whereas our

SFNet corrects the errors. In the last row, for head and face, al-

hough MMAN almost misses them, ours correctly produces the

esults. 

.4. Results on PPSS 

PPSS [23] includes 3673 annotated samples, which are divided

nto a training set of 1781 images and a testing set of 1892 images.

t defines seven human parts, including hair, face, upper-clothes,

ow-clothes, arms, legs and shoes. Collected from 171 surveillance

ideos, the dataset can reflect the occlusion and illumination vari-

tion in the real scene. 

To evaluate the generalization ability of we proposed SSFNet,

e deploy the SSFNet trained on LIP [8] to the testing set of the

PSS [23] without any fine-tuning, which is similar to MMAN. We

erge the fine-grained labels of LIP into coarse-grained human
tic-spatial fusion network for human parsing, Neurocomputing, 

https://doi.org/10.1016/j.neucom.2020.03.096
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Table 6 

Performance comparison in terms of mean pixel Intersection-over- 

Union (mIoU) (%) on the cityscapes test set. The p-values of Multitask 

Learning [44] and SSFNet(ours) come from two-tail t -tests using paired 

sample ( α= 0.05). 

Method mIoU(%) 

DeepLabv2 [25] 70.4 

LC [41] 71.1 

Adelaide [42] 71.6 

FRRN [43] 71.8 

RefineNet [18] 73.6 

PSPNet [34] 78.4 

Multitask Learning [44] 78.5 

SSFNet (ours) 79.7 

p-value(Multitask Learning,SSFNet) 0.01 
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parts defined in PPSS. As shown in the first two rows of Table 5 ,

our SSFNet outperforms MMAN by 4.59%. 

We train SSFNet on PPSS [23] and compare our SSFNet with

some methods on the testing set, DDN [24] , ASN [8] and MMAN

[10] . The results of the segmentation of SSFNet on the PPSS achieve

further improvement. Our proposed framework achieves 65.85% in

terms of Mean IoU on the PPSS dataset. Compared with the DDN

[23] and ASN [40] , our SSFNet exceeds them by 18.65% and 15.15%,

respectively. Several examples are shown in Fig. 5 . 

4.5. SSFNet For semantic segmentation in general scenarios 

To verify the efficacy of SSFNet for semantic segmentation in

general scenarios, we evaluate the proposed SSFNet on CityScapes

[45] . Cityscapes has 50 0 0 images captured from 50 different cities.

Each image has 2048 × 1024 pixels, which have high quality

pixel-level labels of 19 semantic classes. There are 2979 images in

the training set, 500 images in the validation set, and 1525 images

in the test set. We do not use coarse data in our experiments. 

Compared with the baseline (76.4%), our SSFNet improves the

performance to 79.7%. In Table 6 , compared with other methods,

SSFNet achieves the best performance on CityScapes, which verifies

its effectiveness for semantic segmentation in general scenarios. 

5. Conclusion 

In this paper, we propose a novel CNN architecture for hu-

man parsing, Semantic-Spatial Fusion Network (SSFNet), to allevi-

ate the semantic-spatial gap and generate the precise prediction.

SSFNet includes two models, a semantic modulation model, and

a resolution-aware model. The semantic modulation model nar-

rows the semantic-spatial gap between the high-level and low-

level features by exploring the mutual information and outputs

semantic-spatial features of two resolutions, where these maps

learn and teach each other in a dual branch structure. In order

to obtain reliable and fine-grained high-resolution features, the

resolution-aware model achieves multi-scales and multi- receptive-

fields fusion, in a bottom-up and top-down process. Moreover,

we introduce a path aggregate architecture to fuse the advan-

tages of features on different resolutions. Extensive experiments on

three public datasets, PASCAL-Person-Part, LIP, and PPSS, show that

our SSFNet achieves significant improvements over state-of-the-art

methods. 
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