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Abstract: In molecular imaging (MI), especially the optical molecular
imaging, bioluminescence tomography (BLT) emerges as an effective
imaging modality for small animal imaging. The finite element methods
(FEMs), especially the adaptive finite element (AFE) framework, play an
important role in BLT. The processing speed of the FEMs and the AFE
framework still needs to be improved, although the multi-thread CPU
technology and the multi CPU technology have already been applied.
In this paper, we for the first time introduce a new kind of acceleration
technology to accelerate the AFE framework for BLT, using the graphics
processing unit (GPU). Besides the processing speed, the GPU technology
can get a balance between the cost and performance. The CUBLAS and
CULA are two main important and powerful libraries for programming on
NVIDIA GPUs. With the help of CUBLAS and CULA, it is easy to code
on NVIDIA GPU and there is no need to worry about the details about
the hardware environment of a specific GPU. The numerical experiments
are designed to show the necessity, effect and application of the proposed
CUBLAS and CULA based GPU acceleration. From the results of the
experiments, we can reach the conclusion that the proposed CUBLAS and
CULA based GPU acceleration method can improve the processing speed
of the AFE framework very much while getting a balance between cost and
performance.
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1. Introduction

1.1. Bioluminescence tomography

In small animal imaging, optical MI, especially bioluminescence imaging (BLI), has many
advantages in probing capabilities, sensitivity, specificity, and cost-effectiveness [1–3]. These
advantages can prompt BLI’s use in cancer research [4] and drug development [5]. In BLI, bi-
ological entities, such as tumor cells, genes and compounds of drug, are tagged with luciferase
enzymes. When the luciferase is combined together with the substrate luciferin, oxygen and
ATP, a biochemical reaction that transforms part of the chemical energy into the biolumines-
cent photons with a wavelength of about 600nm [6] occurs. But BLI can only give the 2D in-
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formation of the object being imaged. Bioluminescence tomography (BLT) is the 3D imaging
modality of BLI, it can reconstruct the inner bioluminescent light source distribution, according
to the surface light distribution that is acquired the same way in BLI. Besides the boundary in-
tegral method [7] and the element free method [8], the finite element method (FEM), especially
the adaptive finite element (AFE) framework, is usually adopted in BLT.

1.2. Graphics processing unit (GPU)

The graphics processing unit (GPU, also occasionally called visual processing unit or VPU)
is a processor attached to a graphics card dedicated to calculating floating point operations. It
is usually used in embedded systems, mobile phones, personal computers, workstations and
game consoles. Modern GPU is very efficient at manipulating computer graphics, and their
highly parallel structure makes them more effective than general-purpose central processing
unit (CPU) for a range of complex algorithms on parallelizable floating point operations. In
other words, GPU is a CPU that is especially powerful when dealing with the images. When
dealing with the images, the efficiency of GPU is much higher than that of CPU. But GPU
can not take the place of CPU, as CPU is a general purpose processor and is powerful when
handling numerical computations.

To our best knowledge, there are 3 kinds of hardware acceleration strategies. The first one
is the multi-thread CPU technology using many CPU cores based on one shared memory com-
puter. The second one is the multi CPU technology using parallel computation technology
based on high-performance computer clusters. The last one is the GPU technology based on
the graphic cards. The multi-thread CPU technology [9] and the multi CPU technology [10]
has already been applied to improve the AFE framework for BLT. As the operations in the AFE
framework are mainly link list related, it is easy to be accelerated by the multi-thread CPU
technology. Although the high-performance computer clusters used in literature [10] can im-
prove the processing speed very much, the high cost of owning and maintaining makes them
difficult to access for most researchers and clinical users. The multi-thread workstation used
in literature [9] is not that powerful. However, GPU can make a balance between the cost and
performance. GPU can get better performance than the multi-thread workstation and lower cost
than the high-performance computer clusters when handling the parallelizable floating point
operation.

We’ve discovered that in the relation forming part of the AFE framework there are some
time costing floating point operations and those operations are parallel. So we propose GPU
technology to accelerate the AFE framework for the parallelizable floating point operations.

1.3. CUBLAS and CULA libraries

To the best of our knowledge, there are 2 libraries for programming on NVIDIA GPU. One is
the CUBLAS that is provided by NVIDIA [11], for some basic linear algebra operations. The
other is the CULA that is provided by EM Photonics [12] for some advanced numeric linear
algebra operations. With the help of the CUBLAS and CULA, developers on NVIDIA GPU can
focus on the mathematical procedure of their algorithms rather than the hardware environment
of NVIDIA GPU.

The paper is organized in the following sequence. In Section 2, we firstly introduce the
diffuse approximation (DA) for the BLT forward problem. Then a brief introduction of the
AFE framework will be presented for the BLT inverse problem in Subsection 2.2. Then our
main work on the CUBLAS and CULA based GPU acceleration will be detailedly presented
in Subsection 2.3. In Section 3, we will firstly describe the experimental setup. Then a set of
experiments on the need and feasibility of the GPU acceleration will be presented in Subsec-
tion 3.2. Then a set of experiments on the effect of the GPU acceleration will be shown in
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Subsection 3.3. In the final part of the experiments section, a source reconstruction experiment
with the proposed acceleration strategy will be presented to show its application in BLT in Sub-
section 3.4. In the final part of the whole paper, we will give our comments and conclude the
paper in Section 4.

2. Method

2.1. Diffusion approximation

In the near infrared light spectrum, photon scattering predominates over absorption in the bio-
logical tissue, the photon propagation can be modelled by diffusion approximation (DA) of the
radiative transfer equation (RTE) [13]. The steady-state domain diffusion equation (DE) is:

∇·(D(x)∇Φ(x)
)
+ μa(x)Φ(x) = S(x) (x ∈ Ω) (1)

In DE, Ω stands for the problem domain, Φ(x) is the photon flux density [ Watts/mm2 ], S(x)
is the bioluminescent source power density [ Watts/mm3 ], μa(x) is the absorption coefficient
[ mm−1 ] and D(x) = (3(μa(x)+ μ ′

s(x)))−1 is the optical diffusion coefficient [ mm ], where
μ ′

s(x) = (1− g)μs(x) is the reduced scattering coefficient, μs(x) is the scattering coefficient
[ mm−1 ] and g is the anisotropy parameter.

For preventing the light from other light sources, the bioluminescence imaging experiments
are usually performed in a totally dark environment. That is to say no external photon can travel
into Ω through the boundary ∂Ω. The Robin type boundary condition can be used [14, 15].

Φ(x)+2A(x;n,n′)D(x)
(
v(x)·∇Φ(x)

)
=0 (x ∈ ∂Ω) (2)

2.2. Finite element method and the adaptive finite element framework

According to the finite element method (FEM) [16], in the Sobolev space H1(Ω), we can get
the weak solution of the flux density Q(x) through Eqs. (1) and (2):

∫

Ω

(
D(x)

(
∇Φ(x)

)·(∇Ψ(x)
)
+ μa(x)Φ(x)Ψ(x)

)
dx+

∫

∂Ω

1
2A(x;n,n′)

Φ(x)Ψ(x)dx =
∫

Ω
S(x)Ψ(x)dx

(∀Ψ(x) ∈ H1(Ω)
) (3)

According to the adaptive finite element (AFE) framework introduced by Lv et al. [17], the
matrix form of Eq. (3) for the l-th level of the mesh refinement process can be got as:

([Kl ]+ [Cl ]+ [Bl ])Φl = MlΦl =FlSl (4)

In Eq. (4), the components of the matrices Kl ,Cl and Bl can be obtained by
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

k(l)
i j =

∫
Ω D(x)

(
∇ϕ(l)

i (x)
)·(∇ϕ(l)

j (x)
)
dx

c(l)
i j =

∫
Ω μa(x)ϕ(l)

i (x)ϕ(l)
j (x)dx

b(l)
i j =

∫
∂Ω ϕ(l)

i (x)ϕ(l)
j (x)/

(
2A(x;n,n′)

)
dx

s(l)
i j =

∫
Ω s(l)

i ϕ(l)
i (x)ϕ(l)

j (x)dx

k(l)
i j ,c(l)

i j ,b(l)
i j and s(l)

i j are the elements of K(l),C(l),B(l) and S(l) with the row number i and the

column number j, respectively. ϕ(l)
i (x) and ϕ(l)

j (x) are the interpolation basis functions. s(l)
i is

the source density at i.
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Ml is a symmetric positive-definite matrix and is invertible, while Fl is a nonsymmetric matrix
and is not invertible. So Eq. (4) can be transformed to:

Φl = M−1
l FlSl = AlSl (5)

2.3. GPU acceleration

The hardware structure of the NVIDIA GPU is shown is Fig. 1. On the graphic cards, there are N
multiprocessors, while each multiprocessor contains M processors. The device memory is also
called the global memory that can be accessed by all the processors in every multiprocessor.
The shared memory of a certain multiprocessors can only be accessed by the processors inside
the multiprocessors. As the shared memory is much faster than the global memory, the main
programming skill on GPU is to divide the whole task into N absolutely irrelevant parts and
process each part in one multiprocessor.

Fig. 1. The hardware model of GPU [11].

The typical programming model can be illustrated as:
(1) Transfer data from host memory (the system memory that is accessed by the CPU) to

device memory. That is also to say transfer data from the system memory to the device memory
on the graphic card.

(2) Divide the whole task into N parts.
(3) Load data from the device memory to the shared memory.
(4) Synchronize all the processors.
(5) Process the operations on the data in the shared memory.
(6) Write the results back to the device memory.
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(7) Transfer the results in the device memory back to the host memory.
As the operations for getting Al = M−1

l Fl in Eq. (5) are parallel and on floating point, we
decide to use the GPU technology to accelerate them. The execution flow chart is shown in
Fig. 2. The matrix M short for M−1

l in Eq. (5) is firstly read from the system memory to the
device memory on the graphic card, and then decomposed into a lower triangular matrix L and
an upper triangular matrix U . After solving the linear equation LY = I, where matrix I is the
identity matrix, we can get matrix Y . Then the linear equation UM−1 = Y is solved for M−1.
Matrix F short for matrix Fl in Eq. (5) is read into the global memory for the multiplication.
Then the matrix M−1 and F are divided into N parts and sent to the shared memory of each
multiprocessor for the multiplication operation.

Fig. 2. The execution flow chart of matrix inversion and multiplication using GPU.

2.3.1. CUDA and CUBLAS

Coding on GPU in the graphics cards is not that simple as coding on CPU, as a lot of knowledge
relating hardware and software environment are needed. So in November 2006, NVIDIA intro-
duced a general purpose parallel computing architecture, compute unified device architecture
(CUDA) for the NVIDIA graphics cards [11]. CUDA leverages the parallel compute engine in
NVIDIA GPU to solve many parallelizable floating point operations in a more efficient way
than on a CPU. CUDA comes with a software environment that the developers can use C as a
high-level programming language.

Besides the CUDA, NVIDIA has also provided a CUBLAS library on top of the CUDA driver
for the developers to do some basic linear algebra operations. CUBLAS is an implementation
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of basic linear algebra subprograms (BLAS) and the “CU” in CUBLAS stands for CUDA. The
CUBLAS library is self-contained at the application programming interface (API) level, that is
to say no direct interaction with the CUDA driver is needed. The multiplication operation of
Al = M−1

l Fl in Eq. (5) is implemented by using the CUBLAS.

2.3.2. CULA

As there is no matrix inversion operation in CUBLAS, we have to ask help from CULA. The
CULA is a GPU accelerated linear algebra library that utilizes the NVIDIA CUDA parallel
computing architecture to dramatically improve the computation speed of sophisticated mathe-
matics [12]. CLUA is an implementation of the Linear Algebra PACKage (LAPACK) interface
for CUDA enabled NVIDIA GPU.

The CULA is a next generation linear algebra package that uses the GPU as a co-processor
to achieve speedups over existing linear algebra packages. The CULA provides the same func-
tionality you receive with your existing package, only at a greater speed. The CULA provides
easy access to the NVIDIA computing resources available in the computer system. The CULA
library is a self-contained package that enhances linear algebra programs with little or no knowl-
edge of the GPU computing model.

Besides many advances that CULA has, the disadvantage is that it is a commercial library
and only a small basic part of the library is free. But as there is a GESV (in the library it is
called culaSgesv) function that can compute the solution to a real system of linear equations of
AX = B using the LU decomposition with partial pivoting and row interchanges, we can set B
as an identity matrix to get X as the invert matrix of A.

The version that we use is CULA 1.2 Basic. As CULA 1.2 Basic is built on NVIDIA CUDA
2.3 and CUBLAS, the NVIDIA CUDA 2.3 and CUBLAS are used in the paper.

2.4. Trust region method for the optimization

After applying the permissible source region method [18], the linear relationship between the
boundary measured photon flux density Φmeas

l and the unknown source density in the permis-
sible source region SP

l can be obtained:

Φmeas
l = Aps

l SP
l (6)

In Eq. (6), Aps
l can be obtained by retaining those columns of M−1

l Fl corresponding to SP
l and

those rows corresponding to Φmeas
l . Then, the objective function f l(x) of the l-th level can be

got as
f l(SP

l ) = ‖Aps
l SP

l −Φmeas
l ‖2

2 (7)

The optimization problem of Eq. (7) is solved by the trust region method (TRM) [19].

3. Experiments

3.1. Numerical simulation setup

For certificating the proposed method, we designed a heterogeneous cylindrical phantom. The
cylindrical phantom was 30mm in height, 10mm in radius and consisted of four ellipsoids and
one cylinder to represent muscle, lungs, heart, bone and liver, as shown in Fig. 3(a). The optical
parameters of the phantom were all obtained from the literature [20] and listed in Table 1.

As well acknowledged by the community, the Monte Carlo (MC) method was a gold standard
for photon transportation simulation because of its accuracy and flexibility [21,22]. So we used
the MC method based molecular optical simulation environment (MOSE) [23] that could take
2D/3D analytical models, micro-CT and micro-MRI slices to define the object geometry to get
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Fig. 3. Sub figure (a) is the heterogeneous cylindrical numerical phantom with single
source, consisted of muscle (white), bone (black), heart (pink), lungs (green), liver (yel-
low) and a ball source (blue) in the right lung. Sub figure (b) is the surface light power
distribution of the phantom in sub figure (a), which is generated by MOSE.

the surface photon distribution data. Furthermore, the MC method could avoid the inverse crime
problem.

Table 1. Optical parameters of different tissues of the heterogeneous cylindrical phantom

Material Muscle Lung Heart Bone Liver
μa[mm−1] 0.010 0.350 0.200 0.002 0.035
μs[mm−1] 4.000 23.000 16.000 20.000 6.000

g 0.900 0.940 0.850 0.900 0.900

During the MOSE simulation procedure, the bioluminescence light source was sampled by
106 photons and was assumed to obey the uniform distribution. The aforementioned hetero-
geneous phantom was discretized into 34072 triangles and 11499 surface measurement points
with an average element diameter of about 0.5mm for MOSE simulation. For showing the need,
feasibility and effect of the GPU acceleration, we discretized the cylindrical phantom with dif-
ferent average element diameter to form different dimension of the matrix Ml and Fl in Eq. (4)
as shown in Table 2 and Table 3. The matrix Ml was a point number by point number symmetric
matrix, while the matrix Fl was a point number by element number nonsymmetric matrix.

A solid sphere source of 1mm in radius and 0.238nano−Watts/mm3 in power density was
centered at (3,5,15) inside the right lung as shown in Fig. 3(a). To reduce the ill-posedness of
the BLT inverse problem, we incorporated the permissible source region of

PS = { (x, y, z) | 13 < z < 17, (x, y, z) ∈ Right Lung}

as a priori information, according to the surface light distribution as shown in Fig. 3(b).

#128085 - $15.00 USD Received 6 May 2010; revised 22 Jul 2010; accepted 1 Sep 2010; published 8 Sep 2010
(C) 2010 OSA 13 September 2010 / Vol. 18, No. 19 / OPTICS EXPRESS 20208



3.2. The need and feasibility of the GPU acceleration

We carried out a set of experiments on an Intel(R) Core(TM)2 Duo E4600 CPU (2.4GHz)
platform with 2GB memory and a NVIDA Geforce GT240 graphics card (this hardware envi-
ronment was called En. 1 for short) for showing the main time consuming parts in the AFE
framework (these set of experiments were called Ex. 1 for short). The results were shown in
Table 2. In Ex. 1, no mesh refinement of the AFE framework was performed.

In Table 2, “–” denoted that there was not enough system memory for holding the matrix Ml

or Fl in Eq. (4). As a result, the calculation could not go on and there was no result.
In Ex. 1, all the operations of the AFE framework were single thread except for the “Projec-

tion” operation. The “Projection” operation was designed to project the light power density on
the nodes of the fine mesh that were used in MOSE simulation with an average element diam-
eter of about 0.5mm to the coarse meshes used in Ex. 1. The projection operation was already
accelerated with the multi-thread technology. In Ex. 1, as there were 2 CPU cores in En. 1, the
projection operation time in Table 2 were about half of those when single core was present.

The matrix inversion operation of matrix Ml in Ex. 1 was performed in the following se-
quence. Matrix Ml was first decomposed by the Cholesky factorization Ml = LLT , where L was
a lower triangle matrix. Then the inverse matrix M−1

l = (LT )−1L−1 could be easily got, as the
inversion of the lower triangle matrix was easy to be got.

In the “Others Time” column, as the permissible source region method was incorporated
and the permissible source region used were relatively small, the optimization time was short.
But once the dimensions of matrix Ml and Fl were fixed, the time of matrix inversion and
multiplication were also fixed.

Table 2. Statistics of main time consuming modules in the AFE framework

Experiment Point Element Inversion Multiplication Projection Others
No. No. No. Time (s) Time (s) Time (s) Time (s)
1 1023 4565 2.1 51.8 35.2 3.1
2 1537 6878 7.7 173.9 34.7 5.0
3 1812 7965 12.9 282.5 36.8 7.3
4 2620 11253 34.0 837.7 34.7 12.8
5 3021 15095 55.9 1843.6 39.4 54.6
6 3517 15257 87.0 2261.3 45.4 41.3
7 4121 18286 143.2 – – –
8 5028 23579 – – – –

From the data in Table 2, we could see that the matrix inversion and multiplication operations
were the most time consuming operations in the AFE framework. For further analyzing, we
could define P as the matrix inversion and multiplication time percentage for each case in Ex.
1 as:

P =
the matrix inversion and multiplication time

total time o f one mesh re f inement step in the AFE f ramework
× 100 %

The total time of one mesh refinement step in the AFE framework consisted of the time of
matrix inversion, multiplication, projection and others. As shown in Fig. 4, as the matrix di-
mensions of Ml and Fl increased, the P in each case were also increasing. As a result, we
could reach the conclusion that the GPU acceleration was necessary and feasible.
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Fig. 4. The P in each case in Ex. 1. The horizontal axis in the figure was the case order
and the vertical axis was P .

3.3. The acceleration comparisons

Besides Ex. 1, we also carried out a set of experiments on an Intel (R) Xeon (TM) CPU
(3.20GHz) workstation with 16GB memory (this hardware environment had 8 CPU cores and
was called En. 2 for short) and En. 1, for showing the acceleration comparisons between multi-
thread CPU technology and GPU technology (these set of experiments were called Ex. 2 for
short). The results were shown in Table 3.

In Table 3, there were 2 modes in the “Acceleration Mode” column, the “CPU 8” and “GPU”.
“CPU 8” denoted that the experiment was performed in En. 2 with all the 8 cores involved in
the calculation and the calculation had been accelerated by the multi-thread ZSM technique [9].
“GPU” denoted that the experiment was performed in En. 1 with the matrix inversion and matrix
multiplication operations performed in the graphics card.

In Table 3, “–” in the “Inversion Time” column denoted that there was not enough memory
in the system for holding the matrix Ml in Eq. (4); “G–” in the “Multiplication Time” column
denoted that there was not enough memory in the graphics card for holding the matrix Fl ; “–
G–” in the “Multiplication Time” column denoted that there was enough memory neither in the
system nor in the graphics card for holding the matrix Fl . As a result, the calculation could not
continue and there was no result. The reason that there was enough memory in the system for
holding the matrix Ml and Fl in the “CPU 8” “Mode” was that in “CPU 8” “Mode” the matrix
Ml and Fl were stored in a sparse matrix data structure using the ZSM technique [9].

From Table 3, we could see that the processing time of matrix inversion and multiplication
were reduced by the GPU acceleration technology and the multiplication time were reduced
dramatically. In order to analyze the effect of the acceleration, we defined the speed up as:

SU =
time cost o f operation be f ore the acceleration
time cost o f operation a f ter the acceleration

So we could have the

SUCpu8GpuInv =
time cost o f matrix inversion when 8 CPU presented

time cost o f matrix inversion when using GPU

and

SUCpu8GpuMul =
time cost o f matrix multiplication when 8 CPU presented

time cost o f matrix multiplication when using GPU

to describe the acceleration of GPU compared with the multi-thread CPU technology. We could
also have the

SUCpuGpuInv =
time cost o f matrix inversion when 1 CPU presented

time cost o f matrix inversion when using GPU
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Table 3. Comparisons between multi-thread CPU acceleration and GPU acceleration on
matrix inversion and multiplication

Experiment Point Element Acceleration Inversion Multiplication
No. No. No. Mode Time (s) Time (s)
1 1023 4565 CPU 8 28.875 55.765

GPU 1.391 0.281
2 1537 6878 CPU 8 96.094 129.672

GPU 2.843 0.844
3 1812 7965 CPU 8 120.25 207.172

GPU 3.953 1.219
4 2620 11253 CPU 8 322.953 415.016

GPU 10.156 3.141
5 3021 15095 CPU 8 444.235 662.219

GPU 15.047 G–
6 3517 15257 CPU 8 635.016 734.453

GPU 23.094 G–
7 4121 18286 CPU 8 845.563 1094.468

GPU 36.387 –G–
8 5028 23579 CPU 8 1104.172 1506.812

GPU – –G–

and

SUCpuGpuMul =
time cost o f matrix multiplication when 1 CPU presented

time cost o f matrix multiplication when using GPU

to describe the acceleration of GPU compared with the original single-thread CPU technology.
The results were shown in Fig. 5. Sub figures (a) and (b) in Fig. 5 were obtained according to
Table 3, while sub figures (c) and (d) in Fig. 5 were obtained according to Table 2 and 3.

From Fig. 5, we could see that although the speed up of matrix inversion was not very great,
the speed up of matrix multiplication was significant. The reason was that matrix multiplication
was highly parallel, which made it more easily for the GPU to achieve significant acceleration.

From Fig. 5(a) and 5(b), we could see that both of the curves in the sub figures declined. The
matrix Ml and Fl got sparser as the dimension of the matrix increased, so from case 1 to 8 the
matrix Ml and Fl became sparser. As the multi-thread ZSM technique took the advantage of the
sparse property of matrix Ml and Fl while the GPU technology not, the curves declined. We
could also see that although the curves declined, the speed up was good.

From Fig. 5(c) and 5(d), we could see that both of the curves in the sub figures ascended.
That was to say compared with the single thread matrix inversion and multiplication on dense
stored matrix, the GPU acceleration could give out excellent performance when dealing with
large dimensional matrix.

After all, the GPU acceleration could speed up the matrix inversion and multiplication and
worked very well on accelerating the AFE framework.

One thing that we wanted to explain was the reason why we had carried out the experiments
in Subsections 3.2 and 3.3 on 2 hardware environments, En. 1 and En. 2. That was because the
graphics card that we used in En. 1 could not be installed on the main board of En. 2.

One more thing that we wanted to explain was the reason why the processing time of the
multi-thread acceleration in Table 3 was longer than the single-thread ones in Table 2. That was
because the CPU in En. 1 was much better than the CPU in En. 2. If the experiments had been

#128085 - $15.00 USD Received 6 May 2010; revised 22 Jul 2010; accepted 1 Sep 2010; published 8 Sep 2010
(C) 2010 OSA 13 September 2010 / Vol. 18, No. 19 / OPTICS EXPRESS 20211



Fig. 5. GPU speed up to CPU. Sub figures (a) to (d) were SUCpu8GpuInv, SUCpu8GpuMul ,
UCpuGpuInv and SUCpuGpuMul for each case of Ex. 2, respectively. The horizontal axis in
all the sub figures was the case order. The vertical axis of sub figures (a) to (d) were
SUCpu8GpuInv, SUCpu8GpuMul , UCpuGpuInv and SUCpuGpuMul , respectively.

carried on the same hardware platform, the multi-thread acceleration would have been better
than the single-thread one when more CPU cores were presented as shown in literature [9].

3.4. Source reconstruction

Besides the analyzing experiments in Subsections 3.2 and 3.3, we had carried out a numerical
single source reconstruction experiment using the GPU accelerated AFE framework with TRM
handling the optimization procedure. The mesh refinement threshold was set to 7× 10−3. Af-
ter one step of mesh refinement procedure of the AFE framework, we got the reconstruction
results as shown in Fig. 6. The reconstructed power density was 0.271 and the reconstructed
position was (−3.316,4.816,13.432). The time cost of GPU acceleration on matrix inversion
and multiplication in every mesh refinement procedure of the AFE framework were shown in
Table 4. The reconstruction time of the first and the second step of the AFE framework using
the trust region method were 0.203s and 3.906s respectively.

One thing that we wanted to explain was the reason why we had only carried out a numerical
reconstruction experiment even though we had carried out real experiments on phantoms and
nude mouse (refer literature [19] for more information). That was because the graphics card
that we had on hand only had 512MB memory, which could not contain large matrix. In real
experiments on phantoms and nude mouse, the matrix were all large. That was also the reason
that we could not get acceleration time of case 6 to 8 in Ex. 2. The only solution was to incor-
porate graphics cards with large memory and Tesla that was introduced by NVIDIA was surely
a good choice [11]. Tesla could have up to 6GB memory, which would be enough for small
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Fig. 6. Reconstruction results of single source numerical experiment. Sub figures (a) to (d)
were the 3D views, front views, side views and top views, respectively. The blue ball in
each sub figure denoted the real source and the red tetrahedron denoted the reconstructed
source with the maximum density. For concision, only the real source and the reconstructed
source were displayed.

animal experiments.

Table 4. Time cost of GPU acceleration on matrix inversion and multiplication for single
source reconstruction experiment in every mesh refinement procedure of the AFE frame-
work

Step Point Element Inversion Multiplication
No. No. No. Time (s) Time (s)
1 1537 6878 2.734 0.828
2 2346 11384 6.906 2.703

4. Discussions and conclusions

The CUBLAS and CULA based GPU acceleration technology has been proposed the first time
for the AFE framework in BLT, for getting a balance between cost and performance when
dealing with the parallelizable floating point operations.

In order to evaluate the need and feasibility of the GPU acceleration, we’ve carried out a set
of experiments on the main time consuming operations in the AFE framework. From the results
of the experiments, we can reach the conclusion that besides the projection operation and the
optimization operation, the matrix inversion and multiplication operations are the main time
consuming operations and these operations are all parallelizable floating point operations.

In order to evaluate the effect of the GPU acceleration, we’ve carried out a set of comparison
experiments on single thread operations, multi-thread accelerated operations and GPU accel-
erated operations. The results of the experiments can lead us to the conclusion that the GPU
acceleration can improve the processing speed of the AFE framework very much.

In order to show the application of the proposed GPU acceleration, we’ve carried out a single
source reconstruction on numerical phantom. Although we’ve carried out real experiments on
phantoms and nude mouse, as the memory of the graphics card that we use is limited, the
results are not shown in this paper. In the future, we will investigate a Tesla and carry out more
biological experiments.
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To sum up, the results of all the performed experiments can convince that the GPU accelera-
tion works very well in the AFE framework for BLT. The processing speed of the AFE frame-
work has been improved very much. The GPU technology can cooperate with multi-thread
CPU technology to get high performance while keeping low cost.
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