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Abstract—Recently, the performance of speech recognition
system based on neural network has been greatly improved.
Arguably, this huge improvement can be mainly attributed to
deeper and wider layers. These systems are more difficult to be
deployed on the embedded devices due to their large size and high
computational complexity. To address these issues, we propose a
method to compress deep feed-forward neural network (DNN)
based acoustic model. In detail, a state-of-the-art acoustic model
is trained as the baseline model. In this step, layer normalization
is applied to accelerating the model convergence and improv-
ing the generalization performance. Knowledge distillation and
pruning are then conducted to compress the model. Our final
model can achieve 14.59× parameters reduction, 5× storage
size reduction and comparable performance compared with the
baseline model.

Keywords—speech recognition, layer normalization, knowledge
distillation, pruning, model compression

I. INTRODUCTION

In recent years, speech recognition system has been great-
ly improved with the application of deep learning. Speech
recognition plays more and more important roles in human-
computer interaction and gradually changes people’s life. Long
short-term memory recurrent neural network [1], [2], [3],
gated recurrent neural network [4], deep convolutional neural
network [5] and end-to-end methods [6], [7], [8], [9] have
been applied to speech recognition system to further improve
performance. What’s more, residual net [10] and highway
network [11] are widely used to increase the depth of the
model.

Though deeper and bigger models have brought better
performance, they all contain a large number of parameters,
resulting in long training and testing time, over-fitting and
storage size issues. At the same time, in some cases, the
cumbersome model is not suitable. For example, some sce-
narios require that speech recognition system should have low
latency, low computation cost and high accuracy. Therefore, it
is necessary to build small-footprint speech recognition system
to meet actual requirements. Model compression provides a
practical solution. Model compression can be used to compress
acoustic model in speech recognition system.

There is extensive literature in model compression. At
present, the research of model compression mainly focuses
on matrix factorization, knowledge distillation, pruning and
quantization. In paper [12], [13], [14], [15], the methods of

matrix factorization, such as singular value decomposition,
low-rank matrix factorization and structured linear layers, are
introduced in detail. Another method is knowledge distillation
[16], [17], [18], [19], [20], [21]. Knowledge distillation is
also called teacher-student training. It uses teacher model to
generate soft targets which are used to train the student model.
Kullback-Leibler divergence is used to measure the distance
between the two models. By using this method, student model
can achieve comparable performance with teacher model.
Hyper-parameter, named temperature, and the ground truth
labels can be used to further improve performance. Recently,
pruning has been applied in speech recognition [22], computer
vision [23] and neural machine translation [24]. In paper [23],
weights below the threshold are directly pruned in weight
matrices. This method converts a fully connected network
into a sparse network. By retraining the sparse network,
performance can be recovered from weight reduction. This
method can effectively reduce the number of parameters and
maintain the model performance. Quantization [25] is also a
very effective method. It reduces the number of bits required
to represent the weight. However when quantization bits are
less than 8, actual application requires customized hardware.

In this paper, we propose a method to integrate knowledge
distillation and pruning to compress the acoustic model of
speech recognition system, and layer normalization [26] is
applied to accelerating the convergence and improve the gen-
eralization performance. Our method can achieve high com-
pression rate and maintain accuracy. Besides, it is easy to be
deployed. Firstly, a state-of-the-art deep feed-forward neural
network (DNN) model is trained as teacher model. Secondly,
knowledge distillation is used to transfer the knowledge from
the teacher model to student model, and the temperature and
the ground truth labels are used to further enhance perfor-
mance. Thirdly the small model is compressed by removing
weights which are less than the predefined threshold. Then
the sparse model is retrained to recover from performance loss.
Pruning and retraining can be repeated to further reduce model
complexity.

In this experiment, performance is measured quantitatively
by character error rate (CER). DNN-6-1024-LN represents
DNN with 6 hidden layers and 1024 nodes in each layer, and
layer normalization is adopted. DNN-3-512-KD and DNN-
3-512-Pr are compressed models both with 3 hidden layers
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and 512 nodes in each hidden layer. By using knowledge
distillation, DNN-6-1024-LN can be compressed to DNN-3-
512-KD. The number of parameters is reduced by a factor of
3.55. DNN-3-512-Pr can be obtained by pruning DNN-3-512-
KD. This method can reduce the number of parameters by a
factor of 4.10. In summary, DNN-6-1024-LN can be effec-
tively compressed to DNN-3-512-Pr with 1.8% performance
loss. The total number of parameters is reduced by a factor of
14.59, from 9.62 million to 0.66 million. The storage size is
reduced by a factor of 5, and the feed-forward time is reduced
by 1.77.

The rest of this paper is organized as bellow. In Section
II we introduce the algorithms in detail. The data preparation
and experiment setup are described in Section III, while the
results of our experiment are presented in Section IV. Finally,
Section V gives conclusions and discussions.

II. THE ALGORITHMS

A. Layer normalization

Training a state-of-the-art neural network with many layers
and a large number of parameters always spends a lot of time.
One way to reduce training time is to use batch normalization
[27]. Batch normalization, over a mini-batch of training cases,
uses the distribution of the summed input to a neuron to
calculate a mean and variance. Then batch normalization uses
the mean and variance to normalize the summed input to
a neuron on each training case. However, the performance
of batch normalization is highly affected by the size of the
mini-batch. Besides, batch normalization can not be perfectly
applied to recurrent neural network (RNN).

A recently proposed method, layer normalization, can ad-
dress issues above successfully. Layer normalization uses the
distribution of all of the summed input to neurons in a layer
on a single case to calculate a mean and variance which are
then used to normalize the summed input. Layer normalization
can greatly reduce training time and improve generalization
performance. Therefore, layer normalization is adopted in this
paper. Specifically, layer normalization will be applied before
the non-linearty. The normalization is done with the following
formula:

xLayerNorm
iL = αiL ×

xiL − µL√
σ2
L + ε

+ βiL, (1)

where µL ,σ2
L are the mean and variance in layer L. In order

to prevent the occurrence of zero, a small number ε is added to
denominator. αiL and βiL are the scale and shift parameters
for neuron i in layer L, which are trainable during training
process. xiL is the summed input for neuron i in layer L.
Finally, xiL can be normalized to xLayerNorm

iL .

B. Knowledge distillation

Knowledge Distillation is firstly inspired by biological
evolution. Small creatures will live in an optimal way for
traveling and reproduction and continue acquiring knowledge
from adults. The same in machine learning, Hinton [16] points
that teacher model can be trained if it can extract information

from data easily. Then knowledge can be transferred from
the teacher model to a student model which is suitable for
deployment. In other words, the student model is trained to
imitate the behaviors of the teacher model.

The training process of knowledge distillation is different
from the traditional process. Labels are generated by the
teacher model. In teacher model, because the incorrect answers
may also carry a lot of knowledge about how teacher model
tends to generalize, this information can be adopted to further
improve the performance of student model. Therefore, class
probabilities produced by the teacher model are used to train
the small model. Cross entropy loss function is modified as:

LKD(θ) = −
∑
j

ỹj log yj , (2)

where yj represents the output of the student model, and ỹj is
the output of the teacher model. In Eq. 2, ỹj is no longer a one-
hot vector. Optimizing the loss function is equal to minimize
the Kullback-Leibler divergence between the teacher and the
student model. Besides, some improvements can be applied to
this method to further enhance performance. Firstly, to prevent
the probabilities of incorrect answer play a very small role
due to their small value, temperature is used in Softmax non-
linearity to flatten posterior distribution. Softmax non-linearity
is modified as follows:

yj =
exp(zj/T )∑
j exp(zj/T )

, (3)

where zj is summed input of class j in output layer. T is the
temperature. yj is the output of class j. Temperature is used
both in teacher and student model.

Secondly, it is beneficial to use the ground truth labels.
By interpolating the ground truth labels into training process,
better performance can be maintained. Thus we can get the
following loss function:

L(θ) = λLKD(θ) +
1− λ
T 2
LCE(θ), (4)

λ is a tuned parameter. In this experiment, we use Eq. 4 as
the loss function. Therefore, the small model is trained as a
mixture of standard cross-entropy and knowledge distillation.

C. Pruning

Knowledge distillation reduces model size by changing
model structure. Pruning reduces model size by discarding
unnecessary weights in model. Pruning gets inspiration from
human brain. For newborns, synapses are created and then
gradually pruned, finally grow into adults form.

Pruning consists of three steps. The first step is to train
a conventional neural network. The second step removes
connections which weights are below the threshold. This step
converts a dense network into a sparse network. Paper [24]
proposes three ways to prune weights in deep neural network.
The first one sorts all parameters and then prunes the weights
below global threshold. This method fails to take the difference
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of parameters in different layers into account. The second
method sorts the parameters of each layer and removes the
weights that are smaller than the threshold of each layer. The
third method also prunes the parameters of each layer, but the
threshold is determined by standard deviation of the weights
of that layer. This paper also suggests that the use of the first
method, though the simplest, can obtain better performance.
In this work, the first method is applied to pruning the deep
neural network.

The third step is to retrain the sparse network. In this
step, for convenience, the pruned weights are set to zero and
gradients are also set to zero at the corresponding position.
So we can continue training the network without changing
the training structure. Multiple iterations can be obtained in
the second and third step to get satisfactory performance.
When performance begins to decrease, pruning is stopped.
The network can be stored as a sparse matrix, which can
considerably reduce the model size.

III. EXPERIMENTAL SETUP

A. Data preparation

In order to demonstrate the effectiveness of proposed
method of model compression, extensive experiments have
been performed. In this work, HKUST [28] Mandarin Chinese
conversation telephone corpus (LDC2005S15, LDC2005T32)
is used. It contains 150-hour speech, 873 calls in training
set, 15-hour speech, 81 calls in development set and 5-hour
speech, 24 calls in test set. In our study, the development set
is used to control the learning rate and choose the model. The
experimental results are all evaluated on the test set.

B. Training preparation

Speech pre-processing and feature extraction are the same
as those of general LVCSR [10]. Firstly, speech signal is
divided into frames. For each frame, acoustic features are
generated based on 40-dimensional log-mel filterbank features
and 3-dimensional pitch features [29] along with their first and
second order derivatives. In this experiment, 5 past frames and
5 future frames are appended to current frame, constituting
a total of 1419-dimensional feature vector. The alignments
are generated by a well-trained GMM-HMM system with
2848 senones. A trigram language model is trained on all
transcription texts of the training set. The models are all trained
on Tensorflow [30] and decoded by Kaldi [31].

IV. RESULTS

A. Layer normalization

At the beginning of this experiment, a state-of-the-art DNN
is firstly trained, and layer normalization is applied before non-
linear function in each layer. In order to decide the appropriate
architecture, four kinds of DNN are conducted. The results are
shown in Table I.

DNN-6-1024 and DNN-6-2048 are DNN with 6 hidden
layers and 1024, 2048 nodes in each hidden layer respectively.
Similarly, DNN-6-2048-LN represents DNN with 6 hidden

TABLE I
Comparison of systems with different architecture.

Model CER (%)
DNN-6-1024 40.76

DNN-6-1024-LN 40.16
DNN-6-2048 39.83

DNN-6-2048-LN 39.32

layers and 2048 nodes in each hidden layer, and layer nor-
malization is applied before the non-linearity of each layer.

As can be seen from the Table I, layer normalization in
DNN-6-1024-LN and DNN-6-2048-LN can effectively im-
prove the performance. About 0.6% decrease of CER is
obtained. The number of parameters of DNN-6-2048-LN is
almost 4 times as DNN-6-1024-LN. For computation effi-
ciency, DNN-6-1024-LN is chosen as the teacher model for
subsequent model compression.

B. Knowledge distillation

The training process of knowledge distillation is done in
two stages.

In the first stage, the architecture of student model needs
to be decided. The student model must be carefully chosen
as a trade-off between model size and model performance.
Thus the student model can acquire knowledge as much as
possible, while the number of parameters should also be
within reasonable size. Four kinds of DNN are applied to
comparing the learning ability. Besides, temperature T and
tuned parameter λ are not considered in this stage. The
results of experiment are shown in Table II. In the following
table, the compression rate represents the ratio of the model
parameters before compression to the model parameters after
compression.

TABLE II
Comparison of learning ability of small models.

Model CER (%) Compression Rate
DNN-6-1024-LN 40.16 −

DNN-3-800 43.08 2.04×
DNN-3-512 43.75 3.55×
DNN-3-400 44.14 4.74×
DNN-3-256 47.41 7.84×

DNN-6-1024-LN is the teacher model, which only provides
the soft targets for student model. DNN-3-800, DNN-3-512,
DNN-3-400 and DNN-3-256 are candidate small models for
acquiring knowledge, which denote DNN with 3 hidden layers
and 800, 512, 400, 256 nodes in each hidden layer respectively.
Learned from the results, it is obvious that DNN-3-800 has the
lowest CER, but the compression rate is only 1.82. For DNN-
3-400 and DNN-3-256, though the number of parameters
is small, the performance decrease significantly. Therefore,
considering the trade-off between parameter and performance,
DNN-3-512 is chosen as the student model for the next stage.
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In the second stage, temperature T and tuned parameter λ
are taken into account. Temperature can introduce more infor-
mation of error classes to small model, and the information
of the ground truth labels can be obtained by using λ. These
methods can help to explore the maximums of knowledge that
small model can acquire. The results are shown in Table III.

TABLE III
CER (%) of the student models with varied hyper-parameters.

λ
T 1 2 5 10

0 44.27 43.72 44.76 45.05
0.2 42.75 42.10 43.60 44.52
0.4 43.22 43.13 43.20 43.53
0.6 42.95 42.49 43.76 43.48
0.8 42.57 43.08 43.87 43.03
1 43.75 43.17 44.08 44.78

Compared with DNN-3-512 in Table II, it is obvious that
the use of T and λ can effectively improve performance.
When T = 2 and λ = 0.2, DNN-3-512 can reach the best
performance with the CER of 42.10%. The best model is
denoted as DNN-3-512-KD. DNN-3-512 with T = 1 and
λ = 0 is denoted as DNN-3-512-Ref, which is trained only
by using ground truth labels. The experimental results of
knowledge distillation are shown in Table IV.

TABLE IV
Results of knowledge distillation.

Model CER Parameters Compression
(%) (million) Rate

DNN-6-1024-LN 40.16 9.62 −
DNN-3-512-KD 42.10 2.71 3.55×
DNN-3-512-Ref 44.27 2.71 3.55×

In Table IV, knowledge distillation can successfully transfer
knowledge from DNN-6-1024-LN to DNN-3-512-KD. The
number of parameters is reduced by a factor of 3.55, from
9.62 million to 2.71 million. DNN-3-512-KD suffers 2%
performance loss. At the same time, compared with DNN-3-
512-Ref, DNN-3-512-KD can achieve 2% improvement with
the same model size.

C. Combined knowledge distillation and pruning

Furthermore, pruning is applied to compressing DNN-3-
512-KD. In this experiment, pruning is divided into two
steps. The first step is to select threshold. If threshold is too
large, the model can not recover from pruning. If threshold is
too small, the number of iterations will increase. Therefore,
it is important to select an appropriate threshold. Different
thresholds are adopted to directly prune the model. After
pruning, retraining is conducted to recover from performance
loss.

In Table V, when threshold is bigger than 0.1, DNN-3-512-
KD can not recover from weight reduction. Performance de-

TABLE V
Results of pruning with different threshold.

Model Threshold CER Compression
(%) Rate

DNN-3-512-KD − 42.10 −
DNN-3-512 0.1 42.24 2.29×
DNN-3-512 0.2 44.07 3.42×
DNN-3-512 0.4 48.88 6.57×
DNN-3-512 0.6 57.88 12.57×

TABLE VI
Results of compression method

Model CER Parameters Storage Size Tforward

(%) (million) (second)
DNN-6-1024-LN 40.16 9.62 37M 165.8369
DNN-3-512-KD 42.10 2.71 11M 93.7702
DNN-3-512-Ref 44.27 2.71 11M 93.7702
DNN-3-512-Pr 41.96 0.66 7.4M 94.8652

grades significantly when the threshold gets bigger. Therefore,
in the following pruning, threshold is initially selected as 0.1.

The second step is to prune DNN-3-512-KD. Weights are
directly removed if their values are smaller than the threshold,
which converts a dense network to a sparse network. Then
retraining is applied to recovering from performance loss. By
re-selecting the threshold and iterating the steps above, the
model can be effectively compressed. Pruning is stopped until
the model can not recover from weight reduction. In our work,
the threshold is gradually increased by 0.05 for every three
rounds. After 10 rounds of iterative training, the performance
of the model begins to decrease. Therefore, we stop pruning
and store the model as DNN-3-512-Pr. Pruned models are
saved as compressed row format (CSR) with low bit index,
and sparse matrix multiplication is unused for pruned models.

The results are summarized in Table VI. Because we do not
compress language model, we only evaluate the feed-forward
time of acoustic model on test set. In Table VI, Tforward

represents feed-forward time. The models are tested on CPU.
Compared with DNN3-512-KD, the number of parameters of
DNN-3-512-Pr is compressed by 4.11. The storage size of
DNN-3-512-Pr is reduced by 1.48. The performance of DNN-
3-512-Pr improves slightly. Compared with DNN-6-1024-LN,
the CER of DNN-3-512-Pr increases 1.8%. The number of
parameters is compressed by a factor of 14.59, from 9.62
million to 0.66 million. The storage size is reduced by 5,
from 37M to 7.4M. The feed-forward time is reduced by
1.77. What’s more, DNN-3-512-Pr, compared with DNN-3-
512-Ref, achieves a 2% performance improvement, meanwhile
the number of parameters is reduced by a factor of 4.11.

D. Weight distribution

In pruning, we directly remove the weights which are below
the global threshold. Therefore, we are interested in exploring
the weight distribution of DNN-3-512-Pr.
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TABLE VII
Distribution of weights in DNN-3-512-Pr

Layer Parameters Compression Rate
DNN-Aff-1 21411 33.93×
DNN-Aff-2 40212 6.52×
DNN-Aff-3 80545 3.25×

DNN-Output 517451 2.82×
Total 659619 4.11×

In Table VII, DNN-Aff-1, DNN-Aff-2, DNN-Aff-3 and
DNN-Output are affine transform matrices of the first hidden
layer, the second hidden layer, the third hidden layer and
output layer respectively. It is obvious that DNN-3-512-Pr
has more weights in DNN-Output than other layers. That is
because the weights in DNN-Output have greater value than
the others. We can also say that the weights closer to the output
layer play more important role in the network.

V. CONCLUSIONS AND DISCUSSIONS

This paper presents a new scheme of model compression,
which can effectively compress the acoustic model in speech
recognition system. In detail, we integrate knowledge distil-
lation and pruning to compress acoustic model, and layer
normalization is applied to improving the performance. The
results show that layer normalization can effectively improve
CER by 0.6%. By using knowledge distillation, DNN-6-
1024-LN can be compressed to DNN-3-512-KD, with 2%
performance loss. The number of parameters is reduced by
a factor of 3.55, from 9.62 million to 2.71 million. After
pruning, DNN-3-512-KD can be compressed to DNN-3-512-
Pr, with a slight performance improvement. The number of
parameters is reduced by a factor of 4.11, from 2.71 million
to 0.66 million. In summary, the acoustic model, DNN-6-
1024-LN, can be effectively compressed to DNN-3-512-Pr,
which achieves 14.59× parameters reduction, 5× storage size
reduction and 1.77× feed-forward speed up, with 1.8% loss
of accuracy.

This paper presents a method to compress the acoustic
model in speech recognition system, which is easy to be
deployed. It can achieve high compression rate with little
performance loss. Since our compression method can be easily
integrated and combined with other advanced techniques, it
has great potential for further improvement. Firstly, although
we only explore DNN structure in this work, our method can
be easily and effectively extended to more powerful models
such as CNN and LSTM. Secondly, our method can be
combined with weight sharing and quantization to achieve
higher compression rate. Thirdly, after pruning, the weights
are mainly distributed in output layer. We can further compress
output layer and speed up Softmax computations. At the same
time, the feed-forward time of DNN-3-512-Pr have not been
improved because sparse matrix multiplication is not applied
in this experiment. We can utilize sparse matrix multiplication
to further reduce the feed-forward time.
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